Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
March-2023 Volume 27 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
March-2023 Volume 27 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Radioprotective countermeasures for radiation injury (Review)

  • Authors:
    • Lianchang Liu
    • Zhenzhen Liang
    • Shumei Ma
    • Lan Li
    • Xiaodong Liu
  • View Affiliations / Copyright

    Affiliations: National Health Commission Key Laboratory of Radiobiology, School of Public Health of Jilin University, Jilin, Changchun 130021, P.R. China, School of Public Health, Xinxiang Medical University, Xinxiang 453003, P.R. China, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China, National Health Commission Key Laboratory of Radiobiology, School of Public Health of Jilin University, Jilin, Changchun 130021, P.R. China
    Copyright: © Liu et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 66
    |
    Published online on: February 6, 2023
       https://doi.org/10.3892/mmr.2023.12953
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

A series of physiological and pathological changes occur after radiotherapy and accidental exposure to ionizing radiation (IR). These changes cause serious damage to human tissues and can lead to death. Radioprotective countermeasures are radioprotective agents that prevent and reduce IR injury or have therapeutic effects. Based on a good understanding of radiobiology, a number of protective agents have achieved positive results in early clinical trials. The present review grouped known radioprotective agents according to biochemical categories and potential clinical use, and reviewed radiation countermeasures, i.e., radioprotectors, radiation mitigators and radiotherapeutic agents, with an emphasis on their current status and research progress. The aim of the present review is to facilitate the selection and application of suitable radioprotectors for clinicians and researchers, to prevent or reduce IR injury.
View Figures

Figure 1

Figure 2

Figure 3

View References

1 

Obrador E, Salvador R, Villaescusa JI, Soriano JM, Estrela JM and Montoro A: Radioprotection and radiomitigation: From the bench to clinical practice. Biomedicines. 8:4612020. View Article : Google Scholar : PubMed/NCBI

2 

Mishra K and Alsbeih G: Appraisal of biochemical classes of radioprotectors: Evidence, current status and guidelines for future development. 3 Biotech. 7:2922017. View Article : Google Scholar : PubMed/NCBI

3 

Li X, Wang X, Miao L, Guo Y, Yuan R, Ren J, Huang Y and Tian H: Design, synthesis, and biological evaluation of a novel aminothiol compound as potential radioprotector. Oxid Med Cell Longev. 2021:47146492021.PubMed/NCBI

4 

Mishra KN, Moftah BA and Alsbeih GA: Appraisal of mechanisms of radioprotection and therapeutic approaches of radiation countermeasures. Biomed Pharmacother. 106:610–617. 2018. View Article : Google Scholar : PubMed/NCBI

5 

Liu J, Bi K, Yang R, Li H, Nikitaki Z and Chang L: Role of DNA damage and repair in radiation cancer therapy: A current update and a look to the future. Int J Radiat Biol. 96:1329–1338. 2020. View Article : Google Scholar : PubMed/NCBI

6 

Santivasi WL and Xia F: Ionizing radiation-induced DNA damage, response, and repair. Antioxid Redox Signal. 21:251–259. 2014. View Article : Google Scholar : PubMed/NCBI

7 

Zhao L, Bao C, Shang Y, He X, Ma C, Lei X, Mi D and Sun Y: The determinant of DNA repair pathway choices in ionising radiation-induced DNA double-strand breaks. Biomed Res Int. 2020:48349652020. View Article : Google Scholar : PubMed/NCBI

8 

Yao M, Rogers L, Suchowerska N, Choe D, Al-Dabbas MA, Narula RS, Lyons JG, Sved P, Li Z and Dong Q: Sensitization of prostate cancer to radiation therapy: Molecules and pathways to target. Radiother Oncol. 128:283–300. 2018. View Article : Google Scholar : PubMed/NCBI

9 

Kavanagh JN, Redmond KM, Schettino G and Prise KM: DNA double strand break repair: A radiation perspective. Antioxid Redox Signal. 18:2458–2472. 2013. View Article : Google Scholar : PubMed/NCBI

10 

Huang RX and Zhou PK: DNA damage response signaling pathways and targets for radiotherapy sensitization in cancer. Signal Transduct Target Ther. 5:602020. View Article : Google Scholar : PubMed/NCBI

11 

Allegra AG, Mannino F, Innao V, Musolino C and Allegra A: Radioprotective agents and enhancers factors. Preventive and therapeutic strategies for oxidative induced radiotherapy damages in hematological malignancies. Antioxidants (Basel). 9:11162020. View Article : Google Scholar : PubMed/NCBI

12 

Kalman NS, Zhao SS, Anscher MS and Urdaneta AI: Current status of targeted radioprotection and radiation injury mitigation and treatment agents: A critical review of the literature. Int J Radiat Oncol Biol Phys. 98:662–682. 2017. View Article : Google Scholar : PubMed/NCBI

13 

Deas SD, Huprikar N and Skabelund A: Radiation exposure and lung disease in today's nuclear world. Curr Opin Pulm Med. 23:167–172. 2017. View Article : Google Scholar : PubMed/NCBI

14 

Gudkov SV, Popova NR and Bruskov VI: Radioprotectors: History, trends and prospects. Biofizika. 60:801–811. 2015.(In Russian). PubMed/NCBI

15 

Singh VK and Seed TM: Pharmacological management of ionizing radiation injuries: Current and prospective agents and targeted organ systems. Expert Opin Pharmacother. 21:317–337. 2020. View Article : Google Scholar : PubMed/NCBI

16 

Patyar RR and Patyar S: Role of drugs in the prevention and amelioration of radiation induced toxic effects. Eur J Pharmacol. 819:207–216. 2018. View Article : Google Scholar : PubMed/NCBI

17 

Mun GI, Kim S, Choi E, Kim CS and Lee YS: Correction to: Pharmacology of natural radioprotectors. Arch Pharm Res. 43:272–274. 2019. View Article : Google Scholar : PubMed/NCBI

18 

Cheema AK, Li Y, Girgis M, Jayatilake M, Fatanmi OO, Wise SY, Seed TM and Singh VK: Alterations in tissue metabolite profiles with amifostine-prophylaxed mice exposed to gamma radiation. Metabolites. 10:2112020. View Article : Google Scholar : PubMed/NCBI

19 

King M, Joseph S, Albert A, Thomas TV, Nittala MR, Woods WC, Vijayakumar S and Packianathan S: Use of amifostine for cytoprotection during radiation therapy: A review. Oncology. 98:61–80. 2020. View Article : Google Scholar : PubMed/NCBI

20 

Barbosa SCM, Pereira VBM, Wong DVT, Santana APM, Lucetti LT, Carvalho LL, Barbosa CRN, Callado RB, Silva CAA, Lopes CDH, et al: Amifostine reduces inflammation and protects against 5-fluorouracil-induced oral mucositis and hyposalivation. Braz J Med Biol Res. 52:e82512019. View Article : Google Scholar : PubMed/NCBI

21 

Chang H, Yi W, Wang X, Tao Y, Yang X, Chen C, Zhang W, Zhou S, Liu S, Li X, et al: Effectiveness and safety of different amifostine regimens: Preliminary results of a phase II multicenter randomized controlled trial. Chin J Cancer Res. 30:307–314. 2018. View Article : Google Scholar : PubMed/NCBI

22 

Ferraiolo DM and Veitz-Keenan A: Insufficient evidence for interventions to prevent dry mouth and salivary gland dysfunction post head and neck radiotherapy. Evid Based Dent. 19:30–31. 2018. View Article : Google Scholar : PubMed/NCBI

23 

Kim JM, Kim JW, Choi ME, Kim SK, Kim YM and Choi JS: Protective effects of curcumin on radioiodine-induced salivary gland dysfunction in mice. J Tissue Eng Regen Med. 13:674–681. 2019. View Article : Google Scholar : PubMed/NCBI

24 

Ma SJ, Rivers CI, Serra LM and Singh AK: Long-term outcomes of interventions for radiation-induced xerostomia: A review. World J Clin Oncol. 10:1–13. 2019. View Article : Google Scholar : PubMed/NCBI

25 

Riley P, Glenny AM, Hua F and Worthington HV: Pharmacological interventions for preventing dry mouth and salivary gland dysfunction following radiotherapy. Cochrane Database Syst Rev. 7:CD0127442017.PubMed/NCBI

26 

Torun N, Muratli A, Serim BD, Ergulen A and Altun GD: Radioprotective effects of amifostine, L-carnitine and vitamin e in preventing early salivary gland injury due to radioactive iodine treatment. Curr Med Imaging Rev. 15:395–404. 2019. View Article : Google Scholar : PubMed/NCBI

27 

Luby AO, Subramanian C, Buchman LK, Lynn JV, Urlaub KM, Nelson NS, Donneys A, Cohen MS and Buchman SR: Amifostine prophylaxis in irradiated breast reconstruction: A study of oncologic safety in vitro. Ann Plast Surg. 85:424–429. 2020. View Article : Google Scholar : PubMed/NCBI

28 

Molkentine JM, Fujimoto TN, Horvath TD, Grossberg AJ, Garcia CJG, Deorukhkar A, de la Cruz Bonilla M, Lin D, Samuel ELG, Chan WK, et al: Enteral activation of WR-2721 mediates radioprotection and improved survival from lethal fractionated radiation. Sci Rep. 9:19492019. View Article : Google Scholar : PubMed/NCBI

29 

Yu X, Li M, Zhu L, Li J, Zhang G, Fang R, Wu Z and Jin Y: Amifostine-loaded armored dissolving microneedles for long-term prevention of ionizing radiation-induced injury. Acta Biomater. 112:87–100. 2020. View Article : Google Scholar : PubMed/NCBI

30 

Singh VK and Seed TM: The efficacy and safety of amifostine for the acute radiation syndrome. Expert Opin Drug Saf. 18:1077–1090. 2019. View Article : Google Scholar : PubMed/NCBI

31 

Zhang D, Zhong D, Ouyang J, He J, Qi Y, Chen W, Zhang X, Tao W and Zhou M: Microalgae-based oral microcarriers for gut microbiota homeostasis and intestinal protection in cancer radiotherapy. Nat Commun. 13:14132022. View Article : Google Scholar : PubMed/NCBI

32 

Daugėlaitė G, Užkuraitytė K, Jagelavičienė E and Filipauskas A: Prevention and treatment of chemotherapy and radiotherapy induced oral mucositis. Medicina (Kaunas). 55:252019. View Article : Google Scholar : PubMed/NCBI

33 

Epstein JB, Silverman S Jr, Paggiarino DA, Crockett S, Schubert MM, Senzer NN, Lockhart PB, Gallagher MJ, Peterson DE and Leveque FG: Benzydamine HCl for prophylaxis of radiation-induced oral mucositis: Results from a multicenter, randomized, double-blind, placebo-controlled clinical trial. Cancer. 92:875–885. 2001. View Article : Google Scholar : PubMed/NCBI

34 

Nicolatou-Galitis O, Bossi P, Orlandi E and Bensadoun RJ: The role of benzydamine in prevention and treatment of chemoradiotherapy-induced mucositis. Support Care Cancer. 29:5701–5709. 2021. View Article : Google Scholar : PubMed/NCBI

35 

Manoharan V, Fareed N, Battur H, Khanagar S and Praveena J: Effectiveness of mouthrinses in prevention and treatment of radiation induced mucositis: A systematic review. J Cancer Res Ther. 16 (Suppl):S1–S10. 2020. View Article : Google Scholar : PubMed/NCBI

36 

Yu YT, Deng JL, Jin XR, Zhang ZZ, Zhang XH and Zhou X: Effects of 9 oral care solutions on the prevention of oral mucositis: A network meta-analysis of randomized controlled trials. Medicine (Baltimore). 99:e196612020. View Article : Google Scholar : PubMed/NCBI

37 

Chitapanarux I, Tungkasamit T, Petsuksiri J, Kannarunimit D, Katanyoo K, Chakkabat C, Setakornnukul J, Wongsrita S, Jirawatwarakul N, Lertbusayanukul C, et al: Randomized control trial of benzydamine HCl versus sodium bicarbonate for prophylaxis of concurrent chemoradiation-induced oral mucositis. Support Care Cancer. 26:879–886. 2018. View Article : Google Scholar : PubMed/NCBI

38 

Kakoei S, Pardakhty A, Hashemipour MA, Larizadeh H, Kalantari B and Tahmasebi E: Comparison the pain relief of amitriptyline mouthwash with benzydamine in oral mucositis. J Dent (Shiraz). 19:34–40. 2018.PubMed/NCBI

39 

Papanikolopoulou A, Syrigos N, Vini L, Papasavva M, Lazopoulos G, Kteniadakis S, Spandidos DA, Charpidou A and Drakoulis N: Use of oral glutamine in radiation-induced adverse effects in patients with thoracic and upper aerodigestive malignancies: Results of a prospective observational study. Oncol Lett. 23:192022. View Article : Google Scholar : PubMed/NCBI

40 

Chang SC, Lai YC, Hung JC and Chang CY: Oral glutamine supplements reduce concurrent chemoradiotherapy-induced esophagitis in patients with advanced non-small cell lung cancer. Medicine (Baltimore). 98:e144632019. View Article : Google Scholar : PubMed/NCBI

41 

Cao DD, Xu HL, Xu M, Qian XY, Yin ZC and Ge W: Therapeutic role of glutamine in management of radiation enteritis: A meta-analysis of 13 randomized controlled trials. Oncotarget. 8:30595–30605. 2017. View Article : Google Scholar : PubMed/NCBI

42 

Vidal-Casariego A, Calleja-Fernández A, de Urbina-González JJ, Cano-Rodríguez I, Cordido F and Ballesteros-Pomar MD: Efficacy of glutamine in the prevention of acute radiation enteritis: A randomized controlled trial. JPEN J Parenter Enteral Nutr. 38:205–213. 2014. View Article : Google Scholar : PubMed/NCBI

43 

Vidal-Casariego A, Calleja-Fernández A, Cano-Rodríguez I, Cordido F and Ballesteros-Pomar MD: Effects of oral glutamine during abdominal radiotherapy on chronic radiation enteritis: A randomized controlled trial. Nutrition. 31:200–204. 2015. View Article : Google Scholar : PubMed/NCBI

44 

Erbil Y, Oztezcan S, Giriş M, Barbaros U, Olgaç V, Bilge H, Küçücük H and Toker G: The effect of glutamine on radiation-induced organ damage. Life Sci. 78:376–382. 2005. View Article : Google Scholar : PubMed/NCBI

45 

Ersin S, Tuncyurek P, Esassolak M, Alkanat M, Buke C, Yilmaz M, Telefoncu A and Kose T: The prophylactic and therapeutic effects of glutamine- and arginine-enriched diets on radiation-induced enteritis in rats. J Surg Res. 89:121–125. 2000. View Article : Google Scholar : PubMed/NCBI

46 

Alshawa A, Cadena AP, Stephen B, Reddy A, Mendoza TR, McQuinn L, Lawhorn K, Zarifa A, Bernhardt AM, Fessaheye S, et al: Effects of glutamine for prevention of radiation-induced esophagitis: A double-blind placebo-controlled trial. Invest New Drugs. 39:1113–1122. 2021. View Article : Google Scholar : PubMed/NCBI

47 

Topkan E, Yavuz MN, Onal C and Yavuz AA: Prevention of acute radiation-induced esophagitis with glutamine in non-small cell lung cancer patients treated with radiotherapy: Evaluation of clinical and dosimetric parameters. Lung Cancer. 63:393–399. 2009. View Article : Google Scholar : PubMed/NCBI

48 

Vidal-Casariego A, Calleja-Fernández A, Ballesteros-Pomar MD and Cano-Rodríguez I: Efficacy of glutamine in the prevention of oral mucositis and acute radiation-induced esophagitis: A retrospective study. Nutr Cancer. 65:424–429. 2013. View Article : Google Scholar : PubMed/NCBI

49 

Rubio I, Suva LJ, Todorova V, Bhattacharyya S, Kaufmann Y, Maners A, Smith M and Klimberg VS: Oral glutamine reduces radiation morbidity in breast conservation surgery. JPEN J Parenter Enteral Nutr. 37:623–630. 2013. View Article : Google Scholar : PubMed/NCBI

50 

Yavas C, Yavas G, Celik E, Buyukyoruk A, Buyukyoruk C, Yuce D and Ata O: Beta-hydroxy-beta-methyl-butyrate, L-glutamine, and L-arginine supplementation improves radiation-induce acute intestinal toxicity. J Diet Suppl. 16:576–591. 2019. View Article : Google Scholar : PubMed/NCBI

51 

Setiadi A, Korim WS, May CN and Yao ST: Systemic administration of pentoxifylline attenuates the development of hypertension in renovascular hypertensive rats. Hypertens Res. 43:667–678. 2020. View Article : Google Scholar : PubMed/NCBI

52 

Hendawy N: Pentoxifylline attenuates cytokine stress and Fas system in syngeneic liver proteins induced experimental autoimmune hepatitis. Biomed Pharmacother. 92:316–323. 2017. View Article : Google Scholar : PubMed/NCBI

53 

Seirafianpour F, Mozafarpoor S, Fattahi N, Sadeghzadeh-Bazargan A, Hanifiha M and Goodarzi A: Treatment of COVID-19 with pentoxifylline: Could it be a potential adjuvant therapy? Dermatol Ther. 33:e137332020. View Article : Google Scholar : PubMed/NCBI

54 

Wang K and Tepper JE: Radiation therapy-associated toxicity: Etiology, management, and prevention. CA Cancer J Clin. 71:437–454. 2021. View Article : Google Scholar : PubMed/NCBI

55 

Price ML, Lai YE, Marcus KL, Robertson JB, Lascelles BDX and Nolan MW: Early radiation-induced oral pain signaling responses are reduced with pentoxifylline treatment. Vet Radiol Ultrasound. 62:255–263. 2021. View Article : Google Scholar : PubMed/NCBI

56 

Andreyev HJN, Matthews J, Adams C, Gothard L, Lucy C, Tovey H, Boyle S, Anbalagan S, Musallam A, Yarnold J, et al: Randomised single centre double-blind placebo controlled phase II trial of Tocovid SupraBio in combination with pentoxifylline in patients suffering long-term gastrointestinal adverse effects of radiotherapy for pelvic cancer: The PPALM study. Radiother Oncol. 168:130–137. 2022. View Article : Google Scholar : PubMed/NCBI

57 

Pedro-Botet J and Pintó X: LDL-cholesterol: The lower the better. Clin Investig Arterioscler. 31 (Suppl 2):S16–S27. 2019.PubMed/NCBI

58 

Lee MS, Liu DW, Hung SK, Yu CC, Chi CL, Chiou WY, Chen LC, Lin RI, Huang LW, Chew CH, et al: Emerging challenges of radiation-associated cardiovascular dysfunction (RACVD) in modern radiation oncology: Clinical practice, bench investigation, and multidisciplinary care. Front Cardiovasc Med. 7:162020. View Article : Google Scholar : PubMed/NCBI

59 

Moon SH, Huang CH, Houlihan SL, Regunath K, Freed-Pastor WA, Morris JP IV, Tschaharganeh DF, Kastenhuber ER, Barsotti AM, Culp-Hill R, et al: p53 represses the mevalonate pathway to mediate tumor suppression. Cell. 176:564–580.e19. 2019. View Article : Google Scholar : PubMed/NCBI

60 

Li P, Liu X, Zhao T, Li F, Wang Q, Zhang P, Hirayama R, Chen W, Jin X, Zheng X, et al: Comparable radiation sensitivity in p53 wild-type and p53 deficient tumor cells associated with different cell death modalities. Cell Death Discov. 7:1842021. View Article : Google Scholar : PubMed/NCBI

61 

Kwak SY, Park S, Kim H, Lee SJ, Jang WS, Kim MJ, Lee S, Jang WI, Kim AR, Kim EH, et al: Atorvastatin inhibits endothelial PAI-1-mediated monocyte migration and alleviates radiation-induced enteropathy. Int J Mol Sci. 22:18282021. View Article : Google Scholar : PubMed/NCBI

62 

Pathak R, Kumar VP, Hauer-Jensen M and Ghosh SP: Enhanced survival in mice exposed to ionizing radiation by combination of gamma-tocotrienol and simvastatin. Mil Med. 184 (Suppl 1):S644–S651. 2019. View Article : Google Scholar

63 

Anscher MS, Chang MG, Moghanaki D, Rosu M, Mikkelsen RB, Holdford D, Skinner V, Grob BM, Sanyal A, Wang A and Mukhopadhyay ND: A phase II study to prevent radiation-induced rectal injury with lovastatin. Am J Clin Oncol. 41:544–548. 2018. View Article : Google Scholar : PubMed/NCBI

64 

Ostrau C, Hülsenbeck J, Herzog M, Schad A, Torzewski M, Lackner KJ and Fritz G: Lovastatin attenuates ionizing radiation-induced normal tissue damage in vivo. Radiother Oncol. 92:492–499. 2009. View Article : Google Scholar : PubMed/NCBI

65 

Ziegler V, Henninger C, Simiantonakis I, Buchholzer M, Ahmadian MR, Budach W and Fritz G: Rho inhibition by lovastatin affects apoptosis and DSB repair of primary human lung cells in vitro and lung tissue in vivo following fractionated irradiation. Cell Death Dis. 8:e29782017. View Article : Google Scholar : PubMed/NCBI

66 

Bachelet JT, Granzotto A, Ferlazzo M, Sonzogni L, Berthel E, Devic C and Foray N: First radiobiological characterization of the McCune-Albright syndrome: Influence of the ATM protein and effect of statins + bisphosphonates treatment. Int J Radiat Biol. 97:317–328. 2021. View Article : Google Scholar : PubMed/NCBI

67 

Wedlake LJ, Silia F, Benton B, Lalji A, Thomas K, Dearnaley DP, Blake P, Tait D, Khoo VS and Andreyev HJ: Evaluating the efficacy of statins and ACE-inhibitors in reducing gastrointestinal toxicity in patients receiving radiotherapy for pelvic malignancies. Eur J Cancer. 48:2117–2124. 2012. View Article : Google Scholar : PubMed/NCBI

68 

Cui M, Xiao H, Li Y, Zhang S, Dong J, Wang B, Zhu C, Jiang M, Zhu T, He J, et al: Sexual dimorphism of gut microbiota dictates therapeutics efficacy of radiation injuries. Adv Sci (Weinh). 6:19010482019. View Article : Google Scholar : PubMed/NCBI

69 

Zhang K, He X, Zhou Y, Gao L, Qi Z, Chen J and Gao X: Atorvastatin ameliorates radiation-induced cardiac fibrosis in rats. Radiat Res. 184:611–620. 2015. View Article : Google Scholar : PubMed/NCBI

70 

Do TM, Unis GD, Kattar N, Ananth A and McCoul ED: Neuromodulators for atypical facial pain and neuralgias: A systematic review and meta-analysis. Laryngoscope. 131:1235–1253. 2021. View Article : Google Scholar : PubMed/NCBI

71 

Guéguen Y, Bontemps A and Ebrahimian TG: Adaptive responses to low doses of radiation or chemicals: Their cellular and molecular mechanisms. Cell Mol Life Sci. 76:1255–1273. 2019. View Article : Google Scholar : PubMed/NCBI

72 

Di Stefano G, Maarbjerg S and Truini A: Trigeminal neuralgia secondary to multiple sclerosis: From the clinical picture to the treatment options. J Headache Pain. 20:202019. View Article : Google Scholar : PubMed/NCBI

73 

Bal W, Łabuz-Roszak B, Tarnawski R and Lasek-Bal A: Effectiveness and safety of CyberKnife radiosurgery in treatment of trigeminalgia-experiences of Polish neurological and oncological centres. Neurol Neurochir Pol. 54:28–32. 2020. View Article : Google Scholar : PubMed/NCBI

74 

Khalil NY and Aldosari KF: Meloxicam. Profiles Drug Subst Excip Relat Methodol. 45:159–197. 2020. View Article : Google Scholar : PubMed/NCBI

75 

Yamasaki MC, Roque-Torres GD, Peroni LV, Nascimento EHL, Salmon B, Oliveira ML, Freitas DQ and Correr-Sobrinho L: Does the administration of meloxicam before head and neck radiotherapy reduce the risk of mandibular osteoradionecrosis? An animal model study. Clin Oral Investig. 25:3739–3745. 2021. View Article : Google Scholar : PubMed/NCBI

76 

Yamasaki MC, Nejaim Y, Roque-Torres GD and Freitas DQ: Meloxicam as a radiation-protective agent on mandibles of irradiated rats. Braz Dent J. 28:249–255. 2017. View Article : Google Scholar : PubMed/NCBI

77 

Zhou Y, Dong X, Xiu P, Wang X, Yang J, Li L, Li Z, Sun P, Shi X and Zhong J: Meloxicam, a selective COX-2 inhibitor, mediates hypoxia-inducible factor-(HIF-) 1α signaling in hepatocellular carcinoma. Oxid Med Cell Longev. 2020:70793082020. View Article : Google Scholar : PubMed/NCBI

78 

Uehara Y, Murata Y, Shiga S and Hosoi Y: NSAIDs diclofenac, indomethacin, and meloxicam highly upregulate expression of ICAM-1 and COX-2 induced by X-irradiation in human endothelial cells. Biochem Biophys Res Commun. 479:847–852. 2016. View Article : Google Scholar : PubMed/NCBI

79 

Zhang KF, Wang J, Guo J, Huang YY and Huang TR: Metformin enhances radiosensitivity in hepatocellular carcinoma by inhibition of specificity protein 1 and epithelial-to-mesenchymal transition. J Cancer Res Ther. 15:1603–1610. 2019. View Article : Google Scholar : PubMed/NCBI

80 

Wang J, Wang Y, Han J, Mei H, Yu D, Ding Q, Zhang T, Wu G, Peng G and Lin Z: Metformin attenuates radiation-induced pulmonary fibrosis in a murine model. Radiat Res. 188:105–113. 2017. View Article : Google Scholar : PubMed/NCBI

81 

Da F, Guo J, Yao L, Gao Q, Jiao S, Miao X and Liu J: Pretreatment with metformin protects mice from whole-body irradiation. J Radiat Res. 62:618–625. 2021. View Article : Google Scholar : PubMed/NCBI

82 

Adeberg S, Bernhardt D, Harrabi SB, Nicolay NH, Hörner-Rieber J, König L, Repka M, Mohr A, Abdollahi A, Weber KJ, et al: Metformin enhanced in vitro radiosensitivity associates with G2/M cell cycle arrest and elevated adenosine-5′-monophosphate-activated protein kinase levels in glioblastoma. Radiol Oncol. 51:431–437. 2017. View Article : Google Scholar : PubMed/NCBI

83 

Nakayama A, Ninomiya I, Harada S, Tsukada T, Okamoto K, Nakanuma S, Sakai S, Makino I, Kinoshita J, Hayashi H, et al: Metformin inhibits the radiation-induced invasive phenotype of esophageal squamous cell carcinoma. Int J Oncol. 49:1890–1898. 2016. View Article : Google Scholar : PubMed/NCBI

84 

Rezaei N, Neshasteh-Riz A, Mazaheri Z, Koosha F and Hoormand M: The combination of metformin and disulfiram-cu for effective radiosensitization on glioblastoma cells. Cell J. 22:263–272. 2020.PubMed/NCBI

85 

Kolivand S, Motevaseli E, Cheki M, Mahmoudzadeh A, Shirazi A and Fait V: The anti-apoptotic mechanism of metformin against apoptosis induced by ionizing radiation in human peripheral blood mononuclear cells. Klin Onkol. 30:372–379. 2017. View Article : Google Scholar : PubMed/NCBI

86 

Batinic-Haberle I, Tovmasyan A, Huang Z, Duan W, Du L, Siamakpour-Reihani S, Cao Z, Sheng H, Spasojevic I and Alvarez Secord A: H2O2-driven anticancer activity of Mn porphyrins and the underlying molecular pathways. Oxid Med Cell Longev. 2021:66537902021. View Article : Google Scholar : PubMed/NCBI

87 

Feliciano CP and Nagasaki Y: Oral nanotherapeutics: Redox nanoparticles attenuate ultraviolet B radiation-induced skin inflammatory disorders in Kud: Hr-hairless mice. Biomaterials. 142:162–170. 2017. View Article : Google Scholar : PubMed/NCBI

88 

Wang F, Gao P, Guo L, Meng P, Fan Y, Chen Y, Lin Y, Guo G, Ding G and Wang H: Radio-protective effect and mechanism of 4-Acetamido-2,2,6,6-tetramethylpiperidin-1-oxyl in HUVEC cells. Environ Health Prev Med. 22:142017. View Article : Google Scholar : PubMed/NCBI

89 

Feliciano CP, Tsuboi K, Suzuki K, Kimura H and Nagasaki Y: Long-term bioavailability of redox nanoparticles effectively reduces organ dysfunctions and death in whole-body irradiated mice. Biomaterials. 129:68–82. 2017. View Article : Google Scholar : PubMed/NCBI

90 

Liu Z, Lei X, Li X, Cai JM, Gao F and Yang YY: Toll-like receptors and radiation protection. Eur Rev Med Pharmacol Sci. 22:31–39. 2018.PubMed/NCBI

91 

Chen Y, Xu Y, Du J, Guo J, Lei X, Cui J, Liu C, Cheng Y, Li B, Gao F, et al: Radioprotective effects of heat-killed mycobacterium tuberculosis in cultured cells and radiosensitive tissues. Cell Physiol Biochem. 40:716–726. 2016. View Article : Google Scholar : PubMed/NCBI

92 

Shi T, Li L, Zhou G, Wang C, Chen X, Zhang R, Xu J, Lu X, Jiang H and Chen J: Toll-like receptor 5 agonist CBLB502 induces radioprotective effects in vitro. Acta Biochim Biophys Sin (Shanghai). 49:487–495. 2017. View Article : Google Scholar : PubMed/NCBI

93 

Zheng L, Asprodites N, Keene AH, Rodriguez P, Brown KD and Davila E: TLR9 engagement on CD4 T lymphocytes represses gamma-radiation-induced apoptosis through activation of checkpoint kinase response elements. Blood. 111:2704–2713. 2008. View Article : Google Scholar : PubMed/NCBI

94 

Liu C, Zhang C, Mitchel RE, Cui J, Lin J, Yang Y, Liu X and Cai J: A critical role of toll-like receptor 4 (TLR4) and its' in vivo ligands in basal radio-resistance. Cell Death Dis. 4:e6492013. View Article : Google Scholar : PubMed/NCBI

95 

Burdelya LG, Krivokrysenko VI, Tallant TC, Strom E, Gleiberman AS, Gupta D, Kurnasov OV, Fort FL, Osterman AL, Didonato JA, et al: An agonist of toll-like receptor 5 has radioprotective activity in mouse and primate models. Science. 320:226–230. 2008. View Article : Google Scholar : PubMed/NCBI

96 

Bai H, Sun F, Yang G, Wang L, Zhang Q, Zhang Q, Zhan Y, Chen J, Yu M, Li C, et al: CBLB502, a Toll-like receptor 5 agonist, offers protection against radiation-induced male reproductive system damage in mice. Biol Reprod. 100:281–291. 2019. View Article : Google Scholar : PubMed/NCBI

97 

Saha S, Bhanja P, Liu L, Alfieri AA, Yu D, Kandimalla ER, Agrawal S and Guha C: TLR9 agonist protects mice from radiation-induced gastrointestinal syndrome. PLoS One. 7:e293572012. View Article : Google Scholar : PubMed/NCBI

98 

Walshaw RC, Honeychurch J, Choudhury A and Illidge TM: Toll-like receptor agonists and radiation therapy combinations: An untapped opportunity to induce anticancer immunity and improve tumor control. Int J Radiat Oncol Biol Phys. 108:27–37. 2020. View Article : Google Scholar : PubMed/NCBI

99 

Schmitt H, Ulmschneider J, Billmeier U, Vieth M, Scarozza P, Sonnewald S, Reid S, Atreya I, Rath T, Zundler S, et al: The TLR9 agonist cobitolimod induces IL10-producing wound healing macrophages and regulatory T cells in ulcerative colitis. J Crohns Colitis. 14:508–524. 2020. View Article : Google Scholar : PubMed/NCBI

100 

Ogretmen B: Sphingolipid metabolism in cancer signalling and therapy. Nat Rev Cancer. 18:33–50. 2018. View Article : Google Scholar : PubMed/NCBI

101 

Li Y, Jiang X, Luo T, Xia J, Lee MJ, Weichselbaum RR and Lin W: TLR3 agonist nanoscale coordination polymer synergizes with immune checkpoint blockade for immunotherapy of cancer. Biomaterials. 290:1218312022. View Article : Google Scholar : PubMed/NCBI

102 

Zhang Y, Feng Z and Liu J, Li J, Su Q, Zhang J, Huang P, Wang W and Liu J: Polarization of tumor-associated macrophages by TLR7/8 conjugated radiosensitive peptide hydrogel for overcoming tumor radioresistance. Bioact Mater. 16:359–371. 2022. View Article : Google Scholar : PubMed/NCBI

103 

Wang H, Huang H and Ding SF: Sphingosine-1-phosphate promotes the proliferation and attenuates apoptosis of Endothelial progenitor cells via S1PR1/S1PR3/PI3K/Akt pathway. Cell Biol Int. 42:1492–1502. 2018. View Article : Google Scholar : PubMed/NCBI

104 

Nitzsche A, Poittevin M, Benarab A, Bonnin P, Faraco G, Uchida H, Favre J, Garcia-Bonilla L, Garcia MCL, Léger PL, et al: Endothelial S1P1 signaling counteracts infarct expansion in ischemic stroke. Circ Res. 128:363–382. 2021. View Article : Google Scholar : PubMed/NCBI

105 

Zelinski MB, Murphy MK, Lawson MS, Jurisicova A, Pau KY, Toscano NP, Jacob DS, Fanton JK, Casper RF, Dertinger SD and Tilly JL: In vivo delivery of FTY720 prevents radiation-induced ovarian failure and infertility in adult female nonhuman primates. Fertil Steril. 95:1440–1445.e1-e7. 2011. View Article : Google Scholar : PubMed/NCBI

106 

Guzel Y, Bildik G and Oktem O: Sphingosine-1-phosphate protects human ovarian follicles from apoptosis in vitro. Eur J Obstet Gynecol Reprod Biol. 222:19–24. 2018. View Article : Google Scholar : PubMed/NCBI

107 

Ghasemnezhad Targhi R and Saba V: Grape seed extract alleviates radiation-induced damages in human blood lymphocytes. Avicenna J Phytomed. 10:398–406. 2020.PubMed/NCBI

108 

Ansari L, Banaei A, Dastranj L, Majdaeen M, Vafapour H, Zamani H, Ataei G and Abedi-Firouzjah R: Evaluating the radioprotective effect of single dose and daily oral consumption of green tea, grape seed, and coffee bean extracts against gamma irradiation. Appl Radiat Isot. 174:1097812021. View Article : Google Scholar : PubMed/NCBI

109 

Ghosh D, Pal S, Saha C, Chakrabarti AK, Datta SC and Dey SK: Black tea extract: A supplementary antioxidant in radiation-induced damage to DNA and normal lymphocytes. J Environ Pathol Toxicol Oncol. 31:155–166. 2012. View Article : Google Scholar : PubMed/NCBI

110 

Ježovičová M, Koňariková K, Ďuračková Z, Keresteš J, Králik G and Žitňanová I: Protective effects of black tea extract against oxidative DNA damage in human lymphocytes. Mol Med Rep. 13:1839–1844. 2016. View Article : Google Scholar : PubMed/NCBI

111 

Shen N, Wang T, Gan Q, Liu S, Wang L and Jin B: Plant flavonoids: Classification, distribution, biosynthesis, and antioxidant activity. Food Chem. 383:1325312022. View Article : Google Scholar : PubMed/NCBI

112 

Li C, Yu M, Li S, Yang X, Qiao B, Shi S, Zhao C and Fu Y: Valorization of Fig (Ficus carica L.) waste leaves: HPLC-QTOF-MS/MS-DPPH system for online screening and identification of antioxidant compounds. Plants (Basel). 10:25322021. View Article : Google Scholar : PubMed/NCBI

113 

Kamran MZ, Ranjan A, Kaur N, Sur S and Tandon V: Radioprotective agents: Strategies and translational advances. Med Res Rev. 36:461–493. 2016. View Article : Google Scholar : PubMed/NCBI

114 

Mortazavi SM, Rahimi S, Mosleh-Shirazi MA, Arjomandi M, Soleimani A, Koohi Hossein-Abadi O, Haghani M and Alavi M: A comparative study on the life-saving radioprotective effects of vitamins A, E, C and over-the-counter multivitamins. J Biomed Phys Eng. 5:59–66. 2015.PubMed/NCBI

115 

Harapanhalli RS, Narra VR, Yaghmai V, Azure MT, Goddu SM, Howell RW and Rao DV: Vitamins as radioprotectors in vivo. II. Protection by vitamin A and soybean oil against radiation damage caused by internal radionuclides. Radiat Res. 139:115–122. 1994. View Article : Google Scholar : PubMed/NCBI

116 

Safaei M, Jafarpour SM, Mohseni M, Salimian M, Akbari H, Karami F, Aliasgharzadeh A and Farhood B: Vitamins E and C prevent DNA double-strand breaks in peripheral lymphocytes exposed to radiations from iodine-131. Indian J Nucl Med. 33:20–24. 2018.PubMed/NCBI

117 

Narra VR, Howell RW, Sastry KS and Rao DV: Vitamin C as a radioprotector against iodine-131 in vivo. J Nucl Med. 34:637–640. 1993.PubMed/NCBI

118 

Srinivasan V and Weiss JF: Radioprotection by vitamin E: Injectable vitamin E administered alone or with WR-3689 enhances survival of irradiated mice. Int J Radiat Oncol Biol Phys. 23:841–845. 1992. View Article : Google Scholar : PubMed/NCBI

119 

Bagheri H, Salajegheh A, Javadi A, Amini P, Shekarchi B, Shabeeb D, Eleojo Musa A and Najafi M: Radioprotective effects of zinc and selenium on mice spermatogenesis. J Biomed Phys Eng. 10:707–712. 2020.PubMed/NCBI

120 

Liang S, Jin YX, Yuan B, Zhang JB and Kim NH: Melatonin enhances the developmental competence of porcine somatic cell nuclear transfer embryos by preventing DNA damage induced by oxidative stress. Sci Rep. 7:111142017. View Article : Google Scholar : PubMed/NCBI

121 

Mao A, Guo H, Liu Y, Wang F, Tang J, Liao S, Zhang Y, Sun C, Xia X and Zhang H: Exogenous melatonin modulates carbon ion radiation-induced immune dysfunction in mice. Toxicology. 417:35–41. 2019. View Article : Google Scholar : PubMed/NCBI

122 

Shibai A, Satoh K, Kawada M, Kotani H, Narumi I and Furusawa C: Complete genome sequence of a radioresistant bacterial strain, Deinococcus grandis ATCC 43672. Microbiol Resour Announc. 8:e01226–19. 2019. View Article : Google Scholar : PubMed/NCBI

123 

Lin SM, Baek CY, Jung JH, Kim WS, Song HY, Lee JH, Ji HJ, Zhi Y, Kang BS, Bahn YS, et al: Antioxidant activities of an exopolysaccharide (DeinoPol) produced by the extreme radiation-resistant bacterium Deinococcus radiodurans. Sci Rep. 10:552020. View Article : Google Scholar : PubMed/NCBI

124 

Riehl TE, Alvarado D, Ee X, Zuckerman A, Foster L, Kapoor V, Thotala D, Ciorba MA and Stenson WF: Lactobacillus rhamnosus GG protects the intestinal epithelium from radiation injury through release of lipoteichoic acid, macrophage activation and the migration of mesenchymal stem cells. Gut. 68:1003–1013. 2019. View Article : Google Scholar : PubMed/NCBI

125 

Guo H, Chou WC, Lai Y, Liang K, Tam JW, Brickey WJ, Chen L, Montgomery ND, Li X, Bohannon LM, et al: Multi-omics analyses of radiation survivors identify radioprotective microbes and metabolites. Science. 370:eaay90972020. View Article : Google Scholar : PubMed/NCBI

126 

Akeem S, Lukman O, Eltahir K, Fatai O, Abiola B and Khadijat O: Bone marrow and peripheral blood cells toxicity of a single 2.0 Gy Cobalt60 ionizing radiation: An animal model. Ethiop J Health Sci. 29:195–202. 2019.PubMed/NCBI

127 

Chin SP, Mohd-Shahrizal MY, Liyana MZ, Then KY and Cheong SK: High dose of intravenous allogeneic umbilical cord-derived mesenchymal stem cells (CLV-100) infusion displays better immunomodulatory effect among healthy volunteers: A phase 1 clinical study. Stem Cells Int. 2020:88770032020. View Article : Google Scholar : PubMed/NCBI

128 

Lykov AP, Bondarenko NA, Poveshchenko OV, Kabakov AV, Surovtseva MA, Kim II, Kazakov OV, Poveshchenko AF and Iankaĭte EV: Therapeutic potential of a biomedical cellular product in rats with lower limb ischaemia. Angiol Sosud Khir. 26:37–43. 2020.(In Russian). View Article : Google Scholar : PubMed/NCBI

129 

DiCarlo AL, Horta ZP, Aldrich JT, Jakubowski AA, Skinner WK and Case CM Jr: Use of growth factors and other cytokines for treatment of injuries during a radiation public health emergency. Radiat Res. 192:99–120. 2019. View Article : Google Scholar : PubMed/NCBI

130 

Pourgholaminejad A, Aghdami N, Baharvand H and Moazzeni SM: The effect of pro-inflammatory cytokines on immunophenotype, differentiation capacity and immunomodulatory functions of human mesenchymal stem cells. Cytokine. 85:51–60. 2016. View Article : Google Scholar : PubMed/NCBI

131 

Qiao S, Ren H, Shi Y and Liu W: Allogeneic compact bone-derived mesenchymal stem cell transplantation increases survival of mice exposed to lethal total body irradiation: A potential immunological mechanism. Chin Med J (Engl). 127:475–482. 2014.PubMed/NCBI

132 

Nevens F and van der Merwe S: Mesenchymal stem cell transplantation in liver diseases. Semin Liver Dis. 42:283–292. 2022. View Article : Google Scholar : PubMed/NCBI

133 

Liu FD, Tam K, Pishesha N, Poon Z and Van Vliet KJ: Improving hematopoietic recovery through modeling and modulation of the mesenchymal stromal cell secretome. Stem Cell Res Ther. 9:2682018. View Article : Google Scholar : PubMed/NCBI

134 

Court AC, Le-Gatt A, Luz-Crawford P, Parra E, Aliaga-Tobar V, Bátiz LF, Contreras RA, Ortúzar MI, Kurte M, Elizondo-Vega R, et al: Mitochondrial transfer from MSCs to T cells induces Treg differentiation and restricts inflammatory response. EMBO Rep. 21:e480522020. View Article : Google Scholar : PubMed/NCBI

135 

Haarer J, Johnson CL, Soeder Y and Dahlke MH: Caveats of mesenchymal stem cell therapy in solid organ transplantation. Transpl Int. 28:1–9. 2015. View Article : Google Scholar : PubMed/NCBI

136 

Jo H, Brito S, Kwak BM, Park S, Lee MG and Bin BH: Applications of mesenchymal stem cells in skin regeneration and rejuvenation. Int J Mol Sci. 2:24102021. View Article : Google Scholar

137 

Huang YZ, Gou M, Da LC, Zhang WQ and Xie HQ: Mesenchymal stem cells for chronic wound healing: Current status of preclinical and clinical studies. Tissue Eng Part B Rev. 26:555–570. 2020. View Article : Google Scholar : PubMed/NCBI

138 

Benderitter M, Herrera-Reyes E and Tamarat R: Mesenchymal stromal cells in the regeneration of radiation-induced organ sequelae: Will they make the difference? J Radiol Prot. 42:2022. View Article : Google Scholar

139 

Sun J, Zhang Y, Song X, Zhu J and Zhu Q: The healing effects of conditioned medium derived from mesenchymal stem cells on radiation-induced skin wounds in rats. Cell Transplant. 28:105–115. 2019. View Article : Google Scholar : PubMed/NCBI

140 

Dao A, McDonald MM, Savage PB, Little DG and Schindeler A: Preventing osteolytic lesions and osteomyelitis in multiple myeloma. J Bone Oncol. 37:1004602022. View Article : Google Scholar : PubMed/NCBI

141 

Jiang X, Yang J, Liu F, Tao J, Xu J and Zhang M: Embryonic stem cell-derived mesenchymal stem cells alleviate skeletal muscle injury induced by acute compartment syndrome. Stem Cell Res Ther. 13:3132022. View Article : Google Scholar : PubMed/NCBI

142 

Rahyussalim AJ, Nasser MK, Al As'ady FM and Kurniawati T: Umbilical cord-derived mesenchymal stem cells implantation on Hemivertebra defect with three-year follow-up: Biological approach in congenital scoliosis treatment-a case report. Int J Surg Case Rep. 99:1076022022. View Article : Google Scholar : PubMed/NCBI

143 

Fujii S and Miura Y: Immunomodulatory and regenerative effects of MSC-derived extracellular vesicles to treat acute GVHD. Stem Cells. 40:977–990. 2022. View Article : Google Scholar : PubMed/NCBI

144 

Gong W, Guo M, Han Z, Wang Y, Yang P, Xu C, Wang Q, Du L, Li Q, Zhao H, et al: Mesenchymal stem cells stimulate intestinal stem cells to repair radiation-induced intestinal injury. Cell Death Dis. 7:e23872016. View Article : Google Scholar : PubMed/NCBI

145 

Hou G, Li J, Liu W, Wei J, Xin Y and Jiang X: Mesenchymal stem cells in radiation-induced lung injury: From mechanisms to therapeutic potential. Front Cell Dev Biol. 10:11003052022. View Article : Google Scholar : PubMed/NCBI

146 

Leclerc T, Thepenier C, Jault P, Bey E, Peltzer J, Trouillas M, Duhamel P, Bargues L, Prat M, Bonderriter M and Lataillade JJ: Cell therapy of burns. Cell Prolif. 44 (Suppl 1):S48–S54. 2011. View Article : Google Scholar

147 

Maleki M, Ghanbarvand F, Reza Behvarz M, Ejtemaei M and Ghadirkhomi E: Comparison of mesenchymal stem cell markers in multiple human adult stem cells. Int J Stem Cells. 7:118–126. 2014. View Article : Google Scholar : PubMed/NCBI

148 

Lin H, Ouyang H, Zhu J, Huang S, Liu Z, Chen S, Cao G, Li G, Signer RA, Xu Y, et al: Lens regeneration using endogenous stem cells with gain of visual function. Nature. 531:323–328. 2016. View Article : Google Scholar : PubMed/NCBI

149 

Xing Y, Li B, He J and Hua H: Labial gland mesenchymal stem cell derived exosomes-mediated miRNA-125b attenuates experimental Sjogren's syndrome by targeting PRDM1 and suppressing plasma cells. Front Immunol. 13:8710962022. View Article : Google Scholar : PubMed/NCBI

150 

Sun T, Liu S, Yang G, Zhu R, Li Z, Yao G, Chen H and Sun L: Mesenchymal stem cell transplantation alleviates Sjögren's syndrome symptoms by modulating Tim-3 expression. Int Immunopharmacol. 111:1091522022. View Article : Google Scholar : PubMed/NCBI

151 

Jansson PM, Lynggaard CD, Carlander AF, Jensen SB, Follin B, Hoeeg C, Kousholt BS, Larsen RT, Grønhøj C, Jakobsen KK, et al: Mesenchymal stromal/stem cell therapy for radiation-induced salivary gland hypofunction in animal models: A protocol for a systematic review and meta-analysis. Syst Rev. 11:722022. View Article : Google Scholar : PubMed/NCBI

152 

Lynggaard CD, Grønhøj C, Jensen SB, Christensen R, Specht L, Andersen E, Andersen TT, Ciochon UM, Rathje GS, Hansen AE, et al: Long-term safety of treatment with autologous mesenchymal stem cells in patients with radiation-induced xerostomia: Primary results of the MESRIX phase I/II randomized trial. Clin Cancer Res. 28:2890–2897. 2022. View Article : Google Scholar : PubMed/NCBI

153 

Hérodin F and Drouet M: Cytokine-based treatment of accidentally irradiated victims and new approaches. Exp Hematol. 33:1071–1080. 2005. View Article : Google Scholar : PubMed/NCBI

154 

Peng Y, Wu S, Tang Q, Li S and Peng C: KGF-1 accelerates wound contraction through the TGF-β1/Smad signaling pathway in a double-paracrine manner. J Biol Chem. 294:8361–8370. 2019. View Article : Google Scholar : PubMed/NCBI

155 

Chen Y, Rubin P, Williams J, Hernady E, Smudzin T and Okunieff P: Circulating IL-6 as a predictor of radiation pneumonitis. Int J Radiat Oncol Biol Phys. 49:641–648. 2001. View Article : Google Scholar : PubMed/NCBI

156 

Damm R, Pech M, Haag F, Cavalli P, Gylstorff S, Omari J, Seidensticker R, Ricke J, Seidensticker M and Relja B: TNF-α indicates radiation-induced liver injury after interstitial high dose-rate brachytherapy. In Vivo. 36:2265–2274. 2022. View Article : Google Scholar : PubMed/NCBI

157 

Wang J, Xu Z, Wang Z, Du G and Lun L: Corrigendum to ‘TGF-beta signaling in cancer radiotherapy’ [Cytokine 148 (2021) 155709]. Cytokine. 149:1557532022. View Article : Google Scholar : PubMed/NCBI

158 

Lee S and Ki CS: Inflammatory responses of macrophage-like RAW264.7 cells in a 3D hydrogel matrix to ultrasonicated schizophyllan. Carbohydr Polym. 229:1155552020. View Article : Google Scholar : PubMed/NCBI

159 

Moorlag SJCFM, Khan N, Novakovic B, Kaufmann E, Jansen T, van Crevel R, Divangahi M and Netea MG: β-Glucan induces protective trained immunity against mycobacterium tuberculosis infection: A key role for IL-1. Cell Rep. 31:1076342020. View Article : Google Scholar : PubMed/NCBI

160 

Song JY, Han SK, Bae KG, Lim DS, Son SJ, Jung IS, Yi SY and Yun YS: Radioprotective effects of ginsan, an immunomodulator. Radiat Res. 159:768–774. 2003. View Article : Google Scholar : PubMed/NCBI

161 

Wu T, Liu W, Fan T, Zhong H, Zhou H, Guo W and Zhu X: 5-Androstenediol prevents radiation injury in mice by promoting NF-κB signaling and inhibiting AIM2 inflammasome activation. Biomed Pharmacother. 121:1095972020. View Article : Google Scholar : PubMed/NCBI

162 

Everett WH and Curiel DT: Gene therapy for radioprotection. Cancer Gene Ther. 22:172–180. 2015. View Article : Google Scholar : PubMed/NCBI

163 

Khalifa J, François S, Rancoule C, Riccobono D, Magné N, Drouet M and Chargari C: Gene therapy and cell therapy for the management of radiation damages to healthy tissues: Rationale and early results. Cancer Radiother. 23:449–465. 2019. View Article : Google Scholar : PubMed/NCBI

164 

Maier P, Veldwijk MR and Wenz F: Radioprotective gene therapy. Expert Opin Biol Ther. 11:1135–1151. 2011. View Article : Google Scholar : PubMed/NCBI

165 

Zhang Z, Lang J, Cao Z, Li R, Wang X and Wang W: Radiation-induced SOD2 overexpression sensitizes colorectal cancer to radiation while protecting normal tissue. Oncotarget. 8:7791–7800. 2017. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Liu L, Liang Z, Ma S, Li L and Liu X: Radioprotective countermeasures for radiation injury (Review). Mol Med Rep 27: 66, 2023.
APA
Liu, L., Liang, Z., Ma, S., Li, L., & Liu, X. (2023). Radioprotective countermeasures for radiation injury (Review). Molecular Medicine Reports, 27, 66. https://doi.org/10.3892/mmr.2023.12953
MLA
Liu, L., Liang, Z., Ma, S., Li, L., Liu, X."Radioprotective countermeasures for radiation injury (Review)". Molecular Medicine Reports 27.3 (2023): 66.
Chicago
Liu, L., Liang, Z., Ma, S., Li, L., Liu, X."Radioprotective countermeasures for radiation injury (Review)". Molecular Medicine Reports 27, no. 3 (2023): 66. https://doi.org/10.3892/mmr.2023.12953
Copy and paste a formatted citation
x
Spandidos Publications style
Liu L, Liang Z, Ma S, Li L and Liu X: Radioprotective countermeasures for radiation injury (Review). Mol Med Rep 27: 66, 2023.
APA
Liu, L., Liang, Z., Ma, S., Li, L., & Liu, X. (2023). Radioprotective countermeasures for radiation injury (Review). Molecular Medicine Reports, 27, 66. https://doi.org/10.3892/mmr.2023.12953
MLA
Liu, L., Liang, Z., Ma, S., Li, L., Liu, X."Radioprotective countermeasures for radiation injury (Review)". Molecular Medicine Reports 27.3 (2023): 66.
Chicago
Liu, L., Liang, Z., Ma, S., Li, L., Liu, X."Radioprotective countermeasures for radiation injury (Review)". Molecular Medicine Reports 27, no. 3 (2023): 66. https://doi.org/10.3892/mmr.2023.12953
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team