Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
May-2023 Volume 27 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
May-2023 Volume 27 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Article

Small‑molecule PKR‑like endoplasmic reticulum kinase inhibitors as a novel targeted therapy for Parkinson's disease

  • Authors:
    • Weronika Lusa
    • Wioletta Rozpędek-Kamińska
    • Natalia Siwecka
    • Grzegorz Galita
    • Ireneusz Majsterek
    • Ewa Kucharska
  • View Affiliations / Copyright

    Affiliations: Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 92-213 Lodz, Poland, Department of Geriatrics and Social Work, Jesuit University Ignatianum in Krakow, 31-501 Krakow, Poland
  • Article Number: 102
    |
    Published online on: March 30, 2023
       https://doi.org/10.3892/mmr.2023.12989
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Parkinson's disease (PD) is the second most common neurodegenerative disorder in worldwide and remains a therapeutic challenge due to the low efficacy of current treatments. Numerous studies have demonstrated the pivotal role of endoplasmic reticulum (ER) stress in PD pathogenesis. ER stress, followed by activation of the protein kinase RNA‑like endoplasmic reticulum kinase (PERK)‑dependent branch of the unfolded protein response signaling pathway, ultimately leads to neural cell death and dopaminergic neurodegeneration in PD. Therefore, the present study evaluated the effectiveness of the small‑molecule PERK inhibitor LDN‑87357 in an in vitro PD model using the human neuroblastoma SH‑SY5Y cell line. To assess the mRNA expression levels of the pro‑apoptotic ER stress markers, the TaqMan Gene Expression Assay was performed. Cytotoxicity was assessed using a colorimetric 2,3‑bis‑(2‑methoxy‑4‑nitro‑5‑sulfophenyl)‑
2H‑tetrazolium‑5‑carboxanilide assay and apoptosis was assessed using a caspase‑3 assay. Moreover, cell cycle progression was evaluated using flow cytometry. The results indicated that LDN‑87357 treatment induced a significant decrease in ER stress markers gene expression in SH‑SY5Y cells exposed to ER stress. Furthermore, LDN‑87357 significantly increased viability, diminished apoptosis and restored the normal cell cycle distribution of SH‑SY5Y cells after ER stress induction. Therefore, the evaluation of small‑molecule PERK inhibitors, such as LDN‑87357, may lead to the development of novel therapeutic strategies against PD.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

View References

1 

Balestrino R and Schapira AHV: Parkinson disease. Eur J Neurol. 27:27–42. 2020. View Article : Google Scholar : PubMed/NCBI

2 

Aarsland D, Batzu L, Halliday GM, Geurtsen GJ, Ballard C, Ray Chaudhuri K and Weintraub D: Parkinson disease-associated cognitive impairment. Nat Rev Dis Primers. 7:472021. View Article : Google Scholar : PubMed/NCBI

3 

Twelves D, Perkins KS and Counsell C: Systematic review of incidence studies of Parkinson's disease. Mov Disord. 18:19–31. 2003. View Article : Google Scholar : PubMed/NCBI

4 

Simon DK, Tanner CM and Brundin P: Parkinson disease epidemiology, pathology, genetics, and pathophysiology. Clin Geriatr Med. 36:1–12. 2020. View Article : Google Scholar : PubMed/NCBI

5 

Dorsey ER, Sherer T, Okun MS and Bloem BR: The emerging evidence of the parkinson pandemic. J Parkinsons Dis. 8 (Suppl 1):S3–S8. 2018. View Article : Google Scholar : PubMed/NCBI

6 

Prakash KG, Bannur BM, Chavan MD, Saniya K, Sailesh KS and Rajagopalan A: Neuroanatomical changes in Parkinson's disease in relation to cognition: An update. J Adv Pharm Technol Res. 7:123–126. 2016. View Article : Google Scholar : PubMed/NCBI

7 

Comi C, Magistrelli L, Oggioni GD, Carecchio M, Fleetwood T, Cantello R, Mancini F and Antonini A: Peripheral nervous system involvement in Parkinson's disease: Evidence and controversies. Parkinsonism Relat Disord. 20:1329–1334. 2014. View Article : Google Scholar : PubMed/NCBI

8 

Cacabelos R: Parkinson's disease: From pathogenesis to pharmacogenomics. Int J Mol Sci. 18:5512017. View Article : Google Scholar : PubMed/NCBI

9 

Jankovic J: Parkinson's disease: Clinical features and diagnosis. J Neurol Neurosurg Psychiatry. 79:368–376. 2008. View Article : Google Scholar : PubMed/NCBI

10 

Tolosa E, Garrido A, Scholz SW and Poewe W: Challenges in the diagnosis of Parkinson's disease. Lancet Neurol. 20:385–397. 2021. View Article : Google Scholar : PubMed/NCBI

11 

Aarsland D, Creese B, Politis M, Chaudhuri KR, Ffytche DH, Weintraub D and Ballard C: Cognitive decline in Parkinson disease. Nat Rev Neurol. 13:217–231. 2017. View Article : Google Scholar : PubMed/NCBI

12 

Bloem BR, Okun MS and Klein C: Parkinson's disease. Lancet. 397:2284–2303. 2021. View Article : Google Scholar : PubMed/NCBI

13 

Day JO and Mullin S: The genetics of Parkinson's disease and implications for clinical practice. Genes (Basel). 12:10062021. View Article : Google Scholar : PubMed/NCBI

14 

Antony PM, Diederich NJ, Kruger R and Balling R: The hallmarks of Parkinson's disease. FEBS J. 280:5981–5993. 2013. View Article : Google Scholar : PubMed/NCBI

15 

Belvisi D, Pellicciari R, Fabbrini G, Tinazzi M, Berardelli A and Defazio G: Modifiable risk and protective factors in disease development, progression and clinical subtypes of Parkinson's disease: What do prospective studies suggest? Neurobiol Dis. 134:1046712020. View Article : Google Scholar : PubMed/NCBI

16 

Noyce AJ, Bestwick JP, Silveira-Moriyama L, Hawkes CH, Giovannoni G, Lees AJ and Schrag A: Meta-analysis of early nonmotor features and risk factors for Parkinson disease. Ann Neurol. 72:893–901. 2012. View Article : Google Scholar : PubMed/NCBI

17 

Colla E: Linking the endoplasmic reticulum to Parkinson's disease and Alpha-Synucleinopathy. Front Neurosci. 13:5602019. View Article : Google Scholar : PubMed/NCBI

18 

Malpartida AB, Williamson M, Narendra DP, Wade-Martins R and Ryan BJ: Mitochondrial dysfunction and mitophagy in Parkinson's disease: From mechanism to therapy. Trends Biochem Sci. 46:329–343. 2021. View Article : Google Scholar : PubMed/NCBI

19 

Trist BG, Hare DJ and Double KL: Oxidative stress in the aging substantia nigra and the etiology of Parkinson's disease. Aging Cell. 18:e130312019. View Article : Google Scholar : PubMed/NCBI

20 

Hou X, Watzlawik JO, Fiesel FC and Springer W: Autophagy in Parkinson's disease. J Mol Biol. 432:2651–2672. 2020. View Article : Google Scholar : PubMed/NCBI

21 

Ghemrawi R and Khair M: Endoplasmic reticulum stress and unfolded protein response in neurodegenerative diseases. Int J Mol Sci. 21:61272020. View Article : Google Scholar : PubMed/NCBI

22 

Tsujii S, Ishisaka M and Hara H: Modulation of endoplasmic reticulum stress in Parkinson's disease. Eur J Pharmacol. 765:154–156. 2015. View Article : Google Scholar : PubMed/NCBI

23 

Ni M and Lee AS: ER chaperones in mammalian development and human diseases. FEBS Lett. 581:3641–3651. 2007. View Article : Google Scholar : PubMed/NCBI

24 

Mercado G, Castillo V, Soto P and Sidhu A: ER stress and Parkinson's disease: Pathological inputs that converge into the secretory pathway. Brain Res. 1648:626–632. 2016. View Article : Google Scholar : PubMed/NCBI

25 

Martinez A, Lopez N, Gonzalez C and Hetz C: Targeting of the unfolded protein response (UPR) as therapy for Parkinson's disease. Biol Cell. 111:161–168. 2019. View Article : Google Scholar : PubMed/NCBI

26 

Teske BF, Wek SA, Bunpo P, Cundiff JK, McClintick JN, Anthony TG and Wek RC: The eIF2 kinase PERK and the integrated stress response facilitate activation of ATF6 during endoplasmic reticulum stress. Mol Biol Cell. 22:4390–4405. 2011. View Article : Google Scholar : PubMed/NCBI

27 

Jaud M, Philippe C, Van Den Berghe L, Ségura C, Mazzolini L, Pyronnet S, Laurell H and Touriol C: The PERK branch of the unfolded protein response promotes DLL4 expression by activating an alternative translation mechanism. Cancers (Basel). 11:1422019. View Article : Google Scholar : PubMed/NCBI

28 

Saito A and Imaizumi K: The broad spectrum of signaling pathways regulated by unfolded protein response in neuronal homeostasis. Neurochem Int. 119:26–34. 2018. View Article : Google Scholar : PubMed/NCBI

29 

Gorbatyuk MS, Shabashvili A, Chen W, Meyers C, Sullivan LF, Salganik M, Lin JH, Lewin AS, Muzyczka N and Gorbatyuk OS: Glucose regulated protein 78 diminishes alpha-synuclein neurotoxicity in a rat model of Parkinson disease. Mol Ther. 20:1327–1337. 2012. View Article : Google Scholar : PubMed/NCBI

30 

Rozpedek W, Pytel D, Mucha B, Leszczynska H, Diehl JA and Majsterek I: The role of the PERK/eIF2alpha/ATF4/CHOP signaling pathway in tumor progression during endoplasmic reticulum stress. Curr Mol Med. 16:533–544. 2016. View Article : Google Scholar : PubMed/NCBI

31 

Szegezdi E, Logue SE, Gorman AM and Samali A: Mediators of endoplasmic reticulum stress-induced apoptosis. EMBO Rep. 7:880–885. 2006. View Article : Google Scholar : PubMed/NCBI

32 

Rozpedek-Kaminska W, Siwecka N, Wawrzynkiewicz A, Wojtczak R, Pytel D, Diehl JA and Majsterek I: The PERK-dependent molecular mechanisms as a novel therapeutic target for neurodegenerative diseases. Int J Mol Sci. 21:21082020. View Article : Google Scholar : PubMed/NCBI

33 

Hoozemans JJ, van Haastert ES, Eikelenboom P, de Vos RA, Rozemuller JM and Scheper W: Activation of the unfolded protein response in Parkinson's disease. Biochem Biophys Res Commun. 354:707–711. 2007. View Article : Google Scholar : PubMed/NCBI

34 

Gully JC, Sergeyev VG, Bhootada Y, Mendez-Gomez H, Meyers CA, Zolotukhin S, Gorbatyuk MS and Gorbatyuk OS: Up-regulation of activating transcription factor 4 induces severe loss of dopamine nigral neurons in a rat model of Parkinson's disease. Neurosci Lett. 627:36–41. 2016. View Article : Google Scholar : PubMed/NCBI

35 

Bellucci A, Navarria L, Zaltieri M, Falarti E, Bodei S, Sigala S, Battistin L, Spillantini M, Missale C and Spano P: Induction of the unfolded protein response by α-synuclein in experimental models of Parkinson's disease. J Neurochem. 116:588–605. 2011. View Article : Google Scholar : PubMed/NCBI

36 

Betzer C, Lassen LB, Olsen A, Kofoed RH, Reimer L, Gregersen E, Zheng J, Calì T, Gai WP, Chen T, et al: Alpha-synuclein aggregates activate calcium pump SERCA leading to calcium dysregulation. EMBO Rep. 19:e446172018. View Article : Google Scholar : PubMed/NCBI

37 

Jankovic J and Tan EK: Parkinson's disease: Etiopathogenesis and treatment. J Neurol Neurosurg Psychiatry. 91:795–808. 2020. View Article : Google Scholar : PubMed/NCBI

38 

Oertel W and Schulz JB: Current and experimental treatments of Parkinson disease: A guide for neuroscientists. J Neurochem. 139 (Suppl 1):S325–S337. 2016. View Article : Google Scholar : PubMed/NCBI

39 

Pytel D, Seyb K, Liu M, Ray SS, Concannon J, Huang M, Cuny GD, Diehl JA and Glicksman MA: Enzymatic characterization of ER Stress-dependent kinase, PERK, and development of a high-throughput assay for identification of PERK inhibitors. J Biomol Screen. 19:1024–1034. 2014. View Article : Google Scholar : PubMed/NCBI

40 

Bandyopadhyay S, Ni J, Ruggiero A, Walshe K, Rogers MS, Chattopadhyay N, Glicksman MA and Rogers JT: A high-throughput drug screen targeted to the 5′untranslated region of Alzheimer amyloid precursor protein mRNA. J Biomol Screen. 11:469–480. 2006. View Article : Google Scholar : PubMed/NCBI

41 

Xicoy H, Wieringa B and Martens GJ: The SH-SY5Y cell line in Parkinson's disease research: A systematic review. Mol Neurodegener. 12:102017. View Article : Google Scholar : PubMed/NCBI

42 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods. 25:402–408. 2001. View Article : Google Scholar : PubMed/NCBI

43 

Xie B, Lin F, Peng L, Ullah K, Wu H, Qing H and Deng Y: Methylglyoxal increases dopamine level and leads to oxidative stress in SH-SY5Y cells. Acta Biochim Biophys Sin (Shanghai). 46:950–956. 2014. View Article : Google Scholar : PubMed/NCBI

44 

Slanzi A, Iannoto G, Rossi B, Zenaro E and Constantin G: In vitro models of neurodegenerative diseases. Front Cell Dev Biol. 8:3282020. View Article : Google Scholar : PubMed/NCBI

45 

Falkenburger BH, Saridaki T and Dinter E: Cellular models for Parkinson's disease. J Neurochemistry. 139 (Suppl 1):S121–S130. 2016. View Article : Google Scholar

46 

Bai X and Strong R: Expression of synaptophysin protein in different dopaminergic cell lines. J Biochem Pharmacol Res. 2:185–190. 2014.PubMed/NCBI

47 

Rozpedek W, Pytel D, Diehl JA and Majsterek I: Niskoczasteczkowe inhibitory szlaku adaptacyjnej odpowiedzi na stres zaleznego od kinazy PERK jako nowatorska strategia terapeutyczna w leczeniu choroby Alzheimera. Pol Merkur Lekarski. 46:9–15. 2019.(In Polish). PubMed/NCBI

48 

Rivero-Rios P, Gomez-Suaga P, Fdez E and Hilfiker S: Upstream deregulation of calcium signaling in Parkinson's disease. Front Mol Neuroscience. 7:532014.PubMed/NCBI

49 

Sun Y, Selvaraj S, Pandey S, Humphrey KM, Foster JD, Wu M, Watt JA, Singh BB and Ohm JE: MPP+ decreases store-operated calcium entry and TRPC1 expression in Mesenchymal Stem Cell derived dopaminergic neurons. Sci Rep. 8:117152018. View Article : Google Scholar : PubMed/NCBI

50 

Brodnanova M, Hatokova Z, Evinova A, Cibulka M and Racay P: Differential impact of imipramine on thapsigargin- and tunicamycin-induced endoplasmic reticulum stress and mitochondrial dysfunction in neuroblastoma SH-SY5Y cells. Eur J Pharmacol. 902:1740732021. View Article : Google Scholar : PubMed/NCBI

51 

Panagaki T, Michael M and Holscher C: Liraglutide restores chronic ER stress, autophagy impairments and apoptotic signalling in SH-SY5Y cells. Sci Rep. 7:161582017. View Article : Google Scholar : PubMed/NCBI

52 

Koo HJ, Piao Y and Pak YK: Endoplasmic reticulum stress impairs insulin signaling through mitochondrial damage in SH-SY5Y cells. Neurosignals. 20:265–280. 2012. View Article : Google Scholar : PubMed/NCBI

53 

Chung H, Chung HY, Bae CW, Kim CJ and Park S: Ghrelin suppresses tunicamycin- or thapsigargin-triggered endoplasmic reticulum stress-mediated apoptosis in primary cultured rat cortical neuronal cells. Endocr J. 58:409–420. 2011. View Article : Google Scholar : PubMed/NCBI

54 

Dibdiakova K, Saksonova S, Pilchova I, Klacanova K, Tatarkova Z and Racay P: Both thapsigargin- and tunicamycin-induced endoplasmic reticulum stress increases expression of Hrd1 in IRE1-dependent fashion. Neurol Res. 41:177–188. 2019. View Article : Google Scholar : PubMed/NCBI

55 

Ullrich C and Humpel C: The pro-apoptotic substance thapsigargin selectively stimulates re-growth of brain capillaries. Curr Neurovasc Res. 6:171–180. 2009. View Article : Google Scholar : PubMed/NCBI

56 

Goodwin J, Nath S, Engelborghs Y and Pountney DL: Raised calcium and oxidative stress cooperatively promote alpha-synuclein aggregate formation. Neurochem Int. 62:703–711. 2013. View Article : Google Scholar : PubMed/NCBI

57 

Ito S, Nakaso K, Imamura K, Takeshima T and Nakashima K: Endogenous catecholamine enhances the dysfunction of unfolded protein response and alpha-synuclein oligomerization in PC12 cells overexpressing human alpha-synuclein. Neurosci Rese. 66:124–130. 2010. View Article : Google Scholar

58 

Rozpedek W, Pytel D, Poplawski T, Walczak A, Gradzik K, Wawrzynkiewicz A, Wojtczak R, Mucha B, Diehl JA and Majsterek I: Inhibition of the PERK-dependent unfolded protein response signaling pathway involved in the pathogenesis of Alzheimer's disease. Curr Alzheimer Res. 16:209–218. 2019. View Article : Google Scholar : PubMed/NCBI

59 

Rozpedek-Kaminska W, Galita G, Siwecka N, Carroll SL, Diehl JA, Kucharska E, Pytel D and Majsterek I: The potential role of small-molecule PERK inhibitor LDN-0060609 in primary open-angle glaucoma treatment. Int J Mol Sci. 22:44942021. View Article : Google Scholar : PubMed/NCBI

60 

Colla E, Coune P, Liu Y, Pletnikova O, Troncoso JC, Iwatsubo T, Schneider BL and Lee MK: Endoplasmic reticulum stress is important for the manifestations of alpha-synucleinopathy in vivo. J Neurosci. 32:3306–3320. 2012. View Article : Google Scholar : PubMed/NCBI

61 

Smith WW, Jiang H, Pei Z, Tanaka Y, Morita H, Sawa A, Dawson VL, Dawson TM and Ross CA: Endoplasmic reticulum stress and mitochondrial cell death pathways mediate A53T mutant alpha-synuclein-induced toxicity. Hum Mol Genet. 14:3801–3811. 2005. View Article : Google Scholar : PubMed/NCBI

62 

Smedley GD, Walker KE and Yuan SH: The role of PERK in understanding development of neurodegenerative diseases. Int J Mol Sci. 22:81462021. View Article : Google Scholar : PubMed/NCBI

63 

Moreno JA, Halliday M, Molloy C, Radford H, Verity N, Axten JM, Ortori CA, Willis AE, Fischer PM, Barrett DA and Mallucci GR: Oral treatment targeting the unfolded protein response prevents neurodegeneration and clinical disease in prion-infected mice. Sci Transl Med. 5:206ra1382013. View Article : Google Scholar : PubMed/NCBI

64 

Costa CAD, Manaa WE, Duplan E and Checler F: The endoplasmic reticulum stress/unfolded protein response and their contributions to Parkinson's disease physiopathology. Cells. 9:24952020. View Article : Google Scholar : PubMed/NCBI

65 

Baek JH, Mamula D, Tingstam B, Pereira M, He Y and Svenningsson P: GRP78 level is altered in the brain, but not in plasma or cerebrospinal fluid in Parkinson's disease patients. Front Neurosci. 13:6972019. View Article : Google Scholar : PubMed/NCBI

66 

Selvaraj S, Sun Y, Watt JA, Wang S, Lei S, Birnbaumer L and Singh BB: Neurotoxin-induced ER stress in mouse dopaminergic neurons involves downregulation of TRPC1 and inhibition of AKT/mTOR signaling. J Clin Invest. 122:1354–1367. 2012. View Article : Google Scholar : PubMed/NCBI

67 

Bellani S, Mescola A, Ronzitti G, Tsushima H, Tilve S, Canale C, Valtorta F and Chieregatti E: GRP78 clustering at the cell surface of neurons transduces the action of exogenous alpha-synuclein. Cell Death Differ. 21:1971–1983. 2014. View Article : Google Scholar : PubMed/NCBI

68 

Credle JJ, Forcelli PA, Delannoy M, Oaks AW, Permaul E, Berry DL, Duka V, Wills J and Sidhu A: α-Synuclein-mediated inhibition of ATF6 processing into COPII vesicles disrupts UPR signaling in Parkinson's disease. Neurobiol Dis. 76:112–125. 2015. View Article : Google Scholar : PubMed/NCBI

69 

Cooper AA, Gitler AD, Cashikar A, Haynes CM, Hill KJ, Bhullar B, Liu K, Xu K, Strathearn KE, Liu F, et al: Alpha-synuclein blocks ER-Golgi traffic and Rab1 rescues neuron loss in Parkinson's models. Science. 313:324–328. 2006. View Article : Google Scholar : PubMed/NCBI

70 

Gitler AD, Bevis BJ, Shorter J, Strathearn KE, Hamamichi S, Su LJ, Caldwell KA, Caldwell GA, Rochet JC, McCaffery JM, et al: The Parkinson's disease protein alpha-synuclein disrupts cellular Rab homeostasis. Proc Natl Acad Sci USA. 105:145–150. 2008. View Article : Google Scholar : PubMed/NCBI

71 

Paiva I, Jain G, Lázaro DF, Jerčić KG, Hentrich T, Kerimoglu C, Pinho R, Szegő ÈM, Burkhardt S, Capece V, et al: Alpha-synuclein deregulates the expression of COL4A2 and impairs ER-Golgi function. Neurobiol Dis. 119:121–135. 2018. View Article : Google Scholar : PubMed/NCBI

72 

Jung EM, Yoo YM, Park SY, Ahn C, Jeon BH, Hong EJ, Kim WY and Jeung EB: Calbindin-D9k is a novel risk gene for neurodegenerative disease. Cell Physiol Biochem. 54:438–456. 2020. View Article : Google Scholar : PubMed/NCBI

73 

Giorgi C, Bonora M, Sorrentino G, Missiroli S, Poletti F, Suski JM, Galindo Ramirez F, Rizzuto R, Di Virgilio F, Zito E, et al: p53 at the endoplasmic reticulum regulates apoptosis in a Ca2+-dependent manner. Proc Natl Acad Sci USA. 112:1779–1784. 2015. View Article : Google Scholar : PubMed/NCBI

74 

Kovaleva V and Saarma M: Endoplasmic reticulum stress regulators: New drug targets for Parkinson's disease. J Parkinsons Dis. 11 (Suppl 2):S219–S228. 2021. View Article : Google Scholar : PubMed/NCBI

75 

Mercado G, Castillo V, Soto P, López N, Axten JM, Sardi SP, Hoozemans JJM and Hetz C: Targeting PERK signaling with the small molecule GSK2606414 prevents neurodegeneration in a model of Parkinson's disease. Neurobiol Dis. 112:136–148. 2018. View Article : Google Scholar : PubMed/NCBI

76 

Radford H, Moreno JA, Verity N, Halliday M and Mallucci GR: PERK inhibition prevents tau-mediated neurodegeneration in a mouse model of frontotemporal dementia. Acta Neuropathol. 130:633–642. 2015. View Article : Google Scholar : PubMed/NCBI

77 

Axten JM, Medina JR, Feng Y, Shu A, Romeril SP, Grant SW, Li WH, Heerding DA, Minthorn E, Mencken T, et al: Discovery of 7-methyl-5-(1-{[3-(trifluoromethyl)phenyl]acetyl}-2,3-dihydro-1H-indol-5-yl)-7H-p yrrolo[2,3-d]pyrimidin-4-amine (GSK2606414), a potent and selective first-in-class inhibitor of protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK). J Med Chem. 55:7193–7207. 2012. View Article : Google Scholar : PubMed/NCBI

78 

O'Connor T, Sadleir KR, Maus E, Velliquette RA, Zhao J, Cole SL, Eimer WA, Hitt B, Bembinster LA, Lammich S, et al: Phosphorylation of the translation initiation factor eIF2alpha increases BACE1 levels and promotes amyloidogenesis. Neuron. 60:988–1009. 2008. View Article : Google Scholar : PubMed/NCBI

79 

Wang ZF, Gao C, Chen W, Gao Y, Wang HC, Meng Y, Luo CL, Zhang MY, Chen G, Chen XP, et al: Salubrinal offers neuroprotection through suppressing endoplasmic reticulum stress, autophagy and apoptosis in a mouse traumatic brain injury model. Neurobiol Learn Mem. 161:12–25. 2019. View Article : Google Scholar : PubMed/NCBI

80 

Wu L, Luo N, Zhao HR, Gao Q, Lu J, Pan Y, Shi JP, Tian YY and Zhang YD: Salubrinal protects against rotenone-induced SH-SY5Y cell death via ATF4-parkin pathway. Brain Res. 1549:52–62. 2014. View Article : Google Scholar : PubMed/NCBI

81 

Gupta S, Mishra A and Singh S: Cardinal role of eukaryotic initiation factor 2 (eIF2α) in progressive dopaminergic neuronal death & DNA fragmentation: Implication of PERK:IRE1α:ATF6 axis in Parkinson's pathology. Cell Signal. 81:1099222021. View Article : Google Scholar : PubMed/NCBI

82 

Cankara FN, Kuş MS, Günaydın C, Şafak S, Bilge SS, Ozmen O, Tural E and Kortholt A: The beneficial effect of salubrinal on neuroinflammation and neuronal loss in intranigral LPS-induced hemi-Parkinson disease model in rats. Immunopharmacol Immunotoxicol. 44:168–177. 2022. View Article : Google Scholar : PubMed/NCBI

83 

Huang X, Chen Y, Zhang H, Ma Q, Zhang YW and Xu H: Salubrinal attenuates β-amyloid-induced neuronal death and microglial activation by inhibition of the NF-κB pathway. Neurobiol Aging. 33:1007.e9–e17. 2012. View Article : Google Scholar : PubMed/NCBI

84 

Sidrauski C, Tsai JC, Kampmann M, Hearn BR, Vedantham P, Jaishankar P, Sokabe M, Mendez AS, Newton BW, Tang EL, et al: Pharmacological dimerization and activation of the exchange factor eIF2B antagonizes the integrated stress response. Elife. 4:e073142015. View Article : Google Scholar : PubMed/NCBI

85 

Halliday M, Radford H, Sekine Y, Moreno J, Verity N, le Quesne J, Ortori CA, Barrett DA, Fromont C, Fischer PM, et al: Partial restoration of protein synthesis rates by the small molecule ISRIB prevents neurodegeneration without pancreatic toxicity. Cell Death Dis. 6:e16722015. View Article : Google Scholar : PubMed/NCBI

86 

Hughes D and Mallucci GR: The unfolded protein response in neurodegenerative disorders-therapeutic modulation of the PERK pathway. FEBS J. 286:342–355. 2019. View Article : Google Scholar : PubMed/NCBI

87 

Chia SJ, Tan EK and Chao YX: Historical perspective: Models of Parkinson's Disease. Int J Mol Sci. 21:24642020. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Lusa W, Rozpędek-Kamińska W, Siwecka N, Galita G, Majsterek I and Kucharska E: Small‑molecule PKR‑like endoplasmic reticulum kinase inhibitors as a novel targeted therapy for Parkinson's disease. Mol Med Rep 27: 102, 2023.
APA
Lusa, W., Rozpędek-Kamińska, W., Siwecka, N., Galita, G., Majsterek, I., & Kucharska, E. (2023). Small‑molecule PKR‑like endoplasmic reticulum kinase inhibitors as a novel targeted therapy for Parkinson's disease. Molecular Medicine Reports, 27, 102. https://doi.org/10.3892/mmr.2023.12989
MLA
Lusa, W., Rozpędek-Kamińska, W., Siwecka, N., Galita, G., Majsterek, I., Kucharska, E."Small‑molecule PKR‑like endoplasmic reticulum kinase inhibitors as a novel targeted therapy for Parkinson's disease". Molecular Medicine Reports 27.5 (2023): 102.
Chicago
Lusa, W., Rozpędek-Kamińska, W., Siwecka, N., Galita, G., Majsterek, I., Kucharska, E."Small‑molecule PKR‑like endoplasmic reticulum kinase inhibitors as a novel targeted therapy for Parkinson's disease". Molecular Medicine Reports 27, no. 5 (2023): 102. https://doi.org/10.3892/mmr.2023.12989
Copy and paste a formatted citation
x
Spandidos Publications style
Lusa W, Rozpędek-Kamińska W, Siwecka N, Galita G, Majsterek I and Kucharska E: Small‑molecule PKR‑like endoplasmic reticulum kinase inhibitors as a novel targeted therapy for Parkinson's disease. Mol Med Rep 27: 102, 2023.
APA
Lusa, W., Rozpędek-Kamińska, W., Siwecka, N., Galita, G., Majsterek, I., & Kucharska, E. (2023). Small‑molecule PKR‑like endoplasmic reticulum kinase inhibitors as a novel targeted therapy for Parkinson's disease. Molecular Medicine Reports, 27, 102. https://doi.org/10.3892/mmr.2023.12989
MLA
Lusa, W., Rozpędek-Kamińska, W., Siwecka, N., Galita, G., Majsterek, I., Kucharska, E."Small‑molecule PKR‑like endoplasmic reticulum kinase inhibitors as a novel targeted therapy for Parkinson's disease". Molecular Medicine Reports 27.5 (2023): 102.
Chicago
Lusa, W., Rozpędek-Kamińska, W., Siwecka, N., Galita, G., Majsterek, I., Kucharska, E."Small‑molecule PKR‑like endoplasmic reticulum kinase inhibitors as a novel targeted therapy for Parkinson's disease". Molecular Medicine Reports 27, no. 5 (2023): 102. https://doi.org/10.3892/mmr.2023.12989
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team