|
1
|
Balestrino R and Schapira AHV: Parkinson
disease. Eur J Neurol. 27:27–42. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Aarsland D, Batzu L, Halliday GM, Geurtsen
GJ, Ballard C, Ray Chaudhuri K and Weintraub D: Parkinson
disease-associated cognitive impairment. Nat Rev Dis Primers.
7:472021. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Twelves D, Perkins KS and Counsell C:
Systematic review of incidence studies of Parkinson's disease. Mov
Disord. 18:19–31. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Simon DK, Tanner CM and Brundin P:
Parkinson disease epidemiology, pathology, genetics, and
pathophysiology. Clin Geriatr Med. 36:1–12. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Dorsey ER, Sherer T, Okun MS and Bloem BR:
The emerging evidence of the parkinson pandemic. J Parkinsons Dis.
8 (Suppl 1):S3–S8. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Prakash KG, Bannur BM, Chavan MD, Saniya
K, Sailesh KS and Rajagopalan A: Neuroanatomical changes in
Parkinson's disease in relation to cognition: An update. J Adv
Pharm Technol Res. 7:123–126. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Comi C, Magistrelli L, Oggioni GD,
Carecchio M, Fleetwood T, Cantello R, Mancini F and Antonini A:
Peripheral nervous system involvement in Parkinson's disease:
Evidence and controversies. Parkinsonism Relat Disord.
20:1329–1334. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Cacabelos R: Parkinson's disease: From
pathogenesis to pharmacogenomics. Int J Mol Sci. 18:5512017.
View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Jankovic J: Parkinson's disease: Clinical
features and diagnosis. J Neurol Neurosurg Psychiatry. 79:368–376.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Tolosa E, Garrido A, Scholz SW and Poewe
W: Challenges in the diagnosis of Parkinson's disease. Lancet
Neurol. 20:385–397. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Aarsland D, Creese B, Politis M, Chaudhuri
KR, Ffytche DH, Weintraub D and Ballard C: Cognitive decline in
Parkinson disease. Nat Rev Neurol. 13:217–231. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Bloem BR, Okun MS and Klein C: Parkinson's
disease. Lancet. 397:2284–2303. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Day JO and Mullin S: The genetics of
Parkinson's disease and implications for clinical practice. Genes
(Basel). 12:10062021. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Antony PM, Diederich NJ, Kruger R and
Balling R: The hallmarks of Parkinson's disease. FEBS J.
280:5981–5993. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Belvisi D, Pellicciari R, Fabbrini G,
Tinazzi M, Berardelli A and Defazio G: Modifiable risk and
protective factors in disease development, progression and clinical
subtypes of Parkinson's disease: What do prospective studies
suggest? Neurobiol Dis. 134:1046712020. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Noyce AJ, Bestwick JP, Silveira-Moriyama
L, Hawkes CH, Giovannoni G, Lees AJ and Schrag A: Meta-analysis of
early nonmotor features and risk factors for Parkinson disease. Ann
Neurol. 72:893–901. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Colla E: Linking the endoplasmic reticulum
to Parkinson's disease and Alpha-Synucleinopathy. Front Neurosci.
13:5602019. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Malpartida AB, Williamson M, Narendra DP,
Wade-Martins R and Ryan BJ: Mitochondrial dysfunction and mitophagy
in Parkinson's disease: From mechanism to therapy. Trends Biochem
Sci. 46:329–343. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Trist BG, Hare DJ and Double KL: Oxidative
stress in the aging substantia nigra and the etiology of
Parkinson's disease. Aging Cell. 18:e130312019. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Hou X, Watzlawik JO, Fiesel FC and
Springer W: Autophagy in Parkinson's disease. J Mol Biol.
432:2651–2672. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Ghemrawi R and Khair M: Endoplasmic
reticulum stress and unfolded protein response in neurodegenerative
diseases. Int J Mol Sci. 21:61272020. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Tsujii S, Ishisaka M and Hara H:
Modulation of endoplasmic reticulum stress in Parkinson's disease.
Eur J Pharmacol. 765:154–156. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Ni M and Lee AS: ER chaperones in
mammalian development and human diseases. FEBS Lett. 581:3641–3651.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Mercado G, Castillo V, Soto P and Sidhu A:
ER stress and Parkinson's disease: Pathological inputs that
converge into the secretory pathway. Brain Res. 1648:626–632. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Martinez A, Lopez N, Gonzalez C and Hetz
C: Targeting of the unfolded protein response (UPR) as therapy for
Parkinson's disease. Biol Cell. 111:161–168. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Teske BF, Wek SA, Bunpo P, Cundiff JK,
McClintick JN, Anthony TG and Wek RC: The eIF2 kinase PERK and the
integrated stress response facilitate activation of ATF6 during
endoplasmic reticulum stress. Mol Biol Cell. 22:4390–4405. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Jaud M, Philippe C, Van Den Berghe L,
Ségura C, Mazzolini L, Pyronnet S, Laurell H and Touriol C: The
PERK branch of the unfolded protein response promotes DLL4
expression by activating an alternative translation mechanism.
Cancers (Basel). 11:1422019. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Saito A and Imaizumi K: The broad spectrum
of signaling pathways regulated by unfolded protein response in
neuronal homeostasis. Neurochem Int. 119:26–34. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Gorbatyuk MS, Shabashvili A, Chen W,
Meyers C, Sullivan LF, Salganik M, Lin JH, Lewin AS, Muzyczka N and
Gorbatyuk OS: Glucose regulated protein 78 diminishes
alpha-synuclein neurotoxicity in a rat model of Parkinson disease.
Mol Ther. 20:1327–1337. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Rozpedek W, Pytel D, Mucha B, Leszczynska
H, Diehl JA and Majsterek I: The role of the
PERK/eIF2alpha/ATF4/CHOP signaling pathway in tumor progression
during endoplasmic reticulum stress. Curr Mol Med. 16:533–544.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Szegezdi E, Logue SE, Gorman AM and Samali
A: Mediators of endoplasmic reticulum stress-induced apoptosis.
EMBO Rep. 7:880–885. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Rozpedek-Kaminska W, Siwecka N,
Wawrzynkiewicz A, Wojtczak R, Pytel D, Diehl JA and Majsterek I:
The PERK-dependent molecular mechanisms as a novel therapeutic
target for neurodegenerative diseases. Int J Mol Sci. 21:21082020.
View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Hoozemans JJ, van Haastert ES, Eikelenboom
P, de Vos RA, Rozemuller JM and Scheper W: Activation of the
unfolded protein response in Parkinson's disease. Biochem Biophys
Res Commun. 354:707–711. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Gully JC, Sergeyev VG, Bhootada Y,
Mendez-Gomez H, Meyers CA, Zolotukhin S, Gorbatyuk MS and Gorbatyuk
OS: Up-regulation of activating transcription factor 4 induces
severe loss of dopamine nigral neurons in a rat model of
Parkinson's disease. Neurosci Lett. 627:36–41. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Bellucci A, Navarria L, Zaltieri M,
Falarti E, Bodei S, Sigala S, Battistin L, Spillantini M, Missale C
and Spano P: Induction of the unfolded protein response by
α-synuclein in experimental models of Parkinson's disease. J
Neurochem. 116:588–605. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Betzer C, Lassen LB, Olsen A, Kofoed RH,
Reimer L, Gregersen E, Zheng J, Calì T, Gai WP, Chen T, et al:
Alpha-synuclein aggregates activate calcium pump SERCA leading to
calcium dysregulation. EMBO Rep. 19:e446172018. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Jankovic J and Tan EK: Parkinson's
disease: Etiopathogenesis and treatment. J Neurol Neurosurg
Psychiatry. 91:795–808. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Oertel W and Schulz JB: Current and
experimental treatments of Parkinson disease: A guide for
neuroscientists. J Neurochem. 139 (Suppl 1):S325–S337. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Pytel D, Seyb K, Liu M, Ray SS, Concannon
J, Huang M, Cuny GD, Diehl JA and Glicksman MA: Enzymatic
characterization of ER Stress-dependent kinase, PERK, and
development of a high-throughput assay for identification of PERK
inhibitors. J Biomol Screen. 19:1024–1034. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Bandyopadhyay S, Ni J, Ruggiero A, Walshe
K, Rogers MS, Chattopadhyay N, Glicksman MA and Rogers JT: A
high-throughput drug screen targeted to the 5′untranslated region
of Alzheimer amyloid precursor protein mRNA. J Biomol Screen.
11:469–480. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Xicoy H, Wieringa B and Martens GJ: The
SH-SY5Y cell line in Parkinson's disease research: A systematic
review. Mol Neurodegener. 12:102017. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(−Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Xie B, Lin F, Peng L, Ullah K, Wu H, Qing
H and Deng Y: Methylglyoxal increases dopamine level and leads to
oxidative stress in SH-SY5Y cells. Acta Biochim Biophys Sin
(Shanghai). 46:950–956. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Slanzi A, Iannoto G, Rossi B, Zenaro E and
Constantin G: In vitro models of neurodegenerative diseases. Front
Cell Dev Biol. 8:3282020. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Falkenburger BH, Saridaki T and Dinter E:
Cellular models for Parkinson's disease. J Neurochemistry. 139
(Suppl 1):S121–S130. 2016. View Article : Google Scholar
|
|
46
|
Bai X and Strong R: Expression of
synaptophysin protein in different dopaminergic cell lines. J
Biochem Pharmacol Res. 2:185–190. 2014.PubMed/NCBI
|
|
47
|
Rozpedek W, Pytel D, Diehl JA and
Majsterek I: Niskoczasteczkowe inhibitory szlaku adaptacyjnej
odpowiedzi na stres zaleznego od kinazy PERK jako nowatorska
strategia terapeutyczna w leczeniu choroby Alzheimera. Pol Merkur
Lekarski. 46:9–15. 2019.(In Polish). PubMed/NCBI
|
|
48
|
Rivero-Rios P, Gomez-Suaga P, Fdez E and
Hilfiker S: Upstream deregulation of calcium signaling in
Parkinson's disease. Front Mol Neuroscience. 7:532014.PubMed/NCBI
|
|
49
|
Sun Y, Selvaraj S, Pandey S, Humphrey KM,
Foster JD, Wu M, Watt JA, Singh BB and Ohm JE: MPP+
decreases store-operated calcium entry and TRPC1 expression in
Mesenchymal Stem Cell derived dopaminergic neurons. Sci Rep.
8:117152018. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Brodnanova M, Hatokova Z, Evinova A,
Cibulka M and Racay P: Differential impact of imipramine on
thapsigargin- and tunicamycin-induced endoplasmic reticulum stress
and mitochondrial dysfunction in neuroblastoma SH-SY5Y cells. Eur J
Pharmacol. 902:1740732021. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Panagaki T, Michael M and Holscher C:
Liraglutide restores chronic ER stress, autophagy impairments and
apoptotic signalling in SH-SY5Y cells. Sci Rep. 7:161582017.
View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Koo HJ, Piao Y and Pak YK: Endoplasmic
reticulum stress impairs insulin signaling through mitochondrial
damage in SH-SY5Y cells. Neurosignals. 20:265–280. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Chung H, Chung HY, Bae CW, Kim CJ and Park
S: Ghrelin suppresses tunicamycin- or thapsigargin-triggered
endoplasmic reticulum stress-mediated apoptosis in primary cultured
rat cortical neuronal cells. Endocr J. 58:409–420. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Dibdiakova K, Saksonova S, Pilchova I,
Klacanova K, Tatarkova Z and Racay P: Both thapsigargin- and
tunicamycin-induced endoplasmic reticulum stress increases
expression of Hrd1 in IRE1-dependent fashion. Neurol Res.
41:177–188. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Ullrich C and Humpel C: The pro-apoptotic
substance thapsigargin selectively stimulates re-growth of brain
capillaries. Curr Neurovasc Res. 6:171–180. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Goodwin J, Nath S, Engelborghs Y and
Pountney DL: Raised calcium and oxidative stress cooperatively
promote alpha-synuclein aggregate formation. Neurochem Int.
62:703–711. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Ito S, Nakaso K, Imamura K, Takeshima T
and Nakashima K: Endogenous catecholamine enhances the dysfunction
of unfolded protein response and alpha-synuclein oligomerization in
PC12 cells overexpressing human alpha-synuclein. Neurosci Rese.
66:124–130. 2010. View Article : Google Scholar
|
|
58
|
Rozpedek W, Pytel D, Poplawski T, Walczak
A, Gradzik K, Wawrzynkiewicz A, Wojtczak R, Mucha B, Diehl JA and
Majsterek I: Inhibition of the PERK-dependent unfolded protein
response signaling pathway involved in the pathogenesis of
Alzheimer's disease. Curr Alzheimer Res. 16:209–218. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Rozpedek-Kaminska W, Galita G, Siwecka N,
Carroll SL, Diehl JA, Kucharska E, Pytel D and Majsterek I: The
potential role of small-molecule PERK inhibitor LDN-0060609 in
primary open-angle glaucoma treatment. Int J Mol Sci. 22:44942021.
View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Colla E, Coune P, Liu Y, Pletnikova O,
Troncoso JC, Iwatsubo T, Schneider BL and Lee MK: Endoplasmic
reticulum stress is important for the manifestations of
alpha-synucleinopathy in vivo. J Neurosci. 32:3306–3320. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Smith WW, Jiang H, Pei Z, Tanaka Y, Morita
H, Sawa A, Dawson VL, Dawson TM and Ross CA: Endoplasmic reticulum
stress and mitochondrial cell death pathways mediate A53T mutant
alpha-synuclein-induced toxicity. Hum Mol Genet. 14:3801–3811.
2005. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Smedley GD, Walker KE and Yuan SH: The
role of PERK in understanding development of neurodegenerative
diseases. Int J Mol Sci. 22:81462021. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Moreno JA, Halliday M, Molloy C, Radford
H, Verity N, Axten JM, Ortori CA, Willis AE, Fischer PM, Barrett DA
and Mallucci GR: Oral treatment targeting the unfolded protein
response prevents neurodegeneration and clinical disease in
prion-infected mice. Sci Transl Med. 5:206ra1382013. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Costa CAD, Manaa WE, Duplan E and Checler
F: The endoplasmic reticulum stress/unfolded protein response and
their contributions to Parkinson's disease physiopathology. Cells.
9:24952020. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Baek JH, Mamula D, Tingstam B, Pereira M,
He Y and Svenningsson P: GRP78 level is altered in the brain, but
not in plasma or cerebrospinal fluid in Parkinson's disease
patients. Front Neurosci. 13:6972019. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Selvaraj S, Sun Y, Watt JA, Wang S, Lei S,
Birnbaumer L and Singh BB: Neurotoxin-induced ER stress in mouse
dopaminergic neurons involves downregulation of TRPC1 and
inhibition of AKT/mTOR signaling. J Clin Invest. 122:1354–1367.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Bellani S, Mescola A, Ronzitti G, Tsushima
H, Tilve S, Canale C, Valtorta F and Chieregatti E: GRP78
clustering at the cell surface of neurons transduces the action of
exogenous alpha-synuclein. Cell Death Differ. 21:1971–1983. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Credle JJ, Forcelli PA, Delannoy M, Oaks
AW, Permaul E, Berry DL, Duka V, Wills J and Sidhu A:
α-Synuclein-mediated inhibition of ATF6 processing into COPII
vesicles disrupts UPR signaling in Parkinson's disease. Neurobiol
Dis. 76:112–125. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Cooper AA, Gitler AD, Cashikar A, Haynes
CM, Hill KJ, Bhullar B, Liu K, Xu K, Strathearn KE, Liu F, et al:
Alpha-synuclein blocks ER-Golgi traffic and Rab1 rescues neuron
loss in Parkinson's models. Science. 313:324–328. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Gitler AD, Bevis BJ, Shorter J, Strathearn
KE, Hamamichi S, Su LJ, Caldwell KA, Caldwell GA, Rochet JC,
McCaffery JM, et al: The Parkinson's disease protein
alpha-synuclein disrupts cellular Rab homeostasis. Proc Natl Acad
Sci USA. 105:145–150. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Paiva I, Jain G, Lázaro DF, Jerčić KG,
Hentrich T, Kerimoglu C, Pinho R, Szegő ÈM, Burkhardt S, Capece V,
et al: Alpha-synuclein deregulates the expression of COL4A2 and
impairs ER-Golgi function. Neurobiol Dis. 119:121–135. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Jung EM, Yoo YM, Park SY, Ahn C, Jeon BH,
Hong EJ, Kim WY and Jeung EB: Calbindin-D9k is a novel risk gene
for neurodegenerative disease. Cell Physiol Biochem. 54:438–456.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Giorgi C, Bonora M, Sorrentino G,
Missiroli S, Poletti F, Suski JM, Galindo Ramirez F, Rizzuto R, Di
Virgilio F, Zito E, et al: p53 at the endoplasmic reticulum
regulates apoptosis in a Ca2+-dependent manner. Proc Natl Acad Sci
USA. 112:1779–1784. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Kovaleva V and Saarma M: Endoplasmic
reticulum stress regulators: New drug targets for Parkinson's
disease. J Parkinsons Dis. 11 (Suppl 2):S219–S228. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Mercado G, Castillo V, Soto P, López N,
Axten JM, Sardi SP, Hoozemans JJM and Hetz C: Targeting PERK
signaling with the small molecule GSK2606414 prevents
neurodegeneration in a model of Parkinson's disease. Neurobiol Dis.
112:136–148. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Radford H, Moreno JA, Verity N, Halliday M
and Mallucci GR: PERK inhibition prevents tau-mediated
neurodegeneration in a mouse model of frontotemporal dementia. Acta
Neuropathol. 130:633–642. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Axten JM, Medina JR, Feng Y, Shu A,
Romeril SP, Grant SW, Li WH, Heerding DA, Minthorn E, Mencken T, et
al: Discovery of
7-methyl-5-(1-{[3-(trifluoromethyl)phenyl]acetyl}-2,3-dihydro-1H-indol-5-yl)-7H-p
yrrolo[2,3-d]pyrimidin-4-amine (GSK2606414), a potent and selective
first-in-class inhibitor of protein kinase R (PKR)-like endoplasmic
reticulum kinase (PERK). J Med Chem. 55:7193–7207. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
O'Connor T, Sadleir KR, Maus E,
Velliquette RA, Zhao J, Cole SL, Eimer WA, Hitt B, Bembinster LA,
Lammich S, et al: Phosphorylation of the translation initiation
factor eIF2alpha increases BACE1 levels and promotes
amyloidogenesis. Neuron. 60:988–1009. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Wang ZF, Gao C, Chen W, Gao Y, Wang HC,
Meng Y, Luo CL, Zhang MY, Chen G, Chen XP, et al: Salubrinal offers
neuroprotection through suppressing endoplasmic reticulum stress,
autophagy and apoptosis in a mouse traumatic brain injury model.
Neurobiol Learn Mem. 161:12–25. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Wu L, Luo N, Zhao HR, Gao Q, Lu J, Pan Y,
Shi JP, Tian YY and Zhang YD: Salubrinal protects against
rotenone-induced SH-SY5Y cell death via ATF4-parkin pathway. Brain
Res. 1549:52–62. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Gupta S, Mishra A and Singh S: Cardinal
role of eukaryotic initiation factor 2 (eIF2α) in progressive
dopaminergic neuronal death & DNA fragmentation: Implication of
PERK:IRE1α:ATF6 axis in Parkinson's pathology. Cell Signal.
81:1099222021. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Cankara FN, Kuş MS, Günaydın C, Şafak S,
Bilge SS, Ozmen O, Tural E and Kortholt A: The beneficial effect of
salubrinal on neuroinflammation and neuronal loss in intranigral
LPS-induced hemi-Parkinson disease model in rats. Immunopharmacol
Immunotoxicol. 44:168–177. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Huang X, Chen Y, Zhang H, Ma Q, Zhang YW
and Xu H: Salubrinal attenuates β-amyloid-induced neuronal death
and microglial activation by inhibition of the NF-κB pathway.
Neurobiol Aging. 33:1007.e9–e17. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Sidrauski C, Tsai JC, Kampmann M, Hearn
BR, Vedantham P, Jaishankar P, Sokabe M, Mendez AS, Newton BW, Tang
EL, et al: Pharmacological dimerization and activation of the
exchange factor eIF2B antagonizes the integrated stress response.
Elife. 4:e073142015. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Halliday M, Radford H, Sekine Y, Moreno J,
Verity N, le Quesne J, Ortori CA, Barrett DA, Fromont C, Fischer
PM, et al: Partial restoration of protein synthesis rates by the
small molecule ISRIB prevents neurodegeneration without pancreatic
toxicity. Cell Death Dis. 6:e16722015. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Hughes D and Mallucci GR: The unfolded
protein response in neurodegenerative disorders-therapeutic
modulation of the PERK pathway. FEBS J. 286:342–355. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Chia SJ, Tan EK and Chao YX: Historical
perspective: Models of Parkinson's Disease. Int J Mol Sci.
21:24642020. View Article : Google Scholar : PubMed/NCBI
|