Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
June-2023 Volume 27 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
June-2023 Volume 27 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

CRISPR‑based diagnostic approaches: Implications for rapid management of future pandemics (Review)

  • Authors:
    • Mohd Shariq
    • Mohammad Firoz Khan
    • Reshmi Raj
    • Nuzhat Ahsan
    • Rinky Singh
    • Pramod Kumar
  • View Affiliations / Copyright

    Affiliations: Biophotonics Group, Quant Lase Imaging Laboratory, Quant Lase Lab LLC, Abu Dhabi, United Arab Emirates
    Copyright: © Shariq et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 118
    |
    Published online on: May 3, 2023
       https://doi.org/10.3892/mmr.2023.13005
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Sudden viral outbreaks have increased in the early part of the 21st century, such as those of severe acute respiratory syndrome coronavirus (SARS‑CoV), Middle East respiratory syndrome corona virus, and SARS‑CoV‑2, owing to increased human access to wildlife habitats. Therefore, the likelihood of zoonotic transmission of human‑associated viruses has increased. The emergence of severe acute respiratory syndrome coronavirus 2 in China and its spread worldwide within months have highlighted the need to be ready with advanced diagnostic and antiviral approaches to treat newly emerging diseases with minimal harm to human health. The gold‑standard molecular diagnostic approaches currently used are time‑consuming, require trained personnel and sophisticated equipment, and therefore cannot be used as point‑of‑care devices for widespread monitoring and surveillance. Clustered regularly interspaced short palindromic repeats (CRISPR)‑associated (Cas) systems are widespread and have been reported in bacteria, archaea and bacteriophages. CRISPR‑Cas systems are organized into CRISPR arrays and adjacent Cas proteins. The detection and in‑depth biochemical characterization of class 2 type V and VI CRISPR‑Cas systems and orthologous proteins such as Cas12 and Cas13 have led to the development of CRISPR‑based diagnostic approaches, which have been used to detect viral diseases and distinguish between serotypes and subtypes. CRISPR‑based diagnostic approaches detect human single nucleotide polymorphisms in samples from patients with cancer and are used as antiviral agents to detect and destroy viruses that contain RNA as a genome. CRISPR‑based diagnostic approaches are likely to improve disease detection methods in the 21st century owing to their ease of development, low cost, reduced turnaround time, multiplexing and ease of deployment. The present review discusses the biochemical properties of Cas12 and Cas13 orthologs in viral disease detection and other applications. The present review expands the scope of CRISPR‑based diagnostic approaches to detect diseases and fight viruses as antivirals.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

View References

1 

Jayamohan H, Lambert CJ, Sant HJ, Jafek A, Patel D, Feng H, Beeman M, Mahmood T, Nze U and Gale BK: SARS-CoV-2 pandemic: A review of molecular diagnostic tools including sample collection and commercial response with associated advantages and limitations. Anal Bioanal Chem. 413:49–71. 2021. View Article : Google Scholar : PubMed/NCBI

2 

Freije CA and Sabeti PC: Detect and destroy: CRISPR-based technologies for the response against viruses. Cell Host Microbe. 29:689–703. 2021. View Article : Google Scholar : PubMed/NCBI

3 

da Costa VG, Moreli ML and Saivish MV: The emergence of SARS, MERS and novel SARS-2 coronaviruses in the 21st century. Arch Virol. 165:1517–1526. 2020. View Article : Google Scholar : PubMed/NCBI

4 

Johnson CK, Hitchens PL, Pandit PS, Rushmore J, Evans TS, Young CCW and Doyle MM: Global shifts in mammalian population trends reveal key predictors of virus spillover risk. Proc Biol Sci. 287:201927362020.PubMed/NCBI

5 

Morse SS, Mazet JA, Woolhouse M, Parrish CR, Carroll D, Karesh WB, Zambrana-Torrelio C, Lipkin WI and Daszak P: Prediction and prevention of the next pandemic zoonosis. Lancet. 380:1956–1965. 2012. View Article : Google Scholar : PubMed/NCBI

6 

Nieto-Rabiela F, Wiratsudakul A, Suzan G and Rico-Chavez O: Viral networks and detection of potential zoonotic viruses in bats and rodents: A worldwide analysis. Zoonoses Public Health. 66:655–666. 2019. View Article : Google Scholar : PubMed/NCBI

7 

Olival KJ, Hosseini PR, Zambrana-Torrelio C, Ross N, Bogich TL and Daszak P: Host and viral traits predict zoonotic spillover from mammals. Nature. 546:646–650. 2017. View Article : Google Scholar : PubMed/NCBI

8 

Bouvier NM and Palese P: The biology of influenza viruses. Vaccine. 26 (Suppl 4):D49–D53. 2008. View Article : Google Scholar : PubMed/NCBI

9 

Tong S, Zhu X, Li Y, Shi M, Zhang J, Bourgeois M, Yang H, Chen X, Recuenco S, Gomez J, et al: New world bats harbor diverse influenza A viruses. PLoS Pathog. 9:e10036572013. View Article : Google Scholar : PubMed/NCBI

10 

Elena SF, Bedhomme S, Carrasco P, Cuevas JM, de la Iglesia F, Lafforgue G, Lalić J, Pròsper A, Tromas N and Zwart MP: The evolutionary genetics of emerging plant RNA viruses. Mol Plant Microbe Interact. 24:287–293. 2011. View Article : Google Scholar : PubMed/NCBI

11 

Sanjuan R, Nebot MR, Chirico N, Mansky LM and Belshaw R: Viral mutation rates. J Virol. 84:9733–9748. 2010. View Article : Google Scholar : PubMed/NCBI

12 

De Clercq E and Li G: Approved antiviral drugs over the past 50 years. Clin Microbiol Rev. 29:695–747. 2016. View Article : Google Scholar : PubMed/NCBI

13 

Gordon DE, Hiatt J, Bouhaddou M, Rezelj VV, Ulferts S, Braberg H, Jureka AS, Obernier K, Guo JZ, Batra J, et al: Comparative host-coronavirus protein interaction networks reveal pan-viral disease mechanisms. Science. 370:eabe94032020. View Article : Google Scholar : PubMed/NCBI

14 

Gordon DE, Jang GM, Bouhaddou M, Xu J, Obernier K, O'Meara MJ, Guo JZ, Swaney DL, Tummino TA, Hüttenhain R, et al: A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature. 583:459–468. 2020. View Article : Google Scholar : PubMed/NCBI

15 

Zhou Y, Liu Y, Gupta S, Paramo MI, Hou Y, Mao C, Luo Y, Judd J, Wierbowski S, Bertolotti M, et al: A comprehensive SARS-CoV-2-human protein-protein interactome reveals COVID-19 pathobiology and potential host therapeutic targets. Nat Biotechnol. 41:128–139. 2023. View Article : Google Scholar : PubMed/NCBI

16 

Bojkova D, Klann K, Koch B, Widera M, Krause D, Ciesek S, Cinatl J and Münch C: Proteomics of SARS-CoV-2-infected host cells reveals therapy targets. Nature. 583:469–472. 2020. View Article : Google Scholar : PubMed/NCBI

17 

Kole R, Krainer AR and Altman S: RNA therapeutics: Beyond RNA interference and antisense oligonucleotides. Nat Rev Drug Discov. 11:125–140. 2012. View Article : Google Scholar : PubMed/NCBI

18 

Warren TK, Warfield KL, Wells J, Swenson DL, Donner KS, Van Tongeren SA, Garza NL, Dong L, Mourich DV, Crumley S, et al: Advanced antisense therapies for postexposure protection against lethal filovirus infections. Nat Med. 16:991–994. 2010. View Article : Google Scholar : PubMed/NCBI

19 

Xu Y and Li Z: CRISPR-Cas systems: Overview, innovations and applications in human disease research and gene therapy. Comput Struct Biotechnol J. 18:2401–2415. 2020. View Article : Google Scholar : PubMed/NCBI

20 

Kostyusheva A, Brezgin S, Babin Y, Vasilyeva I, Glebe D, Kostyushev D and Chulanov V: CRISPR-Cas systems for diagnosing infectious diseases. Methods. 203:431–446. 2022. View Article : Google Scholar : PubMed/NCBI

21 

Ebrahimi S, Khanbabaei H, Abbasi S, Fani M, Soltani S, Zandi M and Najafimemar Z: CRISPR-Cas System: A promising diagnostic tool for Covid-19. Avicenna J Med Biotechnol. 14:3–9. 2022.PubMed/NCBI

22 

Yang S and Rothman RE: PCR-based diagnostics for infectious diseases: Uses, limitations, and future applications in acute-care settings. Lancet Infect Dis. 4:337–348. 2004. View Article : Google Scholar : PubMed/NCBI

23 

Mackay IM, Arden KE and Nitsche A: Real-time PCR in virology. Nucleic Acids Res. 30:1292–1305. 2002. View Article : Google Scholar : PubMed/NCBI

24 

Zanoli LM and Spoto G: Isothermal amplification methods for the detection of nucleic acids in microfluidic devices. Biosensors (Basel). 3:18–43. 2013. View Article : Google Scholar : PubMed/NCBI

25 

Cassedy A, Parle-McDermott A and O'Kennedy R: Virus Detection: A review of the current and emerging molecular and immunological methods. Front Mol Biosci. 8:6375592021. View Article : Google Scholar : PubMed/NCBI

26 

Notomi T, Okayama H, Masubuchi H, Yonekawa T, Watanabe K, Amino N and Hase T: Loop-mediated isothermal amplification of DNA. Nucleic Acids Res. 28:E632000. View Article : Google Scholar : PubMed/NCBI

27 

Compton J: Nucleic acid sequence-based amplification. Nature. 350:91–92. 1991. View Article : Google Scholar : PubMed/NCBI

28 

Piepenburg O, Williams CH, Stemple DL and Armes NA: DNA detection using recombination proteins. PLoS Biol. 4:e2042006. View Article : Google Scholar : PubMed/NCBI

29 

Kurosaki Y, Martins DBG, Kimura M, Catena ADS, Borba MACSM, Mattos SDS, Abe H, Yoshikawa R, de Lima Filho JL and Yasuda J: Development and evaluation of a rapid molecular diagnostic test for Zika virus infection by reverse transcription loop-mediated isothermal amplification. Sci Rep. 7:135032017. View Article : Google Scholar : PubMed/NCBI

30 

Patel P, Abd El Wahed A, Faye O, Prüger P, Kaiser M, Thaloengsok S, Ubol S, Sakuntabhai A, Leparc-Goffart I, Hufert FT, et al: A field-deployable reverse transcription recombinase polymerase amplification assay for rapid detection of the chikungunya virus. PLoS Negl Trop Dis. 10:e00049532016. View Article : Google Scholar : PubMed/NCBI

31 

Broughton JP, Deng X, Yu G, Fasching CL, Servellita V, Singh J, Miao X, Streithorst JA, Granados A, Sotomayor-Gonzalez A, et al: CRISPR-Cas12-based detection of SARS-CoV-2. Nat Biotechnol. 38:870–874. 2020. View Article : Google Scholar : PubMed/NCBI

32 

Gootenberg JS, Abudayyeh OO, Lee JW, Essletzbichler P, Dy AJ, Joung J, Verdine V, Donghia N, Daringer NM, Freije CA, et al: Nucleic acid detection with CRISPR-Cas13a/C2c2. Science. 356:438–442. 2017. View Article : Google Scholar : PubMed/NCBI

33 

Liang Y, Lin H, Zou L, Zhao J, Li B, Wang H, Lu J, Sun J, Yang X, Deng X and Tang S: CRISPR-Cas12a-based detection for the major SARS-CoV-2 variants of concern. Microbiol Spectr. 9:e01017212021. View Article : Google Scholar : PubMed/NCBI

34 

Kellner MJ, Koob JG, Gootenberg JS, Abudayyeh OO and Zhang F: SHERLOCK: Nucleic acid detection with CRISPR nucleases. Nat Protoc. 14:2986–3012. 2019. View Article : Google Scholar : PubMed/NCBI

35 

Kaminski MM, Abudayyeh OO, Gootenberg JS, Zhang F and Collins JJ: CRISPR-based diagnostics. Nat Biomed Eng. 5:643–656. 2021. View Article : Google Scholar : PubMed/NCBI

36 

Chen JS, Ma E, Harrington LB, Da Costa M, Tian X, Palefsky JM and Doudna JA: CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity. Science. 360:436–439. 2018. View Article : Google Scholar : PubMed/NCBI

37 

East-Seletsky A, O'Connell MR, Knight SC, Burstein D, Cate JH, Tjian R and Doudna JA: Two distinct RNase activities of CRISPR-C2c2 enable guide-RNA processing and RNA detection. Nature. 538:270–273. 2016. View Article : Google Scholar : PubMed/NCBI

38 

Gootenberg JS, Abudayyeh OO, Kellner MJ, Joung J, Collins JJ and Zhang F: Multiplexed and portable nucleic acid detection platform with Cas13, Cas12a, and Csm6. Science. 360:439–444. 2018. View Article : Google Scholar : PubMed/NCBI

39 

Marraffini LA and Sontheimer EJ: CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA. Science. 322:1843–1845. 2008. View Article : Google Scholar : PubMed/NCBI

40 

Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, Romero DA and Horvath P: CRISPR provides acquired resistance against viruses in prokaryotes. Science. 315:1709–1712. 2007. View Article : Google Scholar : PubMed/NCBI

41 

Pickar-Oliver A and Gersbach CA: The next generation of CRISPR-Cas technologies and applications. Nat Rev Mol Cell Biol. 20:490–507. 2019. View Article : Google Scholar : PubMed/NCBI

42 

Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA and Charpentier E: A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science. 337:816–821. 2012. View Article : Google Scholar : PubMed/NCBI

43 

Abudayyeh OO, Gootenberg JS, Konermann S, Joung J, Slaymaker IM, Cox DB, Shmakov S, Makarova KS, Semenova E, Minakhin L, et al: C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector. Science. 353:aaf55732016. View Article : Google Scholar : PubMed/NCBI

44 

van der Oost J, Westra ER, Jackson RN and Wiedenheft B: Unravelling the structural and mechanistic basis of CRISPR-Cas systems. Nat Rev Microbiol. 12:479–492. 2014. View Article : Google Scholar : PubMed/NCBI

45 

Wright AV, Nunez JK and Doudna JA: Biology and applications of CRISPR systems: Harnessing Nature's toolbox for genome engineering. Cell. 164:29–44. 2016. View Article : Google Scholar : PubMed/NCBI

46 

Shmakov S, Abudayyeh OO, Makarova KS, Wolf YI, Gootenberg JS, Semenova E, Minakhin L, Joung J, Konermann S, Severinov K, et al: Discovery and functional characterization of diverse class 2 CRISPR-cas systems. Mol Cell. 60:385–397. 2015. View Article : Google Scholar : PubMed/NCBI

47 

Fonfara I, Richter H, Bratovic M, Le Rhun A and Charpentier E: The CRISPR-associated DNA-cleaving enzyme Cpf1 also processes precursor CRISPR RNA. Nature. 532:517–521. 2016. View Article : Google Scholar : PubMed/NCBI

48 

East-Seletsky A, O'Connell MR, Burstein D, Knott GJ and Doudna JA: RNA targeting by functionally orthogonal type VI-A CRISPR-cas enzymes. Mol Cell. 66:373–383. e3732017. View Article : Google Scholar : PubMed/NCBI

49 

Li H: Structural principles of CRISPR RNA processing. Structure. 23:13–20. 2015. View Article : Google Scholar : PubMed/NCBI

50 

Charpentier E, Richter H, van der Oost J and White MF: Biogenesis pathways of RNA guides in archaeal and bacterial CRISPR-Cas adaptive immunity. FEMS Microbiol Rev. 39:428–441. 2015. View Article : Google Scholar : PubMed/NCBI

51 

Hochstrasser ML and Doudna JA: Cutting it close: CRISPR-associated endoribonuclease structure and function. Trends Biochem Sci. 40:58–66. 2015. View Article : Google Scholar : PubMed/NCBI

52 

Deltcheva E, Chylinski K, Sharma CM, Gonzales K, Chao Y, Pirzada ZA, Eckert MR, Vogel J and Charpentier E: CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature. 471:602–607. 2011. View Article : Google Scholar : PubMed/NCBI

53 

Fonfara I, Le Rhun A, Chylinski K, Makarova KS, Lécrivain AL, Bzdrenga J, Koonin EV and Charpentier E: Phylogeny of Cas9 determines functional exchangeability of dual-RNA and Cas9 among orthologous type II CRISPR-Cas systems. Nucleic Acids Res. 42:2577–2590. 2014. View Article : Google Scholar : PubMed/NCBI

54 

Yang W: Nucleases: Diversity of structure, function and mechanism. Q Rev Biophys. 44:1–93. 2011. View Article : Google Scholar : PubMed/NCBI

55 

Cordray MS and Richards-Kortum RR: Emerging nucleic acid-based tests for point-of-care detection of malaria. Am J Trop Med Hyg. 87:223–230. 2012. View Article : Google Scholar : PubMed/NCBI

56 

Rohrman BA, Leautaud V, Molyneux E and Richards-Kortum RR: A lateral flow assay for quantitative detection of amplified HIV-1 RNA. PLoS One. 7:e456112012. View Article : Google Scholar : PubMed/NCBI

57 

Yan L, Zhou J, Zheng Y, Gamson AS, Roembke BT, Nakayama S and Sintim HO: Isothermal amplified detection of DNA and RNA. Mol Biosyst. 10:970–1003. 2014. View Article : Google Scholar : PubMed/NCBI

58 

Ortiz-Cartagena C, Fernandez-Garcia L, Blasco L, Pacios O, Bleriot I, López M, Cantón R and Tomás M: Reverse Transcription-loop-mediated isothermal Amplification-CRISPR-Cas13a technology as a promising diagnostic tool for SARS-CoV-2. Microbiol Spectr. 10:e02398222022. View Article : Google Scholar : PubMed/NCBI

59 

Li SY, Cheng QX, Wang JM, Li XY, Zhang ZL, Gao S, Cao RB, Zhao GP and Wang J: CRISPR-Cas12a-assisted nucleic acid detection. Cell Discov. 4:202018. View Article : Google Scholar : PubMed/NCBI

60 

Mustafa MI and Makhawi AM: SHERLOCK and DETECTR: CRISPR-Cas systems as potential rapid diagnostic tools for emerging infectious diseases. J Clin Microbiol. 59:e00745–20. 2021. View Article : Google Scholar : PubMed/NCBI

61 

Harrington LB, Burstein D, Chen JS, Paez-Espino D, Ma E, Witte IP, Cofsky JC, Kyrpides NC, Banfield JF and Doudna JA: Programmed DNA destruction by miniature CRISPR-Cas14 enzymes. Science. 362:839–842. 2018. View Article : Google Scholar : PubMed/NCBI

62 

Hillary VE and Ceasar SA: A review on the mechanism and applications of CRISPR/Cas9/Cas12/Cas13/Cas14 proteins utilized for genome engineering. Mol Biotechnol. 65:311–325. 2023. View Article : Google Scholar : PubMed/NCBI

63 

Li L, Li S, Wu N, Wu J, Wang G, Zhao G and Wang J: HOLMESv2: A CRISPR-Cas12b-assisted platform for nucleic acid detection and DNA methylation quantitation. ACS Synth Biol. 8:2228–2237. 2019. View Article : Google Scholar : PubMed/NCBI

64 

Li SY, Cheng QX, Liu JK, Nie XQ, Zhao GP and Wang J: CRISPR-Cas12a has both cis- and trans-cleavage activities on single-stranded DNA. Cell Res. 28:491–493. 2018. View Article : Google Scholar : PubMed/NCBI

65 

Safari F, Afarid M, Rastegari B, Borhani-Haghighi A, Barekati-Mowahed M and Behzad-Behbahani A: CRISPR systems: Novel approaches for detection and combating COVID-19. Virus Res. 294:1982822021. View Article : Google Scholar : PubMed/NCBI

66 

Teng F, Guo L, Cui T, Wang XG, Xu K, Gao Q, Zhou Q and Li W: CDetection: CRISPR-Cas12b-based DNA detection with sub-attomolar sensitivity and single-base specificity. Genome Biol. 20:1322019. View Article : Google Scholar : PubMed/NCBI

67 

Arizti-Sanz J, Bradley A, Zhang YB, Boehm CK, Freije CA, Grunberg ME, Kosoko-Thoroddsen TF, Welch NL, Pillai PP, Mantena S, et al: Simplified Cas13-based assays for the fast identification of SARS-CoV-2 and its variants. Nat Biomed Eng. 6:932–943. 2022. View Article : Google Scholar : PubMed/NCBI

68 

Joung J, Ladha A, Saito M, Kim NG, Woolley AE, Segel M, Barretto RPJ, Ranu A, Macrae RK, Faure G, et al: Detection of SARS-CoV-2 with SHERLOCK One-Pot Testing. N Engl J Med. 383:1492–1494. 2020. View Article : Google Scholar : PubMed/NCBI

69 

Soh JH, Balleza E, Abdul Rahim MN, Chan HM, Mohd Ali S, Chuah JKC, Edris S, Atef A, Bahieldin A, Ying JY and Sabir JSM: CRISPR-based systems for sensitive and rapid on-site COVID-19 diagnostics. Trends Biotechnol. 40:1346–1360. 2022. View Article : Google Scholar : PubMed/NCBI

70 

Ackerman CM, Myhrvold C, Thakku SG, Freije CA, Metsky HC, Yang DK, Ye SH, Boehm CK, Kosoko-Thoroddsen TF, Kehe J, et al: Massively multiplexed nucleic acid detection with Cas13. Nature. 582:277–282. 2020. View Article : Google Scholar : PubMed/NCBI

71 

Yu TC: Beginnings and development of nursing education in Republic of China. Hu Li Za Zhi. 24:39–42. 1977.(In Chinese). PubMed/NCBI

72 

Wang M, Zhang R and Li J: CRISPR/cas systems redefine nucleic acid detection: Principles and methods. Biosens Bioelectron. 165:1124302020. View Article : Google Scholar : PubMed/NCBI

73 

Emmadi R, Boonyaratanakornkit JB, Selvarangan R, Shyamala V, Zimmer BL, Williams L, Bryant B, Schutzbank T, Schoonmaker MM, Amos Wilson JA, et al: Molecular methods and platforms for infectious diseases testing a review of FDA-approved and cleared assays. J Mol Diagn. 13:583–604. 2011. View Article : Google Scholar : PubMed/NCBI

74 

Song L, Shan D, Zhao M, Pink BA, Minnehan KA, York L, Gardel M, Sullivan S, Phillips AF, Hayman RB, et al: Direct detection of bacterial genomic DNA at sub-femtomolar concentrations using single molecule arrays. Anal Chem. 85:1932–1939. 2013. View Article : Google Scholar : PubMed/NCBI

75 

Barletta JM, Edelman DC and Constantine NT: Lowering the detection limits of HIV-1 viral load using real-time immuno-PCR for HIV-1 p24 antigen. Am J Clin Pathol. 122:20–27. 2004. View Article : Google Scholar : PubMed/NCBI

76 

Faye O, Faye O, Dupressoir A, Weidmann M, Ndiaye M and Alpha Sall A: One-step RT-PCR for detection of Zika virus. J Clin Virol. 43:96–101. 2008. View Article : Google Scholar : PubMed/NCBI

77 

Faye O, Faye O, Diallo D, Diallo M, Weidmann M and Sall AA: Quantitative real-time PCR detection of Zika virus and evaluation with field-caught mosquitoes. Virol J. 10:3112013. View Article : Google Scholar : PubMed/NCBI

78 

Waggoner JJ, Abeynayake J, Sahoo MK, Gresh L, Tellez Y, Gonzalez K, Ballesteros G, Guo FP, Balmaseda A, Karunaratne K, et al: Comparison of the FDA-approved CDC DENV-1-4 real-time reverse transcription-PCR with a laboratory-developed assay for dengue virus detection and serotyping. J Clin Microbiol. 51:3418–3420. 2013. View Article : Google Scholar : PubMed/NCBI

79 

Myhrvold C, Freije CA, Gootenberg JS, Abudayyeh OO, Metsky HC, Durbin AF, Kellner MJ, Tan AL, Paul LM, Parham LA, et al: Field-deployable viral diagnostics using CRISPR-Cas13. Science. 360:444–448. 2018. View Article : Google Scholar : PubMed/NCBI

80 

Javalkote VS, Kancharla N, Bhadra B, Shukla M, Soni B, Sapre A, Goodin M, Bandyopadhyay A and Dasgupta S: CRISPR-based assays for rapid detection of SARS-CoV-2. Methods. 203:594–603. 2022. View Article : Google Scholar : PubMed/NCBI

81 

Huang Z, Fang J, Zhou M, Gong Z and Xiang T: CRISPR-Cas13: A new technology for the rapid detection of pathogenic microorganisms. Front Microbiol. 13:10113992022. View Article : Google Scholar : PubMed/NCBI

82 

Shen F, Sun B, Kreutz JE, Davydova EK, Du W, Reddy PL, Joseph LJ and Ismagilov RF: Multiplexed quantification of nucleic acids with large dynamic range using multivolume digital RT-PCR on a rotational SlipChip tested with HIV and hepatitis C viral load. J Am Chem Soc. 133:17705–17712. 2011. View Article : Google Scholar : PubMed/NCBI

83 

Freije CA, Myhrvold C, Boehm CK, Lin AE, Welch NL, Carter A, Metsky HC, Luo CY, Abudayyeh OO, Gootenberg JS, et al: Programmable inhibition and detection of RNA viruses using Cas13. Mol Cell. 76:826–837. e8112019. View Article : Google Scholar : PubMed/NCBI

84 

Tang Y and Fu Y: Class 2 CRISPR/Cas: An expanding biotechnology toolbox for and beyond genome editing. Cell Biosci. 8:592018. View Article : Google Scholar : PubMed/NCBI

85 

Zetsche B, Gootenberg JS, Abudayyeh OO, Slaymaker IM, Makarova KS, Essletzbichler P, Volz SE, Joung J, van der Oost J, Regev A, et al: Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell. 163:759–771. 2015. View Article : Google Scholar : PubMed/NCBI

86 

Swarts DC, van der Oost J and Jinek M: Structural basis for guide RNA processing and seed-dependent DNA targeting by CRISPR-Cas12a. Mol Cell. 66:221–233.e4. 2017. View Article : Google Scholar : PubMed/NCBI

87 

Dong D, Ren K, Qiu X, Zheng J, Guo M, Guan X, Liu H, Li N, Zhang B, Yang D, et al: The crystal structure of Cpf1 in complex with CRISPR RNA. Nature. 532:522–526. 2016. View Article : Google Scholar : PubMed/NCBI

88 

Gao P, Yang H, Rajashankar KR, Huang Z and Patel DJ: Type V CRISPR-Cas Cpf1 endonuclease employs a unique mechanism for crRNA-mediated target DNA recognition. Cell Res. 26:901–913. 2016. View Article : Google Scholar : PubMed/NCBI

89 

Stella S, Alcon P and Montoya G: Structure of the Cpf1 endonuclease R-loop complex after target DNA cleavage. Nature. 546:559–563. 2017. View Article : Google Scholar : PubMed/NCBI

90 

Yamano T, Nishimasu H, Zetsche B, Hirano H, Slaymaker IM, Li Y, Fedorova I, Nakane T, Makarova KS, Koonin EV, et al: Crystal structure of Cpf1 in complex with Guide RNA and target DNA. Cell. 165:949–962. 2016. View Article : Google Scholar : PubMed/NCBI

91 

Drame M, Tabue Teguo M, Proye E, Hequet F, Hentzien M, Kanagaratnam L and Godaert L: Should RT-PCR be considered a gold standard in the diagnosis of COVID-19? J Med Virol. 92:2312–2313. 2020. View Article : Google Scholar : PubMed/NCBI

92 

Patchsung M, Jantarug K, Pattama A, Aphicho K, Suraritdechachai S, Meesawat P, Sappakhaw K, Leelahakorn N, Ruenkam T, Wongsatit T, et al: Clinical validation of a Cas13-based assay for the detection of SARS-CoV-2 RNA. Nat Biomed Eng. 4:1140–1149. 2020. View Article : Google Scholar : PubMed/NCBI

93 

Teng F, Cui T, Feng G, Guo L, Xu K, Gao Q, Li T, Li J, Zhou Q and Li W: Repurposing CRISPR-Cas12b for mammalian genome engineering. Cell Discov. 4:632018. View Article : Google Scholar : PubMed/NCBI

94 

Liu TY, Knott GJ, Smock DCJ, Desmarais JJ, Son S, Bhuiya A, Jakhanwal S, Prywes N, Agrawal S, Díaz de León Derby M, et al: Accelerated RNA detection using tandem CRISPR nucleases. Nat Chem Biol. 17:982–988. 2021. View Article : Google Scholar : PubMed/NCBI

95 

Chandrasekaran SS, Agrawal S, Fanton A, Jangid AR, Charrez B, Escajeda AM, Son S, Mcintosh R, Tran H, Bhuiya A, et al: Rapid detection of SARS-CoV-2 RNA in saliva via Cas13. Nat Biomed Eng. 6:944–956. 2022. View Article : Google Scholar : PubMed/NCBI

96 

Arizti-Sanz J, Freije CA, Stanton AC, Petros BA, Boehm CK, Siddiqui S, Shaw BM, Adams G, Kosoko-Thoroddsen TF, Kemball ME, et al: Streamlined inactivation, amplification, and Cas13-based detection of SARS-CoV-2. Nat Commun. 11:59212020. View Article : Google Scholar : PubMed/NCBI

97 

Qin P, Park M, Alfson KJ, Tamhankar M, Carrion R, Patterson JL, Griffiths A, He Q, Yildiz A, Mathies R and Du K: Rapid and fully microfluidic ebola virus detection with CRISPR-Cas13a. ACS Sens. 4:1048–1054. 2019. View Article : Google Scholar : PubMed/NCBI

98 

Wu Y, Liu SX, Wang F and Zeng MS: Room temperature detection of plasma Epstein-barr virus DNA with CRISPR-Cas13. Clin Chem. 65:591–592. 2019. View Article : Google Scholar : PubMed/NCBI

99 

Normandin E, Solomon IH, Zamirpour S, Lemieux J, Freije CA, Mukerji SS, Tomkins-Tinch C, Park D, Sabeti PC and Piantadosi A: Powassan Virus neuropathology and genomic diversity in patients with fatal encephalitis. Open Forum Infect Dis. 7:ofaa3922020. View Article : Google Scholar : PubMed/NCBI

100 

Liu Y, Xu H, Liu C, Peng L, Khan H, Cui L, Huang R, Wu C, Shen S, Wang S, et al: CRISPR-Cas13a nanomachine based simple technology for avian Influenza A (H7N9) Virus On-Site detection. J Biomed Nanotechnol. 15:790–798. 2019. View Article : Google Scholar : PubMed/NCBI

101 

Curti LA, Pereyra-Bonnet F, Repizo GD, Fay JV, Salvatierra K, Blariza MJ, Ibañez-Alegre D, Rinflerch AR, Miretti M and Gimenez CA: CRISPR-based platform for carbapenemases and emerging viruses detection using Cas12a (Cpf1) effector nuclease. Emerg Microbes Infect. 9:1140–1148. 2020. View Article : Google Scholar : PubMed/NCBI

102 

Barnes KG, Lachenauer AE, Nitido A, Siddiqui S, Gross R, Beitzel B, Siddle KJ, Freije CA, Dighero-Kemp B, Mehta SB, et al: Deployable CRISPR-Cas13a diagnostic tools to detect and report Ebola and Lassa virus cases in real-time. Nat Commun. 11:41312020. View Article : Google Scholar : PubMed/NCBI

103 

Broughton JP, Deng X, Yu G, Fasching CL, Singh J, Streithorst J, Granados A, Sotomayor-Gonzalez A, Zorn K, Gopez A, et al: Rapid detection of 2019 Novel coronavirus SARS-CoV-2 using a CRISPR-based DETECTR lateral flow assay. medRxiv. Mar 27–2020.doi: 10.1101/2020.03.06.20032334. PubMed/NCBI

104 

Chen Y, Shi Y, Chen Y, Yang Z, Wu H, Zhou Z, Li J, Ping J, He L, Shen H, et al: Contamination-free visual detection of SARS-CoV-2 with CRISPR/Cas12a: A promising method in the point-of-care detection. Biosens Bioelectron. 169:1126422020. View Article : Google Scholar : PubMed/NCBI

105 

Ali Z, Aman R, Mahas A, Rao GS, Tehseen M, Marsic T, Salunke R, Subudhi AK, Hala SM, Hamdan SM, et al: iSCAN: An RT-LAMP-coupled CRISPR-Cas12 module for rapid, sensitive detection of SARS-CoV-2. Virus Res. 288:1981292020. View Article : Google Scholar : PubMed/NCBI

106 

Guo L, Sun X, Wang X, Liang C, Jiang H, Gao Q, Dai M, Qu B, Fang S, Mao Y, et al: SARS-CoV-2 detection with CRISPR diagnostics. Cell Discov. 6:342020. View Article : Google Scholar : PubMed/NCBI

107 

Fozouni P, Son S, Diaz de Leon Derby M, Knott GJ, Gray CN, D'Ambrosio MV, Zhao C, Switz NA, Kumar GR, Stephens SI, et al: Amplification-free detection of SARS-CoV-2 with CRISPR-Cas13a and mobile phone microscopy. Cell. 184:323–333.e9. 2021. View Article : Google Scholar : PubMed/NCBI

108 

Hale CR, Zhao P, Olson S, Duff MO, Graveley BR, Wells L, Terns RM and Terns MP: RNA-guided RNA cleavage by a CRISPR RNA-Cas protein complex. Cell. 139:945–956. 2009. View Article : Google Scholar : PubMed/NCBI

109 

Wang X, Zhong M, Liu Y, Ma P, Dang L, Meng Q, Wan W, Ma X, Liu J, Yang G, et al: Rapid and sensitive detection of COVID-19 using CRISPR/Cas12a-based detection with naked eye readout, CRISPR/Cas12a-NER. Sci Bull (Beijing). 65:1436–1439. 2020. View Article : Google Scholar : PubMed/NCBI

110 

Lu S, Li F, Chen Q, Wu J, Duan J, Lei X, Zhang Y, Zhao D, Bu Z and Yin H: Rapid detection of African swine fever virus using Cas12a-based portable paper diagnostics. Cell Discov. 6:182020. View Article : Google Scholar : PubMed/NCBI

111 

Poole CB, Li Z, Alhassan A, Guelig D, Diesburg S, Tanner NA, Zhang Y, Evans TC Jr, LaBarre P, Wanji S, et al: Colorimetric tests for diagnosis of filarial infection and vector surveillance using non-instrumented nucleic acid loop-mediated isothermal amplification (NINA-LAMP). PLoS One. 12:e01690112017. View Article : Google Scholar : PubMed/NCBI

112 

Yuan C, Tian T, Sun J, Hu M, Wang X, Xiong E, Cheng M, Bao Y, Lin W, Jiang J, et al: Universal and Naked-Eye Gene detection platform based on the clustered regularly interspaced short palindromic Repeats/Cas12a/13a system. Anal Chem. 92:4029–4037. 2020. View Article : Google Scholar : PubMed/NCBI

113 

Barrangou R and Marraffini LA: CRISPR-Cas systems: Prokaryotes upgrade to adaptive immunity. Mol Cell. 54:234–244. 2014. View Article : Google Scholar : PubMed/NCBI

114 

Abudayyeh OO, Gootenberg JS, Essletzbichler P, Han S, Joung J, Belanto JJ, Verdine V, Cox DBT, Kellner MJ, Regev A, et al: RNA targeting with CRISPR-Cas13. Nature. 550:280–284. 2017. View Article : Google Scholar : PubMed/NCBI

115 

Cox DBT, Gootenberg JS, Abudayyeh OO, Franklin B, Kellner MJ, Joung J and Zhang F: RNA editing with CRISPR-Cas13. Science. 358:1019–1027. 2017. View Article : Google Scholar : PubMed/NCBI

116 

Wessels HH, Mendez-Mancilla A, Guo X, Legut M, Daniloski Z and Sanjana NE: Massively parallel Cas13 screens reveal principles for guide RNA design. Nat Biotechnol. 38:722–727. 2020. View Article : Google Scholar : PubMed/NCBI

117 

Li H, Wang S, Dong X, Li Q, Li M, Li J, Guo Y, Jin X, Zhou Y, Song H and Kou Z: CRISPR-Cas13a cleavage of dengue Virus NS3 gene efficiently inhibits viral replication. Mol Ther Nucleic Acids. 19:1460–1469. 2020. View Article : Google Scholar : PubMed/NCBI

118 

Yin L, Zhao F, Sun H, Wang Z, Huang Y, Zhu W, Xu F, Mei S, Liu X, Zhang D, et al: CRISPR-Cas13a inhibits HIV-1 infection. Mol Ther Nucleic Acids. 21:147–155. 2020. View Article : Google Scholar : PubMed/NCBI

119 

Abbott TR, Dhamdhere G, Liu Y, Lin X, Goudy L, Zeng L, Chemparathy A, Chmura S, Heaton NS, Debs R, et al: Development of CRISPR as an antiviral strategy to combat SARS-CoV-2 and influenza. Cell. 181:865–876. e8122020. View Article : Google Scholar : PubMed/NCBI

120 

Konermann S, Lotfy P, Brideau NJ, Oki J, Shokhirev MN and Hsu PD: Transcriptome Engineering with RNA-Targeting Type VI-D CRISPR Effectors. Cell. 173:665–676.e14. 2018. View Article : Google Scholar : PubMed/NCBI

121 

Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, Zhao X, Huang B, Shi W, Lu R, et al: A Novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med. 382:727–733. 2020. View Article : Google Scholar : PubMed/NCBI

122 

Blanchard EL, Vanover D, Bawage SS, Tiwari PM, Rotolo L, Beyersdorf J, Peck HE, Bruno NC, Hincapie R, Michel F, et al: Treatment of influenza and SARS-CoV-2 infections via mRNA-encoded Cas13a in rodents. Nat Biotechnol. 39:717–726. 2021. View Article : Google Scholar : PubMed/NCBI

123 

Wang Q, Liu X, Zhou J, Yang C, Wang G, Tan Y, Wu Y, Zhang S, Yi K and Kang C: The CRISPR-Cas13a Gene-editing system induces collateral cleavage of RNA in glioma cells. Adv Sci (Weinh). 6:19012992019. View Article : Google Scholar : PubMed/NCBI

124 

Al-Shayeb B, Skopintsev P, Soczek KM, Stahl EC, Li Z, Groover E, Smock D, Eggers AR, Pausch P, Cress BF, et al: Diverse virus-encoded CRISPR-Cas systems include streamlined genome editors. Cell. 185:4574–4586.e16. 2022. View Article : Google Scholar : PubMed/NCBI

125 

Guan J, Oromi-Bosch A, Mendoza SD, Karambelkar S, Berry JD and Bondy-Denomy J: Bacteriophage genome engineering with CRISPR-Cas13a. Nat Microbiol. 7:1956–1966. 2022. View Article : Google Scholar : PubMed/NCBI

126 

Adler BA, Hessler T, Cress BF, Lahiri A, Mutalik VK, Barrangou R, Banfield J and Doudna JA: Broad-spectrum CRISPR-Cas13a enables efficient phage genome editing. Nat Microbiol. 7:1967–1979. 2022. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Shariq M, Khan MF, Raj R, Ahsan N, Singh R and Kumar P: CRISPR‑based diagnostic approaches: Implications for rapid management of future pandemics (Review). Mol Med Rep 27: 118, 2023.
APA
Shariq, M., Khan, M.F., Raj, R., Ahsan, N., Singh, R., & Kumar, P. (2023). CRISPR‑based diagnostic approaches: Implications for rapid management of future pandemics (Review). Molecular Medicine Reports, 27, 118. https://doi.org/10.3892/mmr.2023.13005
MLA
Shariq, M., Khan, M. F., Raj, R., Ahsan, N., Singh, R., Kumar, P."CRISPR‑based diagnostic approaches: Implications for rapid management of future pandemics (Review)". Molecular Medicine Reports 27.6 (2023): 118.
Chicago
Shariq, M., Khan, M. F., Raj, R., Ahsan, N., Singh, R., Kumar, P."CRISPR‑based diagnostic approaches: Implications for rapid management of future pandemics (Review)". Molecular Medicine Reports 27, no. 6 (2023): 118. https://doi.org/10.3892/mmr.2023.13005
Copy and paste a formatted citation
x
Spandidos Publications style
Shariq M, Khan MF, Raj R, Ahsan N, Singh R and Kumar P: CRISPR‑based diagnostic approaches: Implications for rapid management of future pandemics (Review). Mol Med Rep 27: 118, 2023.
APA
Shariq, M., Khan, M.F., Raj, R., Ahsan, N., Singh, R., & Kumar, P. (2023). CRISPR‑based diagnostic approaches: Implications for rapid management of future pandemics (Review). Molecular Medicine Reports, 27, 118. https://doi.org/10.3892/mmr.2023.13005
MLA
Shariq, M., Khan, M. F., Raj, R., Ahsan, N., Singh, R., Kumar, P."CRISPR‑based diagnostic approaches: Implications for rapid management of future pandemics (Review)". Molecular Medicine Reports 27.6 (2023): 118.
Chicago
Shariq, M., Khan, M. F., Raj, R., Ahsan, N., Singh, R., Kumar, P."CRISPR‑based diagnostic approaches: Implications for rapid management of future pandemics (Review)". Molecular Medicine Reports 27, no. 6 (2023): 118. https://doi.org/10.3892/mmr.2023.13005
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team