|
1
|
Jayamohan H, Lambert CJ, Sant HJ, Jafek A,
Patel D, Feng H, Beeman M, Mahmood T, Nze U and Gale BK: SARS-CoV-2
pandemic: A review of molecular diagnostic tools including sample
collection and commercial response with associated advantages and
limitations. Anal Bioanal Chem. 413:49–71. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Freije CA and Sabeti PC: Detect and
destroy: CRISPR-based technologies for the response against
viruses. Cell Host Microbe. 29:689–703. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
da Costa VG, Moreli ML and Saivish MV: The
emergence of SARS, MERS and novel SARS-2 coronaviruses in the 21st
century. Arch Virol. 165:1517–1526. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Johnson CK, Hitchens PL, Pandit PS,
Rushmore J, Evans TS, Young CCW and Doyle MM: Global shifts in
mammalian population trends reveal key predictors of virus
spillover risk. Proc Biol Sci. 287:201927362020.PubMed/NCBI
|
|
5
|
Morse SS, Mazet JA, Woolhouse M, Parrish
CR, Carroll D, Karesh WB, Zambrana-Torrelio C, Lipkin WI and Daszak
P: Prediction and prevention of the next pandemic zoonosis. Lancet.
380:1956–1965. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Nieto-Rabiela F, Wiratsudakul A, Suzan G
and Rico-Chavez O: Viral networks and detection of potential
zoonotic viruses in bats and rodents: A worldwide analysis.
Zoonoses Public Health. 66:655–666. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Olival KJ, Hosseini PR, Zambrana-Torrelio
C, Ross N, Bogich TL and Daszak P: Host and viral traits predict
zoonotic spillover from mammals. Nature. 546:646–650. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Bouvier NM and Palese P: The biology of
influenza viruses. Vaccine. 26 (Suppl 4):D49–D53. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Tong S, Zhu X, Li Y, Shi M, Zhang J,
Bourgeois M, Yang H, Chen X, Recuenco S, Gomez J, et al: New world
bats harbor diverse influenza A viruses. PLoS Pathog.
9:e10036572013. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Elena SF, Bedhomme S, Carrasco P, Cuevas
JM, de la Iglesia F, Lafforgue G, Lalić J, Pròsper A, Tromas N and
Zwart MP: The evolutionary genetics of emerging plant RNA viruses.
Mol Plant Microbe Interact. 24:287–293. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Sanjuan R, Nebot MR, Chirico N, Mansky LM
and Belshaw R: Viral mutation rates. J Virol. 84:9733–9748. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
12
|
De Clercq E and Li G: Approved antiviral
drugs over the past 50 years. Clin Microbiol Rev. 29:695–747. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Gordon DE, Hiatt J, Bouhaddou M, Rezelj
VV, Ulferts S, Braberg H, Jureka AS, Obernier K, Guo JZ, Batra J,
et al: Comparative host-coronavirus protein interaction networks
reveal pan-viral disease mechanisms. Science. 370:eabe94032020.
View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Gordon DE, Jang GM, Bouhaddou M, Xu J,
Obernier K, O'Meara MJ, Guo JZ, Swaney DL, Tummino TA, Hüttenhain
R, et al: A SARS-CoV-2 protein interaction map reveals targets for
drug repurposing. Nature. 583:459–468. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Zhou Y, Liu Y, Gupta S, Paramo MI, Hou Y,
Mao C, Luo Y, Judd J, Wierbowski S, Bertolotti M, et al: A
comprehensive SARS-CoV-2-human protein-protein interactome reveals
COVID-19 pathobiology and potential host therapeutic targets. Nat
Biotechnol. 41:128–139. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Bojkova D, Klann K, Koch B, Widera M,
Krause D, Ciesek S, Cinatl J and Münch C: Proteomics of
SARS-CoV-2-infected host cells reveals therapy targets. Nature.
583:469–472. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Kole R, Krainer AR and Altman S: RNA
therapeutics: Beyond RNA interference and antisense
oligonucleotides. Nat Rev Drug Discov. 11:125–140. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Warren TK, Warfield KL, Wells J, Swenson
DL, Donner KS, Van Tongeren SA, Garza NL, Dong L, Mourich DV,
Crumley S, et al: Advanced antisense therapies for postexposure
protection against lethal filovirus infections. Nat Med.
16:991–994. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Xu Y and Li Z: CRISPR-Cas systems:
Overview, innovations and applications in human disease research
and gene therapy. Comput Struct Biotechnol J. 18:2401–2415. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Kostyusheva A, Brezgin S, Babin Y,
Vasilyeva I, Glebe D, Kostyushev D and Chulanov V: CRISPR-Cas
systems for diagnosing infectious diseases. Methods. 203:431–446.
2022. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Ebrahimi S, Khanbabaei H, Abbasi S, Fani
M, Soltani S, Zandi M and Najafimemar Z: CRISPR-Cas System: A
promising diagnostic tool for Covid-19. Avicenna J Med Biotechnol.
14:3–9. 2022.PubMed/NCBI
|
|
22
|
Yang S and Rothman RE: PCR-based
diagnostics for infectious diseases: Uses, limitations, and future
applications in acute-care settings. Lancet Infect Dis. 4:337–348.
2004. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Mackay IM, Arden KE and Nitsche A:
Real-time PCR in virology. Nucleic Acids Res. 30:1292–1305. 2002.
View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Zanoli LM and Spoto G: Isothermal
amplification methods for the detection of nucleic acids in
microfluidic devices. Biosensors (Basel). 3:18–43. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Cassedy A, Parle-McDermott A and O'Kennedy
R: Virus Detection: A review of the current and emerging molecular
and immunological methods. Front Mol Biosci. 8:6375592021.
View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Notomi T, Okayama H, Masubuchi H, Yonekawa
T, Watanabe K, Amino N and Hase T: Loop-mediated isothermal
amplification of DNA. Nucleic Acids Res. 28:E632000. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Compton J: Nucleic acid sequence-based
amplification. Nature. 350:91–92. 1991. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Piepenburg O, Williams CH, Stemple DL and
Armes NA: DNA detection using recombination proteins. PLoS Biol.
4:e2042006. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Kurosaki Y, Martins DBG, Kimura M, Catena
ADS, Borba MACSM, Mattos SDS, Abe H, Yoshikawa R, de Lima Filho JL
and Yasuda J: Development and evaluation of a rapid molecular
diagnostic test for Zika virus infection by reverse transcription
loop-mediated isothermal amplification. Sci Rep. 7:135032017.
View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Patel P, Abd El Wahed A, Faye O, Prüger P,
Kaiser M, Thaloengsok S, Ubol S, Sakuntabhai A, Leparc-Goffart I,
Hufert FT, et al: A field-deployable reverse transcription
recombinase polymerase amplification assay for rapid detection of
the chikungunya virus. PLoS Negl Trop Dis. 10:e00049532016.
View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Broughton JP, Deng X, Yu G, Fasching CL,
Servellita V, Singh J, Miao X, Streithorst JA, Granados A,
Sotomayor-Gonzalez A, et al: CRISPR-Cas12-based detection of
SARS-CoV-2. Nat Biotechnol. 38:870–874. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Gootenberg JS, Abudayyeh OO, Lee JW,
Essletzbichler P, Dy AJ, Joung J, Verdine V, Donghia N, Daringer
NM, Freije CA, et al: Nucleic acid detection with
CRISPR-Cas13a/C2c2. Science. 356:438–442. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Liang Y, Lin H, Zou L, Zhao J, Li B, Wang
H, Lu J, Sun J, Yang X, Deng X and Tang S: CRISPR-Cas12a-based
detection for the major SARS-CoV-2 variants of concern. Microbiol
Spectr. 9:e01017212021. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Kellner MJ, Koob JG, Gootenberg JS,
Abudayyeh OO and Zhang F: SHERLOCK: Nucleic acid detection with
CRISPR nucleases. Nat Protoc. 14:2986–3012. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Kaminski MM, Abudayyeh OO, Gootenberg JS,
Zhang F and Collins JJ: CRISPR-based diagnostics. Nat Biomed Eng.
5:643–656. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Chen JS, Ma E, Harrington LB, Da Costa M,
Tian X, Palefsky JM and Doudna JA: CRISPR-Cas12a target binding
unleashes indiscriminate single-stranded DNase activity. Science.
360:436–439. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
East-Seletsky A, O'Connell MR, Knight SC,
Burstein D, Cate JH, Tjian R and Doudna JA: Two distinct RNase
activities of CRISPR-C2c2 enable guide-RNA processing and RNA
detection. Nature. 538:270–273. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Gootenberg JS, Abudayyeh OO, Kellner MJ,
Joung J, Collins JJ and Zhang F: Multiplexed and portable nucleic
acid detection platform with Cas13, Cas12a, and Csm6. Science.
360:439–444. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Marraffini LA and Sontheimer EJ: CRISPR
interference limits horizontal gene transfer in staphylococci by
targeting DNA. Science. 322:1843–1845. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Barrangou R, Fremaux C, Deveau H, Richards
M, Boyaval P, Moineau S, Romero DA and Horvath P: CRISPR provides
acquired resistance against viruses in prokaryotes. Science.
315:1709–1712. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Pickar-Oliver A and Gersbach CA: The next
generation of CRISPR-Cas technologies and applications. Nat Rev Mol
Cell Biol. 20:490–507. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Jinek M, Chylinski K, Fonfara I, Hauer M,
Doudna JA and Charpentier E: A programmable dual-RNA-guided DNA
endonuclease in adaptive bacterial immunity. Science. 337:816–821.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Abudayyeh OO, Gootenberg JS, Konermann S,
Joung J, Slaymaker IM, Cox DB, Shmakov S, Makarova KS, Semenova E,
Minakhin L, et al: C2c2 is a single-component programmable
RNA-guided RNA-targeting CRISPR effector. Science. 353:aaf55732016.
View Article : Google Scholar : PubMed/NCBI
|
|
44
|
van der Oost J, Westra ER, Jackson RN and
Wiedenheft B: Unravelling the structural and mechanistic basis of
CRISPR-Cas systems. Nat Rev Microbiol. 12:479–492. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Wright AV, Nunez JK and Doudna JA: Biology
and applications of CRISPR systems: Harnessing Nature's toolbox for
genome engineering. Cell. 164:29–44. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Shmakov S, Abudayyeh OO, Makarova KS, Wolf
YI, Gootenberg JS, Semenova E, Minakhin L, Joung J, Konermann S,
Severinov K, et al: Discovery and functional characterization of
diverse class 2 CRISPR-cas systems. Mol Cell. 60:385–397. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Fonfara I, Richter H, Bratovic M, Le Rhun
A and Charpentier E: The CRISPR-associated DNA-cleaving enzyme Cpf1
also processes precursor CRISPR RNA. Nature. 532:517–521. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
48
|
East-Seletsky A, O'Connell MR, Burstein D,
Knott GJ and Doudna JA: RNA targeting by functionally orthogonal
type VI-A CRISPR-cas enzymes. Mol Cell. 66:373–383. e3732017.
View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Li H: Structural principles of CRISPR RNA
processing. Structure. 23:13–20. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Charpentier E, Richter H, van der Oost J
and White MF: Biogenesis pathways of RNA guides in archaeal and
bacterial CRISPR-Cas adaptive immunity. FEMS Microbiol Rev.
39:428–441. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Hochstrasser ML and Doudna JA: Cutting it
close: CRISPR-associated endoribonuclease structure and function.
Trends Biochem Sci. 40:58–66. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Deltcheva E, Chylinski K, Sharma CM,
Gonzales K, Chao Y, Pirzada ZA, Eckert MR, Vogel J and Charpentier
E: CRISPR RNA maturation by trans-encoded small RNA and host factor
RNase III. Nature. 471:602–607. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Fonfara I, Le Rhun A, Chylinski K,
Makarova KS, Lécrivain AL, Bzdrenga J, Koonin EV and Charpentier E:
Phylogeny of Cas9 determines functional exchangeability of dual-RNA
and Cas9 among orthologous type II CRISPR-Cas systems. Nucleic
Acids Res. 42:2577–2590. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Yang W: Nucleases: Diversity of structure,
function and mechanism. Q Rev Biophys. 44:1–93. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Cordray MS and Richards-Kortum RR:
Emerging nucleic acid-based tests for point-of-care detection of
malaria. Am J Trop Med Hyg. 87:223–230. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Rohrman BA, Leautaud V, Molyneux E and
Richards-Kortum RR: A lateral flow assay for quantitative detection
of amplified HIV-1 RNA. PLoS One. 7:e456112012. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Yan L, Zhou J, Zheng Y, Gamson AS, Roembke
BT, Nakayama S and Sintim HO: Isothermal amplified detection of DNA
and RNA. Mol Biosyst. 10:970–1003. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Ortiz-Cartagena C, Fernandez-Garcia L,
Blasco L, Pacios O, Bleriot I, López M, Cantón R and Tomás M:
Reverse Transcription-loop-mediated isothermal
Amplification-CRISPR-Cas13a technology as a promising diagnostic
tool for SARS-CoV-2. Microbiol Spectr. 10:e02398222022. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Li SY, Cheng QX, Wang JM, Li XY, Zhang ZL,
Gao S, Cao RB, Zhao GP and Wang J: CRISPR-Cas12a-assisted nucleic
acid detection. Cell Discov. 4:202018. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Mustafa MI and Makhawi AM: SHERLOCK and
DETECTR: CRISPR-Cas systems as potential rapid diagnostic tools for
emerging infectious diseases. J Clin Microbiol. 59:e00745–20. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Harrington LB, Burstein D, Chen JS,
Paez-Espino D, Ma E, Witte IP, Cofsky JC, Kyrpides NC, Banfield JF
and Doudna JA: Programmed DNA destruction by miniature CRISPR-Cas14
enzymes. Science. 362:839–842. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Hillary VE and Ceasar SA: A review on the
mechanism and applications of CRISPR/Cas9/Cas12/Cas13/Cas14
proteins utilized for genome engineering. Mol Biotechnol.
65:311–325. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Li L, Li S, Wu N, Wu J, Wang G, Zhao G and
Wang J: HOLMESv2: A CRISPR-Cas12b-assisted platform for nucleic
acid detection and DNA methylation quantitation. ACS Synth Biol.
8:2228–2237. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Li SY, Cheng QX, Liu JK, Nie XQ, Zhao GP
and Wang J: CRISPR-Cas12a has both cis- and trans-cleavage
activities on single-stranded DNA. Cell Res. 28:491–493. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Safari F, Afarid M, Rastegari B,
Borhani-Haghighi A, Barekati-Mowahed M and Behzad-Behbahani A:
CRISPR systems: Novel approaches for detection and combating
COVID-19. Virus Res. 294:1982822021. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Teng F, Guo L, Cui T, Wang XG, Xu K, Gao
Q, Zhou Q and Li W: CDetection: CRISPR-Cas12b-based DNA detection
with sub-attomolar sensitivity and single-base specificity. Genome
Biol. 20:1322019. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Arizti-Sanz J, Bradley A, Zhang YB, Boehm
CK, Freije CA, Grunberg ME, Kosoko-Thoroddsen TF, Welch NL, Pillai
PP, Mantena S, et al: Simplified Cas13-based assays for the fast
identification of SARS-CoV-2 and its variants. Nat Biomed Eng.
6:932–943. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Joung J, Ladha A, Saito M, Kim NG, Woolley
AE, Segel M, Barretto RPJ, Ranu A, Macrae RK, Faure G, et al:
Detection of SARS-CoV-2 with SHERLOCK One-Pot Testing. N Engl J
Med. 383:1492–1494. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Soh JH, Balleza E, Abdul Rahim MN, Chan
HM, Mohd Ali S, Chuah JKC, Edris S, Atef A, Bahieldin A, Ying JY
and Sabir JSM: CRISPR-based systems for sensitive and rapid on-site
COVID-19 diagnostics. Trends Biotechnol. 40:1346–1360. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Ackerman CM, Myhrvold C, Thakku SG, Freije
CA, Metsky HC, Yang DK, Ye SH, Boehm CK, Kosoko-Thoroddsen TF, Kehe
J, et al: Massively multiplexed nucleic acid detection with Cas13.
Nature. 582:277–282. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Yu TC: Beginnings and development of
nursing education in Republic of China. Hu Li Za Zhi. 24:39–42.
1977.(In Chinese). PubMed/NCBI
|
|
72
|
Wang M, Zhang R and Li J: CRISPR/cas
systems redefine nucleic acid detection: Principles and methods.
Biosens Bioelectron. 165:1124302020. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Emmadi R, Boonyaratanakornkit JB,
Selvarangan R, Shyamala V, Zimmer BL, Williams L, Bryant B,
Schutzbank T, Schoonmaker MM, Amos Wilson JA, et al: Molecular
methods and platforms for infectious diseases testing a review of
FDA-approved and cleared assays. J Mol Diagn. 13:583–604. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Song L, Shan D, Zhao M, Pink BA, Minnehan
KA, York L, Gardel M, Sullivan S, Phillips AF, Hayman RB, et al:
Direct detection of bacterial genomic DNA at sub-femtomolar
concentrations using single molecule arrays. Anal Chem.
85:1932–1939. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Barletta JM, Edelman DC and Constantine
NT: Lowering the detection limits of HIV-1 viral load using
real-time immuno-PCR for HIV-1 p24 antigen. Am J Clin Pathol.
122:20–27. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Faye O, Faye O, Dupressoir A, Weidmann M,
Ndiaye M and Alpha Sall A: One-step RT-PCR for detection of Zika
virus. J Clin Virol. 43:96–101. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Faye O, Faye O, Diallo D, Diallo M,
Weidmann M and Sall AA: Quantitative real-time PCR detection of
Zika virus and evaluation with field-caught mosquitoes. Virol J.
10:3112013. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Waggoner JJ, Abeynayake J, Sahoo MK, Gresh
L, Tellez Y, Gonzalez K, Ballesteros G, Guo FP, Balmaseda A,
Karunaratne K, et al: Comparison of the FDA-approved CDC DENV-1-4
real-time reverse transcription-PCR with a laboratory-developed
assay for dengue virus detection and serotyping. J Clin Microbiol.
51:3418–3420. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Myhrvold C, Freije CA, Gootenberg JS,
Abudayyeh OO, Metsky HC, Durbin AF, Kellner MJ, Tan AL, Paul LM,
Parham LA, et al: Field-deployable viral diagnostics using
CRISPR-Cas13. Science. 360:444–448. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Javalkote VS, Kancharla N, Bhadra B,
Shukla M, Soni B, Sapre A, Goodin M, Bandyopadhyay A and Dasgupta
S: CRISPR-based assays for rapid detection of SARS-CoV-2. Methods.
203:594–603. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Huang Z, Fang J, Zhou M, Gong Z and Xiang
T: CRISPR-Cas13: A new technology for the rapid detection of
pathogenic microorganisms. Front Microbiol. 13:10113992022.
View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Shen F, Sun B, Kreutz JE, Davydova EK, Du
W, Reddy PL, Joseph LJ and Ismagilov RF: Multiplexed quantification
of nucleic acids with large dynamic range using multivolume digital
RT-PCR on a rotational SlipChip tested with HIV and hepatitis C
viral load. J Am Chem Soc. 133:17705–17712. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Freije CA, Myhrvold C, Boehm CK, Lin AE,
Welch NL, Carter A, Metsky HC, Luo CY, Abudayyeh OO, Gootenberg JS,
et al: Programmable inhibition and detection of RNA viruses using
Cas13. Mol Cell. 76:826–837. e8112019. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Tang Y and Fu Y: Class 2 CRISPR/Cas: An
expanding biotechnology toolbox for and beyond genome editing. Cell
Biosci. 8:592018. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Zetsche B, Gootenberg JS, Abudayyeh OO,
Slaymaker IM, Makarova KS, Essletzbichler P, Volz SE, Joung J, van
der Oost J, Regev A, et al: Cpf1 is a single RNA-guided
endonuclease of a class 2 CRISPR-Cas system. Cell. 163:759–771.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Swarts DC, van der Oost J and Jinek M:
Structural basis for guide RNA processing and seed-dependent DNA
targeting by CRISPR-Cas12a. Mol Cell. 66:221–233.e4. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Dong D, Ren K, Qiu X, Zheng J, Guo M, Guan
X, Liu H, Li N, Zhang B, Yang D, et al: The crystal structure of
Cpf1 in complex with CRISPR RNA. Nature. 532:522–526. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Gao P, Yang H, Rajashankar KR, Huang Z and
Patel DJ: Type V CRISPR-Cas Cpf1 endonuclease employs a unique
mechanism for crRNA-mediated target DNA recognition. Cell Res.
26:901–913. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Stella S, Alcon P and Montoya G: Structure
of the Cpf1 endonuclease R-loop complex after target DNA cleavage.
Nature. 546:559–563. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Yamano T, Nishimasu H, Zetsche B, Hirano
H, Slaymaker IM, Li Y, Fedorova I, Nakane T, Makarova KS, Koonin
EV, et al: Crystal structure of Cpf1 in complex with Guide RNA and
target DNA. Cell. 165:949–962. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Drame M, Tabue Teguo M, Proye E, Hequet F,
Hentzien M, Kanagaratnam L and Godaert L: Should RT-PCR be
considered a gold standard in the diagnosis of COVID-19? J Med
Virol. 92:2312–2313. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Patchsung M, Jantarug K, Pattama A,
Aphicho K, Suraritdechachai S, Meesawat P, Sappakhaw K, Leelahakorn
N, Ruenkam T, Wongsatit T, et al: Clinical validation of a
Cas13-based assay for the detection of SARS-CoV-2 RNA. Nat Biomed
Eng. 4:1140–1149. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Teng F, Cui T, Feng G, Guo L, Xu K, Gao Q,
Li T, Li J, Zhou Q and Li W: Repurposing CRISPR-Cas12b for
mammalian genome engineering. Cell Discov. 4:632018. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Liu TY, Knott GJ, Smock DCJ, Desmarais JJ,
Son S, Bhuiya A, Jakhanwal S, Prywes N, Agrawal S, Díaz de León
Derby M, et al: Accelerated RNA detection using tandem CRISPR
nucleases. Nat Chem Biol. 17:982–988. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Chandrasekaran SS, Agrawal S, Fanton A,
Jangid AR, Charrez B, Escajeda AM, Son S, Mcintosh R, Tran H,
Bhuiya A, et al: Rapid detection of SARS-CoV-2 RNA in saliva via
Cas13. Nat Biomed Eng. 6:944–956. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Arizti-Sanz J, Freije CA, Stanton AC,
Petros BA, Boehm CK, Siddiqui S, Shaw BM, Adams G,
Kosoko-Thoroddsen TF, Kemball ME, et al: Streamlined inactivation,
amplification, and Cas13-based detection of SARS-CoV-2. Nat Commun.
11:59212020. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Qin P, Park M, Alfson KJ, Tamhankar M,
Carrion R, Patterson JL, Griffiths A, He Q, Yildiz A, Mathies R and
Du K: Rapid and fully microfluidic ebola virus detection with
CRISPR-Cas13a. ACS Sens. 4:1048–1054. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Wu Y, Liu SX, Wang F and Zeng MS: Room
temperature detection of plasma Epstein-barr virus DNA with
CRISPR-Cas13. Clin Chem. 65:591–592. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Normandin E, Solomon IH, Zamirpour S,
Lemieux J, Freije CA, Mukerji SS, Tomkins-Tinch C, Park D, Sabeti
PC and Piantadosi A: Powassan Virus neuropathology and genomic
diversity in patients with fatal encephalitis. Open Forum Infect
Dis. 7:ofaa3922020. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Liu Y, Xu H, Liu C, Peng L, Khan H, Cui L,
Huang R, Wu C, Shen S, Wang S, et al: CRISPR-Cas13a nanomachine
based simple technology for avian Influenza A (H7N9) Virus On-Site
detection. J Biomed Nanotechnol. 15:790–798. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Curti LA, Pereyra-Bonnet F, Repizo GD, Fay
JV, Salvatierra K, Blariza MJ, Ibañez-Alegre D, Rinflerch AR,
Miretti M and Gimenez CA: CRISPR-based platform for carbapenemases
and emerging viruses detection using Cas12a (Cpf1) effector
nuclease. Emerg Microbes Infect. 9:1140–1148. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Barnes KG, Lachenauer AE, Nitido A,
Siddiqui S, Gross R, Beitzel B, Siddle KJ, Freije CA, Dighero-Kemp
B, Mehta SB, et al: Deployable CRISPR-Cas13a diagnostic tools to
detect and report Ebola and Lassa virus cases in real-time. Nat
Commun. 11:41312020. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Broughton JP, Deng X, Yu G, Fasching CL,
Singh J, Streithorst J, Granados A, Sotomayor-Gonzalez A, Zorn K,
Gopez A, et al: Rapid detection of 2019 Novel coronavirus
SARS-CoV-2 using a CRISPR-based DETECTR lateral flow assay.
medRxiv. Mar 27–2020.doi: 10.1101/2020.03.06.20032334. PubMed/NCBI
|
|
104
|
Chen Y, Shi Y, Chen Y, Yang Z, Wu H, Zhou
Z, Li J, Ping J, He L, Shen H, et al: Contamination-free visual
detection of SARS-CoV-2 with CRISPR/Cas12a: A promising method in
the point-of-care detection. Biosens Bioelectron. 169:1126422020.
View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Ali Z, Aman R, Mahas A, Rao GS, Tehseen M,
Marsic T, Salunke R, Subudhi AK, Hala SM, Hamdan SM, et al: iSCAN:
An RT-LAMP-coupled CRISPR-Cas12 module for rapid, sensitive
detection of SARS-CoV-2. Virus Res. 288:1981292020. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Guo L, Sun X, Wang X, Liang C, Jiang H,
Gao Q, Dai M, Qu B, Fang S, Mao Y, et al: SARS-CoV-2 detection with
CRISPR diagnostics. Cell Discov. 6:342020. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Fozouni P, Son S, Diaz de Leon Derby M,
Knott GJ, Gray CN, D'Ambrosio MV, Zhao C, Switz NA, Kumar GR,
Stephens SI, et al: Amplification-free detection of SARS-CoV-2 with
CRISPR-Cas13a and mobile phone microscopy. Cell. 184:323–333.e9.
2021. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Hale CR, Zhao P, Olson S, Duff MO,
Graveley BR, Wells L, Terns RM and Terns MP: RNA-guided RNA
cleavage by a CRISPR RNA-Cas protein complex. Cell. 139:945–956.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Wang X, Zhong M, Liu Y, Ma P, Dang L, Meng
Q, Wan W, Ma X, Liu J, Yang G, et al: Rapid and sensitive detection
of COVID-19 using CRISPR/Cas12a-based detection with naked eye
readout, CRISPR/Cas12a-NER. Sci Bull (Beijing). 65:1436–1439. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Lu S, Li F, Chen Q, Wu J, Duan J, Lei X,
Zhang Y, Zhao D, Bu Z and Yin H: Rapid detection of African swine
fever virus using Cas12a-based portable paper diagnostics. Cell
Discov. 6:182020. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Poole CB, Li Z, Alhassan A, Guelig D,
Diesburg S, Tanner NA, Zhang Y, Evans TC Jr, LaBarre P, Wanji S, et
al: Colorimetric tests for diagnosis of filarial infection and
vector surveillance using non-instrumented nucleic acid
loop-mediated isothermal amplification (NINA-LAMP). PLoS One.
12:e01690112017. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Yuan C, Tian T, Sun J, Hu M, Wang X, Xiong
E, Cheng M, Bao Y, Lin W, Jiang J, et al: Universal and Naked-Eye
Gene detection platform based on the clustered regularly
interspaced short palindromic Repeats/Cas12a/13a system. Anal Chem.
92:4029–4037. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Barrangou R and Marraffini LA: CRISPR-Cas
systems: Prokaryotes upgrade to adaptive immunity. Mol Cell.
54:234–244. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Abudayyeh OO, Gootenberg JS,
Essletzbichler P, Han S, Joung J, Belanto JJ, Verdine V, Cox DBT,
Kellner MJ, Regev A, et al: RNA targeting with CRISPR-Cas13.
Nature. 550:280–284. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Cox DBT, Gootenberg JS, Abudayyeh OO,
Franklin B, Kellner MJ, Joung J and Zhang F: RNA editing with
CRISPR-Cas13. Science. 358:1019–1027. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Wessels HH, Mendez-Mancilla A, Guo X,
Legut M, Daniloski Z and Sanjana NE: Massively parallel Cas13
screens reveal principles for guide RNA design. Nat Biotechnol.
38:722–727. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Li H, Wang S, Dong X, Li Q, Li M, Li J,
Guo Y, Jin X, Zhou Y, Song H and Kou Z: CRISPR-Cas13a cleavage of
dengue Virus NS3 gene efficiently inhibits viral replication. Mol
Ther Nucleic Acids. 19:1460–1469. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Yin L, Zhao F, Sun H, Wang Z, Huang Y, Zhu
W, Xu F, Mei S, Liu X, Zhang D, et al: CRISPR-Cas13a inhibits HIV-1
infection. Mol Ther Nucleic Acids. 21:147–155. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Abbott TR, Dhamdhere G, Liu Y, Lin X,
Goudy L, Zeng L, Chemparathy A, Chmura S, Heaton NS, Debs R, et al:
Development of CRISPR as an antiviral strategy to combat SARS-CoV-2
and influenza. Cell. 181:865–876. e8122020. View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Konermann S, Lotfy P, Brideau NJ, Oki J,
Shokhirev MN and Hsu PD: Transcriptome Engineering with
RNA-Targeting Type VI-D CRISPR Effectors. Cell. 173:665–676.e14.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Zhu N, Zhang D, Wang W, Li X, Yang B, Song
J, Zhao X, Huang B, Shi W, Lu R, et al: A Novel coronavirus from
patients with pneumonia in China, 2019. N Engl J Med. 382:727–733.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Blanchard EL, Vanover D, Bawage SS, Tiwari
PM, Rotolo L, Beyersdorf J, Peck HE, Bruno NC, Hincapie R, Michel
F, et al: Treatment of influenza and SARS-CoV-2 infections via
mRNA-encoded Cas13a in rodents. Nat Biotechnol. 39:717–726. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Wang Q, Liu X, Zhou J, Yang C, Wang G, Tan
Y, Wu Y, Zhang S, Yi K and Kang C: The CRISPR-Cas13a Gene-editing
system induces collateral cleavage of RNA in glioma cells. Adv Sci
(Weinh). 6:19012992019. View Article : Google Scholar : PubMed/NCBI
|
|
124
|
Al-Shayeb B, Skopintsev P, Soczek KM,
Stahl EC, Li Z, Groover E, Smock D, Eggers AR, Pausch P, Cress BF,
et al: Diverse virus-encoded CRISPR-Cas systems include streamlined
genome editors. Cell. 185:4574–4586.e16. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
125
|
Guan J, Oromi-Bosch A, Mendoza SD,
Karambelkar S, Berry JD and Bondy-Denomy J: Bacteriophage genome
engineering with CRISPR-Cas13a. Nat Microbiol. 7:1956–1966. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
126
|
Adler BA, Hessler T, Cress BF, Lahiri A,
Mutalik VK, Barrangou R, Banfield J and Doudna JA: Broad-spectrum
CRISPR-Cas13a enables efficient phage genome editing. Nat
Microbiol. 7:1967–1979. 2022. View Article : Google Scholar : PubMed/NCBI
|