|
1
|
Schroder K and Tschopp J: The
inflammasomes. Cell. 140:821–832. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Fusco R, Siracusa R, Genovese T, Cuzzocrea
S and Di Paola R: Focus on the role of NLRP3 inflammasome in
diseases. Int J Mol Sci. 21:42232020. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Farag NS, Breitinger U, Breitinger HG and
El Azizi MA: Viroporins and inflammasomes: A key to understand
virus-induced inflammation. Int J Biochem Cell Biol.
122:1057382020. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Kelley N, Jeltema D, Duan Y and He Y: The
NLRP3 inflammasome: An overview of mechanisms of activation and
regulation. Int J Mol Sci. 20:33282019. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Barnett KC, Li S, Liang K and Ting JPY: A
360° view of the inflammasome: Mechanisms of activation, cell
death, and diseases. Cell. 186:2288–2312. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Chou WC, Jha S, Linhoff MW and Ting JPY:
The NLR gene family: from discovery to present day. Nat Rev
Immunol. Mar 27–2023.(Epub ahead of print). View Article : Google Scholar
|
|
7
|
Chai R, Li Y, Shui L, Ni L and Zhang A:
The role of pyroptosis in inflammatory diseases. Front Cell Dev
Biol. 11:11732352023. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Zhan X, Li Q, Xu G, Xiao X and Bai Z: The
mechanism of NLRP3 inflammasome activation and its pharmacological
inhibitors. Front Immunol. 13:11099382023. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Agostini L, Martinon F, Burns K, McDermott
MF, Hawkins PN and Tschopp J: NALP3 forms an IL-1beta-processing
inflammasome with increased activity in Muckle-Wells
autoinflammatory disorder. Immunity. 20:319–325. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Song JY, Park YM and Choi SY: Type 2 human
papillomavirus E7 attenuates E-cadherin expression in human
keratinocytes. J Microbiol. 59:616–625. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Yu TG, Cha JS, Kim G, Sohn YK, Yoo Y, Kim
U, Song JJ, Cho HS and Kim HS: Oligomeric states of ASC specks
regulate inflammatory responses by inflammasome in the
extracellular space. Cell Death Discov. 9:1422023. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Proell M, Gerlic M, Mace PD, Reed JC and
Riedl SJ: The CARD plays a critical role in ASC foci formation and
inflammasome signalling. Biochem J. 449:613–621. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Guo Y, Gu D, Huang T, Li A, Zhou Y, Kang
X, Meng C, Xiong D, Song L, Jiao X and Pan Z: Salmonella
Enteritidis T1SS protein SiiD inhibits NLRP3 inflammasome
activation via repressing the mtROS-ASC dependent pathway. PLoS
Pathog. 19:e10113812023. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
de Souza JG, Starobinas N and Ibañez OCM:
Unknown/enigmatic functions of extracellular ASC. Immunology.
163:377–388. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Ross C, Chan AH, von Pein JB, Maddugoda
MP, Boucher D and Schroder K: Inflammatory caspases: Toward a
unified model for caspase activation by inflammasomes. Annu Rev
Immunol. 40:249–269. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Triantafilou K: Enigmatic inflammasomes.
Immunology. 162:249–251. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Wang C, Yang T, Xiao J, Xu C, Alippe Y,
Sun K, Kanneganti TD, Monahan JB, Abu-Amer Y, Lieberman J and
Mbalaviele G: NLRP3 inflammasome activation triggers gasdermin
D-independent inflammation. Sci Immunol. 6:eabj38592021. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Zhen Y and Zhang H: NLRP3 inflammasome and
inflammatory bowel disease. Front Immunol. 10:2762019. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Voet S, Srinivasan S, Lamkanfi M and van
Loo G: Inflammasomes in neuroinflammatory and neurodegenerative
diseases. EMBO Mol Med. 11:e102482019. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Tapia VS, Daniels MJD, Palazón-Riquelme P,
Dewhurst M, Luheshi NM, Rivers-Auty J, Green J, Redondo-Castro E,
Kaldis P, Lopez-Castejon G and Brough D: The three cytokines IL-1β,
IL-18, and IL-1α share related but distinct secretory routes. J
Biol Chem. 294:8325–8335. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Long J, Sun Y, Liu S, Yang S, Chen C,
Zhang Z, Chu S, Yang Y, Pei G, Lin M, et al: Targeting pyroptosis
as a preventive and therapeutic approach for stroke. Cell Death
Discov. 9:1552023. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Devant P and Kagan JC: Molecular
mechanisms of gasdermin D pore-forming activity. Nat Immunol. Jun
5–2023.(Epub ahead of print). View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Li Y, Song W, Tong Y, Zhang X, Zhao J, Gao
X, Yong J and Wang H: Isoliquiritin ameliorates depression by
suppressing NLRP3-mediated pyroptosis via miRNA-27a/SYK/NF-κB axis.
J Neuroinflammation. 18:12021. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Mariathasan S, Weiss DS, Newton K, McBride
J, O'Rourke K, Roose-Girma M, Lee WP, Weinrauch Y, Monack DM and
Dixit VM: Cryopyrin activates the inflammasome in response to
toxins and ATP. Nature. 440:228–232. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Guo Y, Li L, Xu T, Guo X, Wang C, Li Y,
Yang Y, Yang D, Sun B, Zhao X, et al: HUWE1 mediates inflammasome
activation and promotes host defense against bacterial infection. J
Clin Invest. 130:6301–6316. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Zhang S, Zhang Y, Gan L, Wei F, Chai B, A
Aljaafreh AAH, Liu X, Duan X, Jiang J, Wang X, et al: Progesterone
suppresses Neisseria gonorrhoeae-induced inflammation
through inhibition of NLRP3 inflammasome pathway in THP-1 cells and
murine models. Front Microbiol. 12:5700932021. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Muruve DA, Pétrilli V, Zaiss AK, White LR,
Clark SA, Ross PJ, Parks RJ and Tschopp J: The inflammasome
recognizes cytosolic microbial and host DNA and triggers an innate
immune response. Nature. 452:103–107. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Allen IC, Scull MA, Moore CB, Holl EK,
McElvania-TeKippe E, Taxman DJ, Guthrie EH, Pickles RJ and Ting JP:
The NLRP3 inflammasome mediates in vivo innate immunity to
influenza A virus through recognition of viral RNA. Immunity.
30:556–565. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Poeck H, Bscheider M, Gross O, Finger K,
Roth S, Rebsamen M, Hannesschläger N, Schlee M, Rothenfusser S,
Barchet W, et al: Recognition of RNA virus by RIG-I results in
activation of CARD9 and inflammasome signaling for interleukin 1
beta production. Nat Immunol. 11:63–69. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Zhou R, Tardivel A, Thorens B, Choi I and
Tschopp J: Thioredoxin-interacting protein links oxidative stress
to inflammasome activation. Nat Immunol. 11:136–140. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Walev I, Reske K, Palmer M, Valeva A and
Bhakdi S: Potassium-inhibited processing of IL-1 beta in human
monocytes. EMBO J. 14:1607–1614. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Gurcel L, Abrami L, Girardin S, Tschopp J
and van der Goot FG: Caspase-1 activation of lipid metabolic
pathways in response to bacterial pore-forming toxins promotes cell
survival. Cell. 126:1135–1145. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Liu R, Liu Y, Liu C, Gao A, Wang L, Tang
H, Wu Q, Wang X, Tian D, Qi Z and Shen Y: NEK7-mediated activation
of NLRP3 inflammasome is coordinated by potassium Efflux/Syk/JNK
signaling during Staphylococcus aureus infection. Front
Immunol. 12:7473702021. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Pelegrin P: P2X7 receptor and the NLRP3
inflammasome: Partners in crime. Biochem Pharmacol. 187:1143852021.
View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Halle A, Hornung V, Petzold GC, Stewart
CR, Monks BG, Reinheckel T, Fitzgerald KA, Latz E, Moore KJ and
Golenbock DT: The NALP3 inflammasome is involved in the innate
immune response to amyloid-beta. Nat Immunol. 9:857–865. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Hornung V, Bauernfeind F, Halle A, Samstad
EO, Kono H, Rock KL, Fitzgerald KA and Latz E: Silica crystals and
aluminum salts activate the NALP3 inflammasome through phagosomal
destabilization. Nat Immunol. 9:847–856. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Cruz CM, Rinna A, Forman HJ, Ventura ALM,
Persechini PM and Ojcius DM: ATP activates a reactive oxygen
species-dependent oxidative stress response and secretion of
proinflammatory cytokines in macrophages. J Biol Chem.
282:2871–2879. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Cassel SL, Eisenbarth SC, Iyer SS, Sadler
JJ, Colegio OR, Tephly LA, Carter AB, Rothman PB, Flavell RA and
Sutterwala FS: The Nalp3 inflammasome is essential for the
development of silicosis. Proc Natl Acad Sci USA. 105:9035–9040.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Dostert C, Pétrilli V, Van Bruggen R,
Steele C, Mossman BT and Tschopp J: Innate immune activation
through Nalp3 inflammasome sensing of asbestos and silica. Science.
320:674–677. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Koumangoye R: The role of Cl−
and K+ efflux in NLRP3 inflammasome and innate immune
response activation. Am J Physiol Cell Physiol. 322:C645–C652.
2022. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Shio MT, Eisenbarth SC, Savaria M, Vinet
AF, Bellemare MJ, Harder KW, Sutterwala FS, Bohle DS, Descoteaux A,
Flavell RA and Olivier M: Malarial hemozoin activates the NLRP3
inflammasome through Lyn and Syk kinases. PLoS Pathog.
5:e10005592009. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Latz E, Xiao TS and Stutz A: Activation
and regulation of the inflammasomes. Nat Rev Immunol. 13:397–411.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Shimada K, Crother TR, Karlin J, Dagvadorj
J, Chiba N, Chen S, Ramanujan VK, Wolf AJ, Vergnes L, Ojcius DM, et
al: Oxidized mitochondrial DNA activates the NLRP3 inflammasome
during apoptosis. Immunity. 36:401–414. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Cabral A, Cabral JE, Wang A, Zhang Y,
Liang H, Nikbakht D, Corona L, Hoffman HM and McNulty R:
Differential binding of NLRP3 to non-oxidized and Ox-mtDNA mediates
NLRP3 inflammasome activation. Commun Biol. 6:5782023. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Zamyatina A and Heine H:
Lipopolysaccharide recognition in the crossroads of TLR4 and
caspase-4/11 mediated inflammatory pathways. Front Immunol.
11:5851462020. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Rathinam VAK, Zhao Y and Shao F: Innate
immunity to intracellular LPS. Nat Immunol. 20:527–533. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Downs KP, Nguyen H, Dorfleutner A and
Stehlik C: An overview of the non-canonical inflammasome. Mol
Aspects Med. 76:1009242020. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Naseer N, Zhang J, Bauer R, Constant DA,
Nice TJ, Brodsky IE, Rauch I and Shin S: Salmonella enterica
serovar typhimurium induces NAIP/NLRC4- and NLRP3/ASC-independent,
caspase-4-dependent inflammasome activation in human intestinal
epithelial cells. Infect Immun. 90:e00663212022. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Baker PJ, Boucher D, Bierschenk D, Tebartz
C, Whitney PG, D'Silva DB, Tanzer MC, Monteleone M, Robertson AA,
Cooper MA, et al: NLRP3 inflammasome activation downstream of
cytoplasmic LPS recognition by both caspase-4 and caspase-5. Eur J
Immunol. 45:2918–2926. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Schmid-Burgk JL, Gaidt MM, Schmidt T,
Ebert TS, Bartok E and Hornung V: Caspase-4 mediates non-canonical
activation of the NLRP3 inflammasome in human myeloid cells. Eur J
Immunol. 45:2911–2917. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Franchi L, Eigenbrod T and Núñez G:
Cutting edge: TNF-alpha mediates sensitization to ATP and silica
via the NLRP3 inflammasome in the absence of microbial stimulation.
J Immunol. 183:792–796. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Bauernfeind FG, Horvath G, Stutz A,
Alnemri ES, MacDonald K, Speert D, Fernandes-Alnemri T, Wu J, Monks
BG, Fitzgerald KA, et al: Cutting edge: NF-kappaB activating
pattern recognition and cytokine receptors license NLRP3
inflammasome activation by regulating NLRP3 expression. J Immunol.
183:787–791. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Chen X, Liu G, Yuan Y, Wu G, Wang S and
Yuan L: NEK7 interacts with NLRP3 to modulate the pyroptosis in
inflammatory bowel disease via NF-κB signaling. Cell Death Dis.
10:9062019. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Liu G, Chen X, Wang Q and Yuan L: NEK7: A
potential therapy target for NLRP3-related diseases. Biosci Trends.
14:74–82. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Sharif H, Wang L, Wang WL, Magupalli VG,
Andreeva L, Qiao Q, Hauenstein AV, Wu Z, Núñez G, Mao Y and Wu H:
Structural mechanism for NEK7-licensed activation of NLRP3
inflammasome. Nature. 570:338–343. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Juliana C, Fernandes-Alnemri T, Kang S,
Farias A, Qin F and Alnemri ES: Non-transcriptional priming and
deubiquitination regulate NLRP3 inflammasome activation. J Biol
Chem. 287:36617–36622. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Py BF, Kim MS, Vakifahmetoglu-Norberg H
and Yuan J: Deubiquitination of NLRP3 by BRCC3 critically regulates
inflammasome activity. Mol Cell. 49:331–338. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Lu B, Nakamura T, Inouye K, Li J, Tang Y,
Lundbäck P, Valdes-Ferrer SI, Olofsson PS, Kalb T, Roth J, et al:
Novel role of PKR in inflammasome activation and HMGB1 release.
Nature. 488:670–674. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Li Y, Lin X, Wang W, Wang W, Cheng S,
Huang Y, Zou Y, Ke J and Zhu L: The proinflammatory role of
guanylate-binding protein 5 in inflammatory bowel diseases. Front
Microbiol. 13:9269152022. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Yang CS, Kim JJ, Kim TS, Lee PY, Kim SY,
Lee HM, Shin DM, Nguyen LT, Lee MS, Jin HS, et al: Small
heterodimer partner interacts with NLRP3 and negatively regulates
activation of the NLRP3 inflammasome. Nat Commun. 6:61152015.
View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Hara H, Tsuchiya K, Kawamura I, Fang R,
Hernandez-Cuellar E, Shen Y, Mizuguchi J, Schweighoffer E,
Tybulewicz V and Mitsuyama M: Phosphorylation of the adaptor ASC
acts as a molecular switch that controls the formation of
speck-like aggregates and inflammasome activity. Nat Immunol.
14:1247–1255. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Okada M, Matsuzawa A, Yoshimura A and
Ichijo H: The lysosome rupture-activated TAK1-JNK pathway regulates
NLRP3 inflammasome activation. J Biol Chem. 289:32926–32936. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Humke EW, Shriver SK, Starovasnik MA,
Fairbrother WJ and Dixit VM: ICEBERG: A novel inhibitor of
interleukin-1beta generation. Cell. 103:99–111. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Druilhe A, Srinivasula SM, Razmara M,
Ahmad M and Alnemri ES: Regulation of IL-1beta generation by
Pseudo-ICE and ICEBERG, two dominant negative caspase recruitment
domain proteins. Cell Death Differ. 8:649–657. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Lamkanfi M, Denecker G, Kalai M, D'hondt
K, Meeus A, Declercq W, Saelens X and Vandenabeele P: INCA, a novel
human caspase recruitment domain protein that inhibits
interleukin-1beta generation. J Biol Chem. 279:51729–51738. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Saleh M, Mathison JC, Wolinski MK,
Bensinger SJ, Fitzgerald P, Droin N, Ulevitch RJ, Green DR and
Nicholson DW: Enhanced bacterial clearance and sepsis resistance in
caspase-12-deficient mice. Nature. 440:1064–1068. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Bedoya F, Sandler LL and Harton JA:
Pyrin-only protein 2 modulates NF-kappaB and disrupts ASC:CLR
interactions. J Immunol. 178:3837–3845. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Dorfleutner A, Bryan NB, Talbott SJ, Funya
KN, Rellick SL, Reed JC, Shi X, Rojanasakul Y, Flynn DC and Stehlik
C: Cellular pyrin domain-only protein 2 is a candidate regulator of
inflammasome activation. Infect Immun. 75:1484–1492. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Khare S, Ratsimandresy RA, de Almeida L,
Cuda CM, Rellick SL, Misharin AV, Wallin MC, Gangopadhyay A, Forte
E, Gottwein E, et al: The PYRIN domain-only protein POP3 inhibits
ALR inflammasomes and regulates responses to infection with DNA
viruses. Nat Immunol. 15:343–353. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
de Almeida L, Khare S, Misharin AV, Patel
R, Ratsimandresy RA, Wallin MC, Perlman H, Greaves DR, Hoffman HM,
Dorfleutner A and Stehlik C: The PYRIN domain-only protein POP1
inhibits inflammasome assembly and ameliorates inflammatory
disease. Immunity. 43:264–276. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Martin BN, Wang C, Willette-Brown J,
Herjan T, Gulen MF, Zhou H, Bulek K, Franchi L, Sato T, Alnemri ES,
et al: IKKα negatively regulates ASC-dependent inflammasome
activation. Nat Commun. 5:49772014. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Ito M, Yanagi Y and Ichinohe T:
Encephalomyocarditis virus viroporin 2B activates NLRP3
inflammasome. PLoS Pathog. 8:e10028572012. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Ermler ME, Traylor Z, Patel K, Schattgen
SA, Vanaja SK, Fitzgerald KA and Hise AG: Rift Valley fever virus
infection induces activation of the NLRP3 inflammasome. Virology.
449:174–180. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Pinar A, Dowling JK, Bitto NJ, Robertson
AA, Latz E, Stewart CR, Drummond GR, Cooper MA, McAuley JL, Tate MD
and Mansell A: PB1-F2 peptide derived from avian influenza A virus
H7N9 induces inflammation via activation of the NLRP3 inflammasome.
J Biol Chem. 292:826–836. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Xu J, Zhou Z, Zheng Y, Yang S, Huang K and
Li H: Roles of inflammasomes in viral myocarditis. Front Cell
Infect Microbiol. 13:11499112023. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Wang W, Li G, De Wu, Luo Z, Pan P, Tian M,
Wang Y, Xiao F, Li A, Wu K, et al: Zika virus infection induces
host inflammatory responses by facilitating NLRP3 inflammasome
assembly and interleukin-1β secretion. Nat Commun. 9:1062018.
View Article : Google Scholar : PubMed/NCBI
|
|
77
|
de Castro-Jorge LA, de Carvalho RVH, Klein
TM, Hiroki CH, Lopes AH, Guimarães RM, Fumagalli MJ, Floriano VG,
Agostinho MR, Slhessarenko RD, et al: The NLRP3 inflammasome is
involved with the pathogenesis of Mayaro virus. PLoS Pathog.
15:e10079342019. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Shrivastava G, Visoso-Carvajal G,
Garcia-Cordero J, Leon-Juarez M, Chavez-Munguia B, Lopez T, Nava P,
Villegas-Sepulveda N and Cedillo-Barron L: Dengue virus serotype 2
and its non-structural proteins 2A and 2B activate NLRP3
inflammasome. Front Immunol. 11:3522020. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Xie WH, Ding J, Xie XX, Yang XH, Wu XF,
Chen ZX, Guo QL, Gao WY, Wang XZ and Li D: Hepatitis B virus X
protein promotes liver cell pyroptosis under oxidative stress
through NLRP3 inflammasome activation. Inflamm Res. 69:683–696.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Zhi X, Zhang Y, Sun S, Zhang Z, Dong H,
Luo X, Wei Y, Lu Z, Dou Y, Wu R, et al: NLRP3 inflammasome
activation by Foot-and-mouth disease virus infection mainly induced
by viral RNA and non-structural protein 2B. RNA Biol. 17:335–349.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Zhao C and Zhao W: NLRP3 inflammasome-A
key player in antiviral responses. Front Immunol. 11:2112020.
View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Harris J and Borg NA: The multifaceted
roles of NLRP3-modulating proteins in virus infection. Front
Immunol. 13:9874532022. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Chen IY, Moriyama M, Chang MF and Ichinohe
T: Severe acute respiratory syndrome coronavirus viroporin 3a
activates the NLRP3 inflammasome. Front Microbiol. 10:502019.
View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Guo HC, Jin Y, Zhi XY, Yan D and Sun SQ:
NLRP3 inflammasome activation by viroporins of animal viruses.
Viruses. 7:3380–3391. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Freeman TL and Swartz TH: Targeting the
NLRP3 inflammasome in Severe COVID-19. Front Immunol. 11:15182020.
View Article : Google Scholar : PubMed/NCBI
|
|
86
|
da Costa LS, Outlioua A, Anginot A, Akarid
K and Arnoult D: RNA viruses promote activation of the NLRP3
inflammasome through cytopathogenic effect-induced potassium
efflux. Cell Death Dis. 10:3462019. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Guo S, Yang C, Diao B, Huang X, Jin M,
Chen L, Yan W, Ning Q, Zheng L, Wu Y and Chen Y: The NLRP3
inflammasome and IL-1β accelerate immunologically mediated
pathology in experimental viral fulminant hepatitis. PLoS Pathog.
11:e10051552015. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Guo H, Gao J, Taxman DJ, Ting JPY and Su
L: HIV-1 infection induces interleukin-1β production via TLR8
protein-dependent and NLRP3 inflammasome mechanisms in human
monocytes. J Biol Chem. 289:21716–21726. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Shil NK, Pokharel SM, Banerjee AK, Hoffman
M and Bose S: Inflammasome antagonism by human parainfluenza virus
type 3 c protein. J Virol. 92:e01776–17. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Moriyama M, Nagai M, Maruzuru Y, Koshiba
T, Kawaguchi Y and Ichinohe T: Influenza virus-induced oxidized DNA
activates inflammasomes. iScience. 23:1012702020. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Barlan AU, Danthi P and Wiethoff CM:
Lysosomal localization and mechanism of membrane penetration
influence nonenveloped virus activation of the NLRP3 inflammasome.
Virology. 412:306–314. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Chakrabarti A, Banerjee S, Franchi L, Loo
YM, Gale M Jr, Núñez G and Silverman RH: RNase L activates the
NLRP3 inflammasome during viral infections. Cell Host Microbe.
17:466–477. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Subramanian N, Natarajan K, Clatworthy MR,
Wang Z and Germain RN: The adaptor MAVS promotes NLRP3
mitochondrial localization and inflammasome activation. Cell.
153:348–361. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Li J, Hu L, Liu Y, Huang L, Mu Y, Cai X
and Weng C: DDX19A senses viral RNA and mediates NLRP3-dependent
inflammasome activation. J Immunol. 195:5732–5749. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Wang X, Jiang W, Yan Y, Gong T, Han J,
Tian Z and Zhou R: RNA viruses promote activation of the NLRP3
inflammasome through a RIP1-RIP3-DRP1 signaling pathway. Nat
Immunol. 15:1126–1133. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Komune N, Ichinohe T, Ito M and Yanagi Y:
Measles virus V protein inhibits NLRP3 inflammasome-mediated
interleukin-1β secretion. J Virol. 85:13019–13026. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Komatsu T, Tanaka Y, Kitagawa Y, Koide N,
Naiki Y, Morita N, Gotoh B and Yokochi T: Sendai virus V protein
inhibits the secretion of interleukin-1β by preventing NLRP3
inflammasome assembly. J Virol. 92:e00842–18. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Pothlichet J, Meunier I, Davis BK, Ting
JP, Skamene E, von Messling V and Vidal SM: Type I IFN triggers
RIG-I/TLR3/NLRP3-dependent inflammasome activation in influenza A
virus infected cells. PLoS Pathog. 9:e10032562013. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Park HS, Liu G, Thulasi Raman SN, Landreth
SL, Liu Q and Zhou Y: NS1 protein of 2009 pandemic influenza A
virus inhibits porcine NLRP3 inflammasome-mediated interleukin-1
beta production by suppressing ASC ubiquitination. J Virol.
92:e00022–18. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Cheung PHH, Ye ZW, Lee TWT, Chen H, Chan
CP and Jin DY: PB1-F2 protein of highly pathogenic influenza A
(H7N9) virus selectively suppresses RNA-induced NLRP3 inflammasome
activation through inhibition of MAVS-NLRP3 interaction. J Leukoc
Biol. 108:1655–1663. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Darweesh M, Kamel W, Gavrilin MA,
Akusjärvi G and Svensson C: Adenovirus VA RNAI blocks ASC
oligomerization and inhibits NLRP3 inflammasome activation. Front
Immunol. 10:27912019. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Gim E, Shim DW, Hwang I, Shin OS and Yu
JW: Zika virus impairs host NLRP3-mediated inflammasome activation
in an NS3-dependent manner. Immune Netw. 19:e402019. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Haneklaus M, Gerlic M, Kurowska-Stolarska
M, Rainey AA, Pich D, McInnes IB, Hammerschmidt W, O'Neill LA and
Masters SL: Cutting edge: miR-223 and EBV miR-BART15 regulate the
NLRP3 inflammasome and IL-1β production. J Immunol. 189:3795–3799.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Wang H, Lei X, Xiao X, Yang C, Lu W, Huang
Z, Leng Q, Jin Q, He B, Meng G and Wang J: Reciprocal regulation
between enterovirus 71 and the NLRP3 inflammasome. Cell Rep.
12:42–48. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Yu X, Lan P, Hou X, Han Q, Lu N, Li T,
Jiao C, Zhang J, Zhang C and Tian Z: HBV inhibits LPS-induced NLRP3
inflammasome activation and IL-1β production via suppressing the
NF-κB pathway and ROS production. J Hepatol. 66:693–702. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Johnson KE, Chikoti L and Chandran B:
Herpes simplex virus 1 infection induces activation and subsequent
inhibition of the IFI16 and NLRP3 inflammasomes. J Virol.
87:5005–5018. 2013. View Article : Google Scholar : PubMed/NCBI
|