Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
September-2023 Volume 28 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
September-2023 Volume 28 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

MicroRNA‑378: An important player in cardiovascular diseases (Review)

  • Authors:
    • Huan Wang
    • Jingjing Shi
    • Jiuchong Wang
    • Yuanhui Hu
  • View Affiliations / Copyright

    Affiliations: Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, P.R. China
    Copyright: © Wang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 172
    |
    Published online on: July 25, 2023
       https://doi.org/10.3892/mmr.2023.13059
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Cardiovascular disease (CVD) is a common chronic clinical condition and is the main cause of death in humans worldwide. Understanding the genetic and molecular mechanisms involved in the development of CVD is essential to develop effective prevention strategies and therapeutic measures. An increasing number of CVD‑related genetic studies have been conducted, including those on the potential roles of microRNAs (miRs). These studies have demonstrated that miR‑378 is involved in the pathological processes of CVD, including those of myocardial infarction, heart failure and coronary heart disease. Despite the potential importance of miR‑378 CVD, a comprehensive summary of the related literature is lacking. Thus, the present review aimed to summarize the findings of previous studies on the roles and mechanisms of miR‑378 in a variety of CVDs and provide an up‑to date basis for further r research targeting the prevention and treatment of CVDs.
View Figures
View References

1 

Triposkiadis F, Xanthopoulos A and Butler J: Cardiovascular aging and heart failure: JACC review topic of the week. J Am Coll Cardiol. 74:804–813. 2019. View Article : Google Scholar : PubMed/NCBI

2 

Benjamin EJ, Blaha MJ, Chiuve SE, Cushman M, Das SR, Deo R, de Ferranti SD, Floyd J, Fornage M, Gillespie C, et al: Heart disease and stroke statistics-2017 update: A report from the American heart association. Circulation. 135:e146–e603. 2017. View Article : Google Scholar : PubMed/NCBI

3 

Hennersdorf MG and Strauer BE: Arterial hypertension and cardiac arrhythmias. J Hypertens. 19:167–177. 2001. View Article : Google Scholar : PubMed/NCBI

4 

Vakili BA, Okin PM and Devereux RB: Prognostic implications of left ventricular hypertrophy. Am Heart J. 141:334–341. 2001. View Article : Google Scholar : PubMed/NCBI

5 

Aimo A, Panichella G, Barison A, Maffei S, Cameli M, Coiro S, D'Ascenzi F, Di Mario C, Liga R, Marcucci R, et al: Sex-related differences in ventricular remodeling after myocardial infarction. Int J Cardiol. 339:62–69. 2021. View Article : Google Scholar : PubMed/NCBI

6 

Cheng M, Yang J, Zhao X, Zhang E, Zeng Q, Yu Y, Yang L, Wu B, Yi G, Mao X, et al: Circulating myocardial microRNAs from infarcted hearts are carried in exosomes and mobilise bone marrow progenitor cells. Nat Commun. 10:9592019. View Article : Google Scholar : PubMed/NCBI

7 

Zhou Y, Xia Z, Cheng Z, Xu G, Yang X, Liu S and Zhu Y: Inducible microRNA-590-5p inhibits host antiviral response by targeting the soluble interleukin-6 (IL6) receptor. J Biol Chem. 293:18168–18179. 2018. View Article : Google Scholar : PubMed/NCBI

8 

Zhang L, Wang YH and Wang L: MiRNA-8073 targets ZnT1 to inhibit malignant progression of ovarian cancer. Eur Rev Med Pharmacol Sci. 23:6062–6069. 2019.PubMed/NCBI

9 

Mei JW, Yang ZY, Xiang HG, Bao R, Ye YY, Ren T, Wang XF and Shu YJ: MicroRNA-1275 inhibits cell migration and invasion in gastric cancer by regulating vimentin and E-cadherin via JAZF1. BMC Cancer. 19:7402019. View Article : Google Scholar : PubMed/NCBI

10 

Zhao B, Lu Y, Cao X, Zhu W, Kong L, Ji H, Zhang F, Lin X, Guan Q, Ou K, et al: MiRNA-124 inhibits the proliferation, migration and invasion of cancer cell in hepatocellular carcinoma by downregulating lncRNA-UCA1. Onco Targets Ther. 12:4509–4516. 2019. View Article : Google Scholar : PubMed/NCBI

11 

Nagy O, Barath S and Ujfalusi A: The role of microRNAs in congenital heart disease. EJIFCC. 30:165–178. 2019.PubMed/NCBI

12 

Fisher JN, Terao M, Fratelli M, Kurosaki M, Paroni G, Zanetti A, Gianni M, Bolis M, Lupi M, Tsykin A, et al: MicroRNA networks regulated by all-trans retinoic acid and Lapatinib control the growth, survival and motility of breast cancer cells. Oncotarget. 6:13176–13200. 2015. View Article : Google Scholar : PubMed/NCBI

13 

Taylor DD and Gercel-Taylor C: MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer. Gynecol Oncol. 110:13–21. 2008. View Article : Google Scholar : PubMed/NCBI

14 

Huang N, Wang J, Xie W, Lyu Q, Wu J, He J, Qiu W, Xu N and Zhang Y: MiR-378a-3p enhances adipogenesis by targeting mitogen-activated protein kinase 1. Biochem Biophys Res Commun. 457:37–42. 2015. View Article : Google Scholar : PubMed/NCBI

15 

Ikeda K, Horieinoue K, Ueno T, Suzuki T, Sato W, Shigekawa T, Osaki A, Saeki T, Berezikov E, Mano H and Inoue S: miR-378a-3p modulates tamoxifen sensitivity in breast cancer MCF-7 cells through targeting GOLT1A. Sci Rep. 5:131702015. View Article : Google Scholar : PubMed/NCBI

16 

Chen LT, Xu SD, Xu H, Zhang JF, Ning JF and Wang SF: MicroRNA-378 is associated with non-small cell lung cancer brain metastasis by promoting cell migration, invasion and tumor angiogenesis. Med Oncol. 29:1673–1680. 2012. View Article : Google Scholar : PubMed/NCBI

17 

Welten SM, Goossens EA, Quax PH and Nossent AY: The multifactorial nature of microRNAs in vascular remodelling. Cardiovasc Res. 110:6–22. 2016. View Article : Google Scholar : PubMed/NCBI

18 

Knezevic I, Patel A, Sundaresan NR, Gupta MP, Solaro RJ, Nagalingam RS and Gupta M: A novel cardiomyocyte-enriched microRNA, miR-378, targets insulin-like growth factor 1 receptor: Implications in postnatal cardiac remodeling and cell survival. J Biol Chem. 287:12913–12926. 2012. View Article : Google Scholar : PubMed/NCBI

19 

Porrello ER, Johnson BA, Aurora AB, Simpson E, Nam YJ, Matkovich SJ, Dorn GW II, van Rooij E and Olson EN: MiR-15 family regulates postnatal mitotic arrest of cardiomyocytes. Circ Res. 109:670–679. 2011. View Article : Google Scholar : PubMed/NCBI

20 

Jia G, Whaley-Connell A and Sowers JR: Diabetic cardiomyopathy: A hyperglycaemia- and insulin-resistance-induced heart disease. Diabetologia. 61:21–28. 2018. View Article : Google Scholar : PubMed/NCBI

21 

Bugger H and Abel ED: Molecular mechanisms of diabetic cardiomyopathy. Diabetologia. 57:660–671. 2014. View Article : Google Scholar : PubMed/NCBI

22 

Zhou X, Tao Y, Chen Y, Xu W, Qian Z and Lu X: Serum chemerin as a novel prognostic indicator in chronic heart failure. J Am Heart Assoc. 8:e0120912019. View Article : Google Scholar : PubMed/NCBI

23 

Mages C, Gampp H, Syren P, Rahm AK, André F, Frey N, Lugenbiel P and Thomas D: Electrical ventricular remodeling in dilated cardiomyopathy. Cells. 10:27672021. View Article : Google Scholar : PubMed/NCBI

24 

Mohananey D, Mewhort H, Shekhar S, Mohananey A, Chaudhary R, Gaglianello N and Ramakrishna H: Heart failure trial update-analysis of recent data. J Cardiothorac Vasc Anesth. 35:2792–2800. 2021. View Article : Google Scholar : PubMed/NCBI

25 

Ceriello A: Hypothesis: The ‘metabolic memory’, the new challenge of diabetes. Diabetes Res Clin Pract. 86 (Suppl 1):S2–S6. 2009. View Article : Google Scholar : PubMed/NCBI

26 

Paneni F, Volpe M, Lüscher TF and Cosentino F: SIRT1, p66(Shc), and Set7/9 in vascular hyperglycemic memory: Bringing all the strands together. Diabetes. 62:1800–1807. 2013. View Article : Google Scholar : PubMed/NCBI

27 

Castagno D, Baird-Gunning J, Jhund PS, Biondi-Zoccai G, MacDonald MR, Petrie MC, Gaita F and McMurray JJ: Intensive glycemic control has no impact on the risk of heart failure in type 2 diabetic patients: Evidence from a 37,229 patient meta-analysis. Am Heart J. 162:938–948.e2. 2011. View Article : Google Scholar : PubMed/NCBI

28 

Costantino S, Paneni F, Lüscher TF and Cosentino F: MicroRNA profiling unveils hyperglycaemic memory in the diabetic heart. Eur Heart J. 37:572–576. 2016. View Article : Google Scholar : PubMed/NCBI

29 

Maher TM, Corte TJ, Fischer A, Kreuter M, Lederer DJ, Molina-Molina M, Axmann J, Kirchgaessler KU, Samara K, Gilberg F and Cottin V: Pirfenidone in patients with unclassifiable progressive fibrosing interstitial lung disease: A double-blind, randomised, placebo-controlled, phase 2 trial. Lancet Resp Med. 8:147–157. 2020. View Article : Google Scholar

30 

Yang BF, Lu YJ and Wang ZG: MicroRNAs and apoptosis: Implications in the molecular therapy of human disease. Clin Exp Pharmacol Physiol. 36:951–960. 2009. View Article : Google Scholar : PubMed/NCBI

31 

Tijsen AJ, van der Made I, van den Hoogenhof MM, Wijnen WJ, van Deel ED, de Groot NE, Alekseev S, Fluiter K, Schroen B, Goumans MJ, et al: The microRNA-15 family inhibits the TGFβ-pathway in the heart. Cardiovasc Res. 104:61–71. 2014. View Article : Google Scholar : PubMed/NCBI

32 

Li R, Geng HH, Xiao J, Qin XT, Wang F, Xing JH, Xia YF, Mao Y, Liang JW and Ji XP: miR-7a/b attenuates post-myocardial infarction remodeling and protects H9c2 cardiomyoblast against hypoxia-induced apoptosis involving Sp1 and PARP-1. Sci Rep. 6:290822016. View Article : Google Scholar : PubMed/NCBI

33 

Durr AJ, Hathaway QA, Kunovac A, Taylor AD, Pinti MV, Rizwan S, Shepherd DL, Cook CC, Fink GK and Hollander JM: Manipulation of the miR-378a/mt-ATP6 regulatory axis rescues ATP synthase in the diabetic heart and offers a novel role for lncRNA Kcnq1ot1. Am J Physiol Cell Physiol. 322:C482–C495. 2022. View Article : Google Scholar : PubMed/NCBI

34 

Kalyanaraman B: Teaching the basics of the mechanism of doxorubicin-induced cardiotoxicity: Have we been barking up the wrong tree? Redox Biol. 29:1013942020. View Article : Google Scholar : PubMed/NCBI

35 

Xu T, Liu N, Shao Y, Huang Y and Zhu D: MiR-218 regulated cardiomyocyte differentiation and migration in mouse embryonic stem cells by targeting PDGFRα. J Cell Biochem. 120:4355–4365. 2019. View Article : Google Scholar : PubMed/NCBI

36 

Tong Z, Jiang B, Wu Y, Liu Y, Li Y, Gao M, Jiang Y, Lv Q and Xiao X: MiR-21 protected cardiomyocytes against doxorubicin-induced apoptosis by targeting BTG2. Int J Mol Sci. 16:14511–14525. 2015. View Article : Google Scholar : PubMed/NCBI

37 

Xin W, Li X, Lu X, Niu K and Cai J: Involvement of endoplasmic reticulum stress-associated apoptosis in a heart failure model induced by chronic myocardial ischemia. Int J Mol Med. 27:503–509. 2011.PubMed/NCBI

38 

Yang Y, Zhang H, Li X, Yang T and Jiang Q: Effects of PPARα/PGC-1α on the energy metabolism remodeling and apoptosis in the doxorubicin induced mice cardiomyocytes in vitro. Int J Clin Exp Pathol. 8:12216–12224. 2015.PubMed/NCBI

39 

Cappetta D, Rossi F, Piegari E, Quaini F, Berrino L, Urbanek K and De Angelis A: Doxorubicin targets multiple players: A new view of an old problem. Pharmacol Res. 127:4–14. 2018. View Article : Google Scholar : PubMed/NCBI

40 

Zhu JN, Fu YH, Hu ZQ, Li WY, Tang CM, Fei HW, Yang H, Lin QX, Gou DM, Wu SL and Shan ZX: Activation of miR-34a-5p/Sirt1/p66shc pathway contributes to doxorubicin-induced cardiotoxicity. Sci Rep. 7:118792017. View Article : Google Scholar : PubMed/NCBI

41 

Zhao L, Qi Y, Xu L, Tao X, Han X, Yin L and Peng J: MicroRNA-140-5p aggravates doxorubicin-induced cardiotoxicity by promoting myocardial oxidative stress via targeting Nrf2 and Sirt2. Redox Biol. 15:284–296. 2018. View Article : Google Scholar : PubMed/NCBI

42 

Chen Y, Xu Y, Deng Z, Wang Y, Zheng Y, Jiang W and Jiang L: MicroRNA expression profiling involved in doxorubicin-induced cardiotoxicity using high-throughput deep-sequencing analysis. Oncol Lett. 22:5602021. View Article : Google Scholar : PubMed/NCBI

43 

Wang Y, Zhang Q, Wei C, Zhao L, Guo X, Cui X, Shao L, Long J, Gu J and Zhao M: MiR-378 modulates energy imbalance and apoptosis of mitochondria induced by doxorubicin. Am J Transl Res. 10:3600–3609. 2018.PubMed/NCBI

44 

Wang Y, Cui X, Wang Y, Fu Y, Guo X, Long J, Wei C and Zhao M: Protective effect of miR378* on doxorubicin-induced cardiomyocyte injury via calumenin. J Cell Physiol. 233:6344–6351. 2018. View Article : Google Scholar : PubMed/NCBI

45 

Sahoo SK and Kim DH: Characterization of calumenin in mouse heart. BMB Rep. 43:158–163. 2010. View Article : Google Scholar : PubMed/NCBI

46 

Jiang BH, Rue E, Wang GL and Semenza GL: Dimerization, DNA binding, and transactivation properties of hypoxia-inducible factor 1. J Biol Chem. 271:17771–17778. 1996. View Article : Google Scholar : PubMed/NCBI

47 

Semenza GL: Hypoxia-inducible factors in physiology and medicine. Cell. 148:399–408. 2012. View Article : Google Scholar : PubMed/NCBI

48 

Nallamshetty S, Chan SY and Loscalzo J: Hypoxia: A master regulator of microRNA biogenesis and activity. Free Radic Biol Med. 64:20–30. 2013. View Article : Google Scholar : PubMed/NCBI

49 

Greijer AE and van de Wall E: The role of hypoxia inducible factor 1 (HIF-1) in hypoxia induced apoptosis. J Clin Pathol. 57:1009–1014. 2004. View Article : Google Scholar : PubMed/NCBI

50 

Azzouzi HE, Leptidis S, Doevendans PA and De Windt LJ: HypoxamiRs: Regulators of cardiac hypoxia and energy metabolism. Trends Endocrinol Metab. 26:502–508. 2015. View Article : Google Scholar : PubMed/NCBI

51 

Li B, Dasgupta C, Huang L, Meng X and Zhang L: MiRNA-210 induces microglial activation and regulates microglia-mediated neuroinflammation in neonatal hypoxic-ischemic encephalopathy. Cell Mol Immunoly. 17:976–991. 2020. View Article : Google Scholar

52 

Li R, Bao L, Hu W, Liang H and Dang X: Expression of miR-210 mediated by adeno-associated virus performed neuroprotective effects on a rat model of acute spinal cord injury. Tissue Cell. 57:22–33. 2019. View Article : Google Scholar : PubMed/NCBI

53 

Valadi H, Ekström K, Bossios A, Sjöstrand M, Lee JJ and Lötvall JO: Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 9:654–659. 2007. View Article : Google Scholar : PubMed/NCBI

54 

Camps C, Saini HK, Mole DR, Choudhry H, Reczko M, Guerra-Assunção JA, Tian YM, Buffa FM, Harris AL, Hatzigeorgiou AG, et al: Integrated analysis of microRNA and mRNA expression and association with HIF binding reveals the complexity of microRNA expression regulation under hypoxia. Mol Cancer. 13:282014. View Article : Google Scholar : PubMed/NCBI

55 

Zhang J, Ma J, Long K, Qiu W, Wang Y, Hu Z, Liu C, Luo Y, Jiang A, Jin L, et al: Overexpression of exosomal cardioprotective miRNAs mitigates hypoxia-induced H9c2 cells apoptosis. Int J Mol Sci. 18:7112017. View Article : Google Scholar : PubMed/NCBI

56 

Krown KA, Page MT, Nguyen C, Zechner D, Gutierrez V, Comstock KL, Glembotski CC, Quintana PJ and Sabbadini RA: Tumor necrosis factor alpha-induced apoptosis in cardiac myocytes. Involvement of the sphingolipid signaling cascade in cardiac cell death. J Clin Investig. 98:2854–2865. 1996. View Article : Google Scholar : PubMed/NCBI

57 

Chang L and Karin M: Mammalian MAP kinase signaling cascades. Nature. 410:37–40. 2001. View Article : Google Scholar : PubMed/NCBI

58 

Guo M, Shi JH, Wang PL and Shi DZ: Angiogenic growth factors for coronary artery disease: Current status and prospects. J Cardiovasc Pharmacol Ther. 23:130–141. 2018. View Article : Google Scholar : PubMed/NCBI

59 

Kir D, Schnettler E, Modi S and Ramakrishnan S: Regulation of angiogenesis by microRNAs in cardiovascular diseases. Angiogenesis. 21:699–710. 2018. View Article : Google Scholar : PubMed/NCBI

60 

Liberis A, Stanulov G, Ali EC, Hassan A, Pagalos A and Kontomanolis EN: Pre-eclampsia and the vascular endothelial growth factor: A new aspect. Clin Exp Obstet Gynecol. 43:9–13. 2016. View Article : Google Scholar : PubMed/NCBI

61 

Ferrara N and Alitalo K: Clinical applications of angiogenic growth factors and their inhibitors. Nat Med. 5:1359–1364. 1999. View Article : Google Scholar : PubMed/NCBI

62 

Ylä-Herttuala S, Rissanen TT, Vajanto I and Hartikainen J: Vascular endothelial growth factors: Biology and current status of clinical applications in cardiovascular medicine. J Am Coll Cardiol. 49:1015–1026. 2007. View Article : Google Scholar : PubMed/NCBI

63 

Fish JE and Srivastava D: MicroRNAs: Opening a new vein in angiogenesis research. Sci Signal. 2:pe12009. View Article : Google Scholar : PubMed/NCBI

64 

Zhang H, Hao J, Sun X, Zhang Y and Wei Q: Circulating pro-angiogenic micro-ribonucleic acid in patients with coronary heart disease. Interact Cardiovasc Thorac Surg. 27:336–342. 2018.PubMed/NCBI

65 

Xing Y, Hou J, Guo T, Zheng S, Zhou C, Huang H, Chen Y, Sun K, Zhong T, Wang J, et al: microRNA-378 promotes mesenchymal stem cell survival and vascularization under hypoxic-ischemic conditions in vitro. Stem Cell Res Ther. 5:1302014. View Article : Google Scholar : PubMed/NCBI

66 

Scheubel RJ, Holtz J, Friedrich I, Borgermann J, Kahrstedt S, Navarrete Santos A, Silber RE and Simm A: Paracrine effects of CD34 progenitor cells on angiogenic endothelial sprouting. Int J Cardiol. 139:134–141. 2010. View Article : Google Scholar : PubMed/NCBI

67 

Lee DY, Deng Z, Wang CH and Yang BB: MicroRNA-378 promotes cell survival, tumor growth, and angiogenesis by targeting SuFu and Fus-1 expression. Proc Natl Acad Sci USA. 104:20350–20355. 2007. View Article : Google Scholar : PubMed/NCBI

68 

Templin C, Volkmann J, Emmert MY, Mocharla P, Müller M, Kraenkel N, Ghadri JR, Meyer M, Styp-Rekowska B, Briand S, et al: Increased proangiogenic activity of mobilized CD34+ progenitor cells of patients with acute ST-segment-elevation myocardial infarction: Role of differential MicroRNA-378 expression. Arterioscler Thromb Vasc Biol. 37:341–349. 2017. View Article : Google Scholar : PubMed/NCBI

69 

Naaijkens BA, van Dijk A, Meinster E, Kramer K, Kamp O, Krijnen PAJ, Niessen HWM and Juffermans LJM: Wistar rats from different suppliers have a different response in an acute myocardial infarction model. Res Vet Sci. 96:377–379. 2014. View Article : Google Scholar : PubMed/NCBI

70 

Rajtik T, Carnicka S, Szobi A, Giricz Z, O-Uchi J, Hassova V, Svec P, Ferdinandy P, Ravingerova T and Adameova A: Data on necrotic and apoptotic cell death in acute myocardial ischemia/reperfusion injury: The effects of CaMKII and angiotensin AT1 receptor inhibition. Data Brief. 7:730–734. 2016. View Article : Google Scholar : PubMed/NCBI

71 

Zhou R, Jia Y, Wang Y, Li Z, Qi J and Yang Y: Elevating miR-378 strengthens the isoflurane-mediated effects on myocardial ischemia-reperfusion injury in mice via suppression of MAPK1. Am J Transl Res. 13:2350–2364. 2021.PubMed/NCBI

72 

Zhang J, Chen F, Ma W and Zhang P: Suppression of long noncoding RNA NEAT1 attenuates hypoxia-induced cardiomyocytes injury by targeting miR-378a-3p. Gene. 731:1443242020. View Article : Google Scholar : PubMed/NCBI

73 

Dai R, Liu Y, Zhou Y, Xiong X, Zhou W, Li W, Zhou W and Chen M: Potential of circulating pro-angiogenic microRNA expressions as biomarkers for rapid angiographic stenotic progression and restenosis risks in coronary artery disease patients underwent percutaneous coronary intervention. J Clin Lab Anal. 1:e230132020.PubMed/NCBI

74 

Li H, Gao F, Wang X, Wu J, Lu K, Liu M, Li R, Ding L and Wang R: Circulating microRNA-378 levels serve as a novel biomarker for assessing the severity of coronary stenosis in patients with coronary artery disease. Biosci Rep. 39:BSR201820162019. View Article : Google Scholar : PubMed/NCBI

75 

Shen J, Chang C, Ma J and Feng Q: Potential of circulating proangiogenic MicroRNAs for predicting major adverse cardiac and cerebrovascular events in unprotected left main coronary artery disease patients who underwent coronary artery bypass grafting. Cardiology. 146:400–408. 2021. View Article : Google Scholar : PubMed/NCBI

76 

Lorenzen JM, Schauerte C, Hübner A, Kölling M, Martino F, Scherf K, Batkai S, Zimmer K, Foinquinos A, Kaucsar T, et al: Osteopontin is indispensible for AP1-mediated angiotensin II-related miR-21 transcription during cardiac fibrosis. Eur Heart J. 36:2184–2196. 2015. View Article : Google Scholar : PubMed/NCBI

77 

Rosenberg M, Zugck C, Nelles M, Juenger C, Frank D, Remppis A, Giannitsis E, Katus HA and Frey N: Osteopontin, a new prognostic biomarker in patients with chronic heart failure. Circ Heart Fail. 1:43–49. 2008. View Article : Google Scholar : PubMed/NCBI

78 

Kwee LC, Neely ML, Grass E, Gregory SG, Roe MT, Ohman EM, Fox KAA, White HD, Armstrong PW, Bowsman LM, et al: Associations of osteopontin and NT-proBNP with circulating miRNA levels in acute coronary syndrome. Physiol Genomics. 51:506–515. 2019. View Article : Google Scholar : PubMed/NCBI

79 

Yuan J, Liu H, Gao W, Zhang L, Ye Y, Yuan L, Ding Z, Wu J, Kang L, Zhang X, et al: MicroRNA-378 suppresses myocardial fibrosis through a paracrine mechanism at the early stage of cardiac hypertrophy following mechanical stress. Theranostics. 8:2565–2582. 2018. View Article : Google Scholar : PubMed/NCBI

80 

Xu T, Zhou Q, Che L, Das S, Wang L, Jiang J, Li G, Xu J, Yao J, Wang H, et al: Circulating miR-21, miR-378, and miR-940 increase in response to an acute exhaustive exercise in chronic heart failure patients. Oncotarget. 7:12414–12425. 2016. View Article : Google Scholar : PubMed/NCBI

81 

Wang S, Long CL, Chen J, Cui WY, Zhang YF, Zhang H and Wang H: Pharmacological evidence: A new therapeutic approach to the treatment of chronic heart failure through SUR2B/Kir6.1 channel in endothelial cells. Acta Pharmacol Sin. 38:41–55. 2017. View Article : Google Scholar : PubMed/NCBI

82 

Liu C, Lai Y, Pei J, Huang H, Zhan J, Ying S and Shen Y: Clinical and genetic analysis of KATP variants with heart failure risk in patients with decreased serum ApoA-I levels. J Clin Endocrinol Metab. 106:2264–2278. 2021. View Article : Google Scholar : PubMed/NCBI

83 

Schiattarella GG and Hill J A: Inhibition of hypertrophy is a good therapeutic strategy in ventricular pressure overload. Circulation. 131:1435–1447. 2015. View Article : Google Scholar : PubMed/NCBI

84 

Bernardo BC, Weeks KL, Pretorius L and McMullen JR: Molecular distinction between physiological and pathological cardiac hypertrophy: Experimental findings and therapeutic strategies. Pharmacol Ther. 128:191–227. 2010. View Article : Google Scholar : PubMed/NCBI

85 

Ganesan J, Ramanujam D, Sassi Y, Ahles A, Jentzsch C, Werfel S, Leierseder S, Loyer X, Giacca M, Zentilin L, et al: MiR-378 controls cardiac hypertrophy by combined repression of mitogen-activated protein kinase pathway factors. Circulation. 127:2097–2106. 2013. View Article : Google Scholar : PubMed/NCBI

86 

Chen YH, Zhong LF, Hong X, Zhu QL, Wang SJ, Han JB, Huang WJ and Ye BZ: Integrated analysis of circRNA-miRNA-mRNA ceRNA network in cardiac hypertrophy. Front Genet. 13:7816762022. View Article : Google Scholar : PubMed/NCBI

87 

Barut Z, Cabbar AT, Yilmaz SG, Akdeniz FT, Simsek MA, Capar B, Degertekin M, Dalan AB, Yerebakan H and Isbir T: Investigation of circulating miRNA-133, miRNA-26, and miRNA-378 as candidate biomarkers for left ventricular hypertrophy. In Vivo. 35:1605–1610. 2021. View Article : Google Scholar : PubMed/NCBI

88 

Katz AM: Cardiomyopathy of overload. A major determinant of prognosis in congestive heart failure. N Engl J Med. 322:100–110. 1990. View Article : Google Scholar : PubMed/NCBI

89 

Borer JS, Truter S, Herrold EM, Falcone DJ, Pena M, Carter JN, Dumlao TF, Lee JA and Supino PG: Myocardial fibrosis in chronic aortic regurgitation: Molecular and cellular responses to volume overload. Circulation. 105:1837–1842. 2002. View Article : Google Scholar : PubMed/NCBI

90 

Creemers EE and Pinto YM: Molecular mechanisms that control interstitial fibrosis in the pressure-overloaded heart. Cardiovasc Res. 89:265–272. 2011. View Article : Google Scholar : PubMed/NCBI

91 

Bishop JE and Lindahl G: Regulation of cardiovascular collagen synthesis by mechanical load. Cardiovasc Res. 42:27–44. 1999. View Article : Google Scholar : PubMed/NCBI

92 

Divakaran V and Mann DL: The emerging role of microRNAs in cardiac remodeling and heart failure. Circ Res. 103:1072–1083. 2008. View Article : Google Scholar : PubMed/NCBI

93 

Tatsuguchi M, Seok HY, Callis TE, Thomson JM, Chen JF, Newman M, Rojas M, Hammond SM and Wang DZ: Expression of microRNAs is dynamically regulated during cardiomyocyte hypertrophy. J Mol Cell Cardiol. 42:1137–1141. 2007. View Article : Google Scholar : PubMed/NCBI

94 

Moghiman T, Barghchi B, Esmaeili SA, Shabestari MM, Tabaee SS and Momtazi-Borojeni AA: Therapeutic angiogenesis with exosomal microRNAs: An effectual approach for the treatment of myocardial ischemia. Heart Fail Rev. 26:205–213. 2021. View Article : Google Scholar : PubMed/NCBI

95 

Sun F, Zhuang Y, Zhu H, Wu H, Li D, Zhan L, Yang W, Yuan Y, Xie Y, Yang S, et al: LncRNA PCFL promotes cardiac fibrosis via miR-378/GRB2 pathway following myocardial infarction. J Mol Cell Cardiol. 133:188–198. 2019. View Article : Google Scholar : PubMed/NCBI

96 

Zou Y, Li J, Ma H, Jiang H, Yuan J, Gong H, Liang Y, Guan A, Wu J, Li L, et al: Heat shock transcription factor 1 protects heart after pressure overload through promoting myocardial angiogenesis in male mice. J Mol Cell Cardiol. 51:821–829. 2011. View Article : Google Scholar : PubMed/NCBI

97 

Lung B, Baron G, Butchart EG, Delahaye F, Gohlke-Bärwolf C, Levang OW, Tornos P, Vanoverschelde JL, Vermeer F, Boersma E, et al: A prospective survey of patients with valvular heart disease in Europe: The Euro heart survey on valvular heart disease. Eur Heart J. 24:1231–2143. 2003. View Article : Google Scholar : PubMed/NCBI

98 

Kupari M, Turto H and Lommi J: Left ventricular hypertrophy in aortic valve stenosis: Preventive or promotive of systolic dysfunction and heart failure? Eur Heart J. 26:1790–1796. 2005. View Article : Google Scholar : PubMed/NCBI

99 

Cramariuc D, Gerdts E, Davidsen ES, Segadal L and Matre K: Myocardial deformation in aortic valve stenosis: Relation to left ventricular geometry. Heart. 96:106–112. 2010. View Article : Google Scholar : PubMed/NCBI

100 

Cioffi G, Faggiano P, Vizzardi E, Tarantini L, Cramariuc D, Gerdts E and de Simone G: Prognostic effect of inappropriately high left ventricular mass in asymptomatic severe aortic stenosis. Heart. 97:301–307. 2011. View Article : Google Scholar : PubMed/NCBI

101 

Mureddu GF, Cioffi G, Stefenelli C, Boccanelli A and de Simone G: Compensatory or inappropriate left ventricular mass in different models of left ventricular pressure overload: Comparison between patients with aortic stenosis and arterial hypertension. J Hypertens. 27:642–649. 2009. View Article : Google Scholar : PubMed/NCBI

102 

Nagalingam RS, Sundaresan NR, Gupta MP, Geenen DL, Solaro RJ and Gupta M: A cardiac-enriched microRNA, miR-378, blocks cardiac hypertrophy by targeting Ras signaling. J Biol Chem. 288:11216–11232. 2013. View Article : Google Scholar : PubMed/NCBI

103 

Chen Z, Li C, Xu Y, Li Y, Yang H and Rao L: Circulating level of miR-378 predicts left ventricular hypertrophy in patients with aortic stenosis. PLoS One. 9:e1057022014. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Wang H, Shi J, Wang J and Hu Y: MicroRNA‑378: An important player in cardiovascular diseases (Review). Mol Med Rep 28: 172, 2023.
APA
Wang, H., Shi, J., Wang, J., & Hu, Y. (2023). MicroRNA‑378: An important player in cardiovascular diseases (Review). Molecular Medicine Reports, 28, 172. https://doi.org/10.3892/mmr.2023.13059
MLA
Wang, H., Shi, J., Wang, J., Hu, Y."MicroRNA‑378: An important player in cardiovascular diseases (Review)". Molecular Medicine Reports 28.3 (2023): 172.
Chicago
Wang, H., Shi, J., Wang, J., Hu, Y."MicroRNA‑378: An important player in cardiovascular diseases (Review)". Molecular Medicine Reports 28, no. 3 (2023): 172. https://doi.org/10.3892/mmr.2023.13059
Copy and paste a formatted citation
x
Spandidos Publications style
Wang H, Shi J, Wang J and Hu Y: MicroRNA‑378: An important player in cardiovascular diseases (Review). Mol Med Rep 28: 172, 2023.
APA
Wang, H., Shi, J., Wang, J., & Hu, Y. (2023). MicroRNA‑378: An important player in cardiovascular diseases (Review). Molecular Medicine Reports, 28, 172. https://doi.org/10.3892/mmr.2023.13059
MLA
Wang, H., Shi, J., Wang, J., Hu, Y."MicroRNA‑378: An important player in cardiovascular diseases (Review)". Molecular Medicine Reports 28.3 (2023): 172.
Chicago
Wang, H., Shi, J., Wang, J., Hu, Y."MicroRNA‑378: An important player in cardiovascular diseases (Review)". Molecular Medicine Reports 28, no. 3 (2023): 172. https://doi.org/10.3892/mmr.2023.13059
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team