Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
September-2023 Volume 28 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
September-2023 Volume 28 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML

  • Supplementary Files
    • Supplementary_Data1.xlsx
    • Supplementary_Data2.xlsx
Article Open Access

Metabolomic profiling of a neurodegenerative retina following optic nerve transection

  • Authors:
    • Jun-Ya Zhu
    • Xi-Sen Ni
    • Xiao-Yan Han
    • Sha Liu
    • Yu-Ke Ji
    • Jin Yao
    • Biao Yan
  • View Affiliations / Copyright

    Affiliations: Department of Ophthalmology and Optometry, The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China, Department of Ophthalmology and Optometry, The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China, Eye Institute and Department of Ophthalmology, Eye and Ear, Nose and Throat Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200030, P.R. China, Eye Institute and Department of Ophthalmology, Eye and Ear, Nose and Throat Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200030, P.R. China
    Copyright: © Zhu et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 178
    |
    Published online on: August 3, 2023
       https://doi.org/10.3892/mmr.2023.13065
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

The degeneration of retinal ganglion cells (RGCs) often causes irreversible vision impairment. Prevention of RGC degeneration can prevent or delay the deterioration of visual function. The present study aimed to investigate retinal metabolic profiles following optic nerve transection (ONT) injury and identify the potential metabolic targets for the prevention of RGC degeneration. Retinal samples were dissected from ONT group and non‑ONT group. The untargeted metabolomics were carried out using liquid chromatography‑tandem mass spectrometry. The involved pathways and biomarkers were analyzed using Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis and MetaboAnalyst 5.0. In the ONT group, 689 disparate metabolites were detected, including lipids and lipid‑like molecules. A total of 122 metabolites were successfully annotated and enriched in 50 KEGG pathways. Among them, ‘sphingolipid metabolism’ and ‘primary bile acid biosynthesis’ were identified involved in RGC degeneration. A total of five metabolites were selected as the candidate biomarkers for detecting RGC degeneration with an AUC value of 1. The present study revealed that lipid‑related metabolism was involved in the pathogenesis of retinal neurodegeneration. Taurine, taurochenodesoxycholic acid, taurocholic acid (TCA), sphingosine, and galabiosylceramide are shown as the promising biomarkers for the diagnosis of RGC degeneration.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

View References

1 

Guo X, Zhou J, Starr C, Mohns EJ, Li Y, Chen EP, Yoon Y, Kellner CP, Tanaka K, Wang H, et al: Preservation of vision after CaMKII-mediated protection of retinal ganglion cells. Cell. 184:4299–4314.e12. 2021. View Article : Google Scholar : PubMed/NCBI

2 

Parisi V, Oddone F, Ziccardi L, Roberti G, Coppola G and Manni G: Citicoline and retinal ganglion cells: Effects on morphology and function. Curr Neuropharmacol. 16:919–932. 2018. View Article : Google Scholar : PubMed/NCBI

3 

Levin LA and Gordon LK: Retinal ganglion cell disorders: Types and treatments. Prog Retin Eye Res. 21:465–484. 2002. View Article : Google Scholar : PubMed/NCBI

4 

Fry LE, Fahy E, Chrysostomou V, Hui F, Tang J, van Wijngaarden P, Petrou S and Crowston JG: The coma in glaucoma: Retinal ganglion cell dysfunction and recovery. Prog Retin Eye Res. 65:77–92. 2018. View Article : Google Scholar : PubMed/NCBI

5 

Jiang S, Kametani M and Chen DF: Adaptive immunity: New aspects of pathogenesis underlying neurodegeneration in glaucoma and optic neuropathy. Front Immunol. 11:652020. View Article : Google Scholar : PubMed/NCBI

6 

Bojcevski J, Stojic A, Hoffmann DB, Williams SK, Muller A, Diem R and Fairless R: Influence of retinal NMDA receptor activity during autoimmune optic neuritis. J Neurochem. 153:693–709. 2020. View Article : Google Scholar : PubMed/NCBI

7 

Almasieh M, Wilson AM, Morquette B, Cueva Vargas JL and Di Polo A: The molecular basis of retinal ganglion cell death in glaucoma. Prog Retin Eye Res. 31:152–181. 2012. View Article : Google Scholar : PubMed/NCBI

8 

Wert KJ, Velez G, Kanchustambham VL, Shankar V, Evans LP, Sengillo JD, Zare RN, Bassuk AG, Tsang SH and Mahajan VB: Metabolite therapy guided by liquid biopsy proteomics delays retinal neurodegeneration. EBioMedicine. 52:1026362020. View Article : Google Scholar : PubMed/NCBI

9 

Lehtonen Š, Sonninen TM, Wojciechowski S, Goldsteins G and Koistinaho J: Dysfunction of cellular proteostasis in Parkinson's disease. Front Neurosci. 13:4572019. View Article : Google Scholar : PubMed/NCBI

10 

Pardue MT and Allen RS: Neuroprotective strategies for retinal disease. Prog Retin Eye Res. 65:50–76. 2018. View Article : Google Scholar : PubMed/NCBI

11 

Tran AP, Warren PM and Silver J: The biology of regeneration failure and success after spinal cord injury. Physiol Rev. 98:881–917. 2018. View Article : Google Scholar : PubMed/NCBI

12 

Fung JCL and Cho EYP: Methylene blue promotes survival and GAP-43 expression of retinal ganglion cells after optic nerve transection. Life Sci. 262:1184622020. View Article : Google Scholar : PubMed/NCBI

13 

Tran NM, Shekhar K, Whitney IE, Jacobi A, Benhar I, Hong G, Yan W, Adiconis X, Arnold ME, Lee JM, et al: Single-cell profiles of retinal ganglion cells differing in resilience to injury reveal neuroprotective genes. Neuron. 104:1039–1055.e12. 2019. View Article : Google Scholar : PubMed/NCBI

14 

Mead B, Kerr A, Nakaya N and Tomarev SI: miRNA changes in retinal ganglion cells after optic nerve crush and glaucomatous damage. Cells. 10:15642021. View Article : Google Scholar : PubMed/NCBI

15 

Ayupe AC, Beckedorff F, Levay K, Yon B, Salgueiro Y, Shiekhattar R and Park KK: Identification of long noncoding RNAs in injury-resilient and injury-susceptible mouse retinal ganglion cells. BMC Genomics. 22:7412021. View Article : Google Scholar : PubMed/NCBI

16 

Wang JJ, Liu C, Shan K, Liu BH, Li XM, Zhang SJ, Zhou RM, Dong R, Yan B and Sun XH: Circular RNA-ZNF609 regulates retinal neurodegeneration by acting as miR-615 sponge. Theranostics. 8:3408–3415. 2018. View Article : Google Scholar : PubMed/NCBI

17 

Rinschen MM, Ivanisevic J, Giera M and Siuzdak G: Identification of bioactive metabolites using activity metabolomics. Nat Rev Mol Cell Biol. 20:353–367. 2019. View Article : Google Scholar : PubMed/NCBI

18 

Li Q, Wei S, Wu D, Wen C and Zhou J: Urinary metabolomics study of patients with gout using gas chromatography-mass spectrometry. Biomed Res Int. 2018:34615722018. View Article : Google Scholar : PubMed/NCBI

19 

Yang QJ, Zhao JR, Hao J, Li B, Huo Y, Han YL, Wan LL, Li J, Huang J, Lu J, et al: Serum and urine metabolomics study reveals a distinct diagnostic model for cancer cachexia. J Cachexia Sarcopenia Muscle. 9:71–85. 2018. View Article : Google Scholar : PubMed/NCBI

20 

Shao Y and Le W: Recent advances and perspectives of metabolomics-based investigations in Parkinson's disease. Mol Neurodegener. 14:32019. View Article : Google Scholar : PubMed/NCBI

21 

McGarrah RW, Crown SB, Zhang GF, Shah SH and Newgard CB: Cardiovascular metabolomics. Circ Res. 122:1238–1258. 2018. View Article : Google Scholar : PubMed/NCBI

22 

Mapstone M, Cheema AK, Fiandaca MS, Zhong X, Mhyre TR, MacArthur LH, Hall WJ, Fisher SG, Peterson DR, Haley JM, et al: Plasma phospholipids identify antecedent memory impairment in older adults. Nat Med. 20:415–418. 2014. View Article : Google Scholar : PubMed/NCBI

23 

Graham SF, Rey NL, Yilmaz A, Kumar P, Madaj Z, Maddens M, Bahado-Singh RO, Becker K, Schulz E, Meyerdirk LK, et al: Biochemical profiling of the brain and blood metabolome in a mouse model of prodromal Parkinson's disease reveals distinct metabolic profiles. J Proteome Res. 17:2460–2469. 2018. View Article : Google Scholar : PubMed/NCBI

24 

Botas A, Campbell HM, Han X and Maletic-Savatic M: Metabolomics of neurodegenerative diseases. Int Rev Neurobiol. 122:53–80. 2015. View Article : Google Scholar : PubMed/NCBI

25 

Mayordomo-Febrer A, López-Murcia M, Morales-Tatay JM, Monleón-Salvado D and Pinazo-Durán MD: Metabolomics of the aqueous humor in the rat glaucoma model induced by a series of intracamerular sodium hyaluronate injection. Exp Eye Res. 131:84–92. 2015. View Article : Google Scholar : PubMed/NCBI

26 

Leruez S, Marill A, Bresson T, de Saint Martin G, Buisset A, Muller J, Tessier L, Gadras C, Verny C, Gohier P, et al: A metabolomics profiling of glaucoma points to mitochondrial dysfunction, senescence, and polyamines deficiency. Invest Ophthalmol Vis Sci. 59:4355–4361. 2018. View Article : Google Scholar : PubMed/NCBI

27 

Liu J, Cao C, Jin Y, Wang Y, Ma X, Li J, Guo S, Yang J, Niu J and Liang X: Induced neural stem cells suppressed neuroinflammation by inhibiting the microglial pyroptotic pathway in intracerebral hemorrhage rats. iScience. 26:1070222023. View Article : Google Scholar : PubMed/NCBI

28 

Kao YC, Ho PC, Tu YK, Jou IM and Tsai KJ: Lipids and Alzheimer's disease. Int J Mol Sci. 21:15052020. View Article : Google Scholar : PubMed/NCBI

29 

Sastry PS: Lipids of nervous tissue: Composition and metabolism. Prog Lipid Res. 24:69–176. 1985. View Article : Google Scholar : PubMed/NCBI

30 

Smith JA, Nicaise AM, Ionescu RB, Hamel R, Peruzzotti-Jametti L and Pluchino S: Stem cell therapies for progressive multiple sclerosis. Front Cell Dev Biol. 9:6964342021. View Article : Google Scholar : PubMed/NCBI

31 

Kang EY, Liu PK, Wen YT, Quinn PMJ, Levi SR, Wang NK and Tsai RK: Role of oxidative stress in ocular diseases associated with retinal ganglion cells degeneration. Antioxidants (Basel). 10:19482021. View Article : Google Scholar : PubMed/NCBI

32 

Belforte N, Agostinone J, Alarcon-Martinez L, Villafranca-Baughman D, Dotigny F, Cueva Vargas JL and Di Polo A: AMPK hyperactivation promotes dendrite retraction, synaptic loss, and neuronal dysfunction in glaucoma. Mol Neurodegener. 16:432021. View Article : Google Scholar : PubMed/NCBI

33 

Galan A, Dergham P, Escoll P, de-la-Hera A, D'Onofrio PM, Magharious MM, Koeberle PD, Frade JM and Saragovi HU: Neuronal injury external to the retina rapidly activates retinal glia, followed by elevation of markers for cell cycle re-entry and death in retinal ganglion cells. PLoS One. 9:e1013492014. View Article : Google Scholar : PubMed/NCBI

34 

Syc-Mazurek SB, Fernandes KA and Libby RT: JUN is important for ocular hypertension-induced retinal ganglion cell degeneration. Cell Death Dis. 8:e29452017. View Article : Google Scholar : PubMed/NCBI

35 

Do JL, Allahwerdy S, David RC, Weinreb RN and Welsbie DS: Sheath-preserving optic nerve transection in rats to assess axon regeneration and interventions targeting the retinal ganglion cell axon. J Vis Exp. 6:3791/61748. 2020.

36 

Rosenberg LJ, Emery DG and Lucas JH: Effects of sodium and chloride on neuronal survival after neurite transection. J Neuropathol Exp Neurol. 60:33–48. 2001. View Article : Google Scholar : PubMed/NCBI

37 

Gerdts J, Summers DW, Milbrandt J and DiAntonio A: Axon self-destruction: New links among SARM1, MAPKs, and NAD+ metabolism. Neuron. 89:449–460. 2016. View Article : Google Scholar : PubMed/NCBI

38 

Krishnan A, Kocab AJ, Zacks DN, Marshak-Rothstein A and Gregory-Ksander M: A small peptide antagonist of the Fas receptor inhibits neuroinflammation and prevents axon degeneration and retinal ganglion cell death in an inducible mouse model of glaucoma. J Neuroinflammation. 16:1842019. View Article : Google Scholar : PubMed/NCBI

39 

Gertsman I and Barshop BA: Promises and pitfalls of untargeted metabolomics. J Inherit Metab Dis. 41:355–366. 2018. View Article : Google Scholar : PubMed/NCBI

40 

Di Minno A, Gelzo M, Stornaiuolo M, Ruoppolo M and Castaldo G: The evolving landscape of untargeted metabolomics. Nutr Metab Cardiovasc Dis. 31:1645–1652. 2021. View Article : Google Scholar : PubMed/NCBI

41 

Hallett PJ, Engelender S and Isacson O: Lipid and immune abnormalities causing age-dependent neurodegeneration and Parkinson's disease. J Neuroinflammation. 16:1532019. View Article : Google Scholar : PubMed/NCBI

42 

Bradke F, Fawcett JW and Spira ME: Assembly of a new growth cone after axotomy: The precursor to axon regeneration. Nat Rev Neurosci. 13:183–193. 2012. View Article : Google Scholar : PubMed/NCBI

43 

Yang C, Wang X, Wang J, Wang X, Chen W, Lu N, Siniossoglou S, Yao Z and Liu K: Rewiring neuronal glycerolipid metabolism determines the extent of axon regeneration. Neuron. 105:276–292.e5. 2020. View Article : Google Scholar : PubMed/NCBI

44 

Wang J, Wang Z, Zhang Y and Li J: Proteomic analysis of vitreal exosomes in patients with proliferative diabetic retinopathy. Eye (Lond). 37:2061–2068. 2023. View Article : Google Scholar : PubMed/NCBI

45 

Haines NR, Manoharan N, Olson JL, D'Alessandro A and Reisz JA: Metabolomics analysis of human vitreous in diabetic retinopathy and rhegmatogenous retinal detachment. J Proteome Res. 17:2421–2427. 2018. View Article : Google Scholar : PubMed/NCBI

46 

Li L, Yang K, Li C, Zhang H, Yu H, Chen K, Yang X and Liu L: Metagenomic shotgun sequencing and metabolomic profiling identify specific human gut microbiota associated with diabetic retinopathy in patients with type 2 diabetes. Front Immunol. 13:9433252022. View Article : Google Scholar : PubMed/NCBI

47 

Paris LP, Johnson CH, Aguilar E, Usui Y, Cho K, Hoang LT, Feitelberg D, Benton HP, Westenskow PD, Kurihara T, et al: Global metabolomics reveals metabolic dysregulation in ischemic retinopathy. Metabolomics. 12:152016. View Article : Google Scholar : PubMed/NCBI

48 

Ensari Delioğlu EN, Uğurlu N, Erdal E, Malekghasemi S and Çağıl N: Evaluation of sphingolipid metabolism on diabetic retinopathy. Indian J Ophthalmol. 69:3376–3380. 2021. View Article : Google Scholar : PubMed/NCBI

49 

Chaurasia RK, Singh R, Agrawal JK and Maurya OP: Sex hormones and diabetic retinopathy. Ann Ophthalmol. 25:227–230. 1993.PubMed/NCBI

50 

Aljohani AJ, Edwards G, Guerra Y, Dubovy S, Miller D, Lee RK and Bhattacharya SK: Human trabecular meshwork sphingolipid and ceramide profiles and potential latent fungal commensalism. Invest Ophthalmol Vis Sci. 55:3413–3422. 2014. View Article : Google Scholar : PubMed/NCBI

51 

Kouassi Nzoughet J, Guehlouz K, Leruez S, Gohier P, Bocca C, Muller J, Blanchet O, Bonneau D, Simard G, Milea D, et al: A data mining metabolomics exploration of glaucoma. Metabolites. 10:492020. View Article : Google Scholar : PubMed/NCBI

52 

Qiu Y, Yu J, Tang L, Ren J, Shao M, Li S, Song Y, Cao W and Sun X: Association between sex hormones and visual field progression in women with primary open angle glaucoma: A cross-sectional and prospective cohort study. Front Aging Neurosci. 13:7561862021. View Article : Google Scholar : PubMed/NCBI

53 

Chang R, Zhu Y, Xu J, Chen L, Su G, Kijlstra A and Yang P: Identification of urine metabolic biomarkers for Vogt-Koyanagi-Harada disease. Front Cell Dev Biol. 9:6374892021. View Article : Google Scholar : PubMed/NCBI

54 

Warden C, Barnett JM and Brantley MA Jr: Taurocholic acid inhibits features of age-related macular degeneration in vitro. Exp Eye Res. 193:1079742020. View Article : Google Scholar : PubMed/NCBI

55 

Sinha T, Ikelle L, Makia MS, Crane R, Zhao X, Kakakhel M, Al-Ubaidi MR and Naash MI: Riboflavin deficiency leads to irreversible cellular changes in the RPE and disrupts retinal function through alterations in cellular metabolic homeostasis. Redox Biol. 54:1023752022. View Article : Google Scholar : PubMed/NCBI

56 

Chen H, Chan AY, Stone DU and Mandal NA: Beyond the cherry-red spot: Ocular manifestations of sphingolipid-mediated neurodegenerative and inflammatory disorders. Surv Ophthalmol. 59:64–76. 2014. View Article : Google Scholar : PubMed/NCBI

57 

Chiang JYL and Ferrell JM: Bile acid receptors FXR and TGR5 signaling in fatty liver diseases and therapy. Am J Physiol Gastrointest Liver Physiol. 318:G554–G573. 2020. View Article : Google Scholar : PubMed/NCBI

58 

MahmoudianDehkordi S, Arnold M, Nho K, Ahmad S, Jia W, Xie G, Louie G, Kueider-Paisley A, Moseley MA, Thompson JW, et al: Altered bile acid profile associates with cognitive impairment in Alzheimer's disease-An emerging role for gut microbiome. Alzheimers Dement. 15:76–92. 2019. View Article : Google Scholar : PubMed/NCBI

59 

Rafiee Z, Garcia-Serrano AM and Duarte JMN: Taurine supplementation as a neuroprotective strategy upon brain dysfunction in metabolic syndrome and diabetes. Nutrients. 14:12922022. View Article : Google Scholar : PubMed/NCBI

60 

Bocca C, Le Paih V, Chao de la Barca JM, Kouassy Nzoughet J, Amati-Bonneau P, Blanchet O, Védie B, Géromin D, Simard G, Procaccio V, et al: A plasma metabolomic signature of Leber hereditary optic neuropathy showing taurine and nicotinamide deficiencies. Hum Mol Genet. 30:21–29. 2021. View Article : Google Scholar : PubMed/NCBI

61 

Seol SI, Kim HJ, Choi EB, Kang IS, Lee HK, Lee JK and Kim C: Taurine protects against postischemic brain injury via the antioxidant activity of taurine chloramine. Antioxidants (Basel). 10:3722021. View Article : Google Scholar : PubMed/NCBI

62 

Wu JY and Prentice H: Role of taurine in the central nervous system. J Biomed Sci. 17 (Suppl 1):S12010. View Article : Google Scholar : PubMed/NCBI

63 

Menzie J, Prentice H and Wu JY: Neuroprotective mechanisms of taurine against ischemic stroke. Brain Sci. 3:877–907. 2013. View Article : Google Scholar : PubMed/NCBI

64 

Jafri AJA, Agarwal R, Iezhitsa I, Agarwal P and Ismail NM: Taurine protects against NMDA-induced retinal damage by reducing retinal oxidative stress. Amino Acids. 51:641–646. 2019. View Article : Google Scholar : PubMed/NCBI

65 

Wang X, Xie G, Zhao A, Zheng X, Huang F, Wang Y, Yao C, Jia W and Liu P: Serum bile acids are associated with pathological progression of hepatitis B-induced cirrhosis. J Proteome Res. 15:1126–1134. 2016. View Article : Google Scholar : PubMed/NCBI

66 

Qi Y, Shi L, Duan G, Ma Y and Li P: Taurochenodeoxycholic acid increases cAMP content via specially interacting with bile acid receptor TGR5. Molecules. 26:70662021. View Article : Google Scholar : PubMed/NCBI

67 

Mahalak KK, Bobokalonov J, Firrman J, Williams R, Evans B, Fanelli B, Soares JW, Kobori M and Liu L: Analysis of the ability of capsaicin to modulate the human gut microbiota in vitro. Nutrients. 14:12832022. View Article : Google Scholar : PubMed/NCBI

68 

Virseda-Berdices A, Rojo D, Martínez I, Berenguer J, González-García J, Brochado-Kith O, Fernández-Rodríguez A, Díez C, Hontañon V, Pérez-Latorre L, et al: Metabolomic changes after DAAs therapy are related to the improvement of cirrhosis and inflammation in HIV/HCV-coinfected patients. Biomed Pharmacother. 147:1126232022. View Article : Google Scholar : PubMed/NCBI

69 

Abou-Ghali M and Stiban J: Regulation of ceramide channel formation and disassembly: Insights on the initiation of apoptosis. Saudi J Biol Sci. 22:760–772. 2015. View Article : Google Scholar : PubMed/NCBI

70 

Alaamery M, Albesher N, Aljawini N, Alsuwailm M, Massadeh S, Wheeler MA, Chao CC and Quintana FJ: Role of sphingolipid metabolism in neurodegeneration. J Neurochem. 158:25–35. 2021. View Article : Google Scholar : PubMed/NCBI

71 

Petit CS, Lee JJ, Boland S, Swarup S, Christiano R, Lai ZW, Mejhert N, Elliott SD, McFall D, Haque S, et al: Inhibition of sphingolipid synthesis improves outcomes and survival in GARP mutant wobbler mice, a model of motor neuron degeneration. Proc Natl Acad Sci USA. 117:10565–10574. 2020. View Article : Google Scholar : PubMed/NCBI

72 

Tham CS, Lin FF, Rao TS, Yu N and Webb M: Microglial activation state and lysophospholipid acid receptor expression. Int J Dev Neurosci. 21:431–443. 2003. View Article : Google Scholar : PubMed/NCBI

73 

Scheiblich H, Schlütter A, Golenbock DT, Latz E, Martinez-Martinez P and Heneka MT: Activation of the NLRP3 inflammasome in microglia: the role of ceramide. J Neurochem. 143:534–550. 2017. View Article : Google Scholar : PubMed/NCBI

74 

Agudo-Barriuso M, Lahoz A, Nadal-Nicolás FM, Sobrado-Calvo P, Piquer-Gil M, Diaz-Llopis M, Vidal-Sanz M and Mullor JL: Metabolomic changes in the rat retina after optic nerve crush. Invest Ophthalmol Vis Sci. 54:4249–4259. 2013. View Article : Google Scholar : PubMed/NCBI

75 

Woodcock J: Sphingosine and ceramide signalling in apoptosis. IUBMB Life. 58:462–466. 2006. View Article : Google Scholar : PubMed/NCBI

76 

Burgess LG, Uppal K, Walker DI, Roberson RM, Tran V, Parks MB, Wade EA, May AT, Umfress AC, Jarrell KL, et al: Metabolome-wide association study of primary open angle glaucoma. Invest Ophthalmol Vis Sci. 56:5020–5028. 2015. View Article : Google Scholar : PubMed/NCBI

77 

Schwedhelm E, Englisch C, Niemann L, Lezius S, von Lucadou M, Marmann K, Böger R, Peine S, Daum G, Gerloff C and Choe CU: Sphingosine-1-phosphate, motor severity, and progression in Parkinson's disease (MARK-PD). Mov Disord. 36:2178–2182. 2021. View Article : Google Scholar : PubMed/NCBI

78 

Garcia CJ, Kosek V, Beltrán D, Tomás-Barberán FA and Hajslova J: Production of new microbially conjugated bile acids by human gut microbiota. Biomolecules. 12:6872022. View Article : Google Scholar : PubMed/NCBI

79 

Styles NA, Shonsey EM, Falany JL, Guidry AL, Barnes S and Falany CN: Carboxy-terminal mutations of bile acid CoA:N-acyltransferase alter activity and substrate specificity. J Lipid Res. 57:1133–1143. 2016. View Article : Google Scholar : PubMed/NCBI

80 

Reilly SJ, O'Shea EM, Andersson U, O'Byrne J, Alexson SE and Hunt MC: A peroxisomal acyltransferase in mouse identifies a novel pathway for taurine conjugation of fatty acids. FASEB J. 21:99–107. 2007. View Article : Google Scholar : PubMed/NCBI

81 

Lin CL, Xu R, Yi JK, Li F, Chen J, Jones EC, Slutsky JB, Huang L, Rigas B, Cao J, et al: Alkaline ceramidase 1 protects mice from premature hair loss by maintaining the homeostasis of hair follicle stem cells. Stem Cell Reports. 9:1488–1500. 2017. View Article : Google Scholar : PubMed/NCBI

82 

Hernández-Corbacho MJ, Salama MF, Canals D, Senkal CE and Obeid LM: Sphingolipids in mitochondria. Biochim Biophys Acta Mol Cell Biol Lipids. 1862:56–68. 2017. View Article : Google Scholar : PubMed/NCBI

83 

Dalto DB, Tsoi S, Dyck MK and Matte JJ: Gene ontology analysis of expanded porcine blastocysts from gilts fed organic or inorganic selenium combined with pyridoxine. BMC Genomics. 19:8362018. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Zhu J, Ni X, Han X, Liu S, Ji Y, Yao J and Yan B: Metabolomic profiling of a neurodegenerative retina following optic nerve transection. Mol Med Rep 28: 178, 2023.
APA
Zhu, J., Ni, X., Han, X., Liu, S., Ji, Y., Yao, J., & Yan, B. (2023). Metabolomic profiling of a neurodegenerative retina following optic nerve transection. Molecular Medicine Reports, 28, 178. https://doi.org/10.3892/mmr.2023.13065
MLA
Zhu, J., Ni, X., Han, X., Liu, S., Ji, Y., Yao, J., Yan, B."Metabolomic profiling of a neurodegenerative retina following optic nerve transection". Molecular Medicine Reports 28.3 (2023): 178.
Chicago
Zhu, J., Ni, X., Han, X., Liu, S., Ji, Y., Yao, J., Yan, B."Metabolomic profiling of a neurodegenerative retina following optic nerve transection". Molecular Medicine Reports 28, no. 3 (2023): 178. https://doi.org/10.3892/mmr.2023.13065
Copy and paste a formatted citation
x
Spandidos Publications style
Zhu J, Ni X, Han X, Liu S, Ji Y, Yao J and Yan B: Metabolomic profiling of a neurodegenerative retina following optic nerve transection. Mol Med Rep 28: 178, 2023.
APA
Zhu, J., Ni, X., Han, X., Liu, S., Ji, Y., Yao, J., & Yan, B. (2023). Metabolomic profiling of a neurodegenerative retina following optic nerve transection. Molecular Medicine Reports, 28, 178. https://doi.org/10.3892/mmr.2023.13065
MLA
Zhu, J., Ni, X., Han, X., Liu, S., Ji, Y., Yao, J., Yan, B."Metabolomic profiling of a neurodegenerative retina following optic nerve transection". Molecular Medicine Reports 28.3 (2023): 178.
Chicago
Zhu, J., Ni, X., Han, X., Liu, S., Ji, Y., Yao, J., Yan, B."Metabolomic profiling of a neurodegenerative retina following optic nerve transection". Molecular Medicine Reports 28, no. 3 (2023): 178. https://doi.org/10.3892/mmr.2023.13065
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team