|
1
|
Guo X, Zhou J, Starr C, Mohns EJ, Li Y,
Chen EP, Yoon Y, Kellner CP, Tanaka K, Wang H, et al: Preservation
of vision after CaMKII-mediated protection of retinal ganglion
cells. Cell. 184:4299–4314.e12. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Parisi V, Oddone F, Ziccardi L, Roberti G,
Coppola G and Manni G: Citicoline and retinal ganglion cells:
Effects on morphology and function. Curr Neuropharmacol.
16:919–932. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Levin LA and Gordon LK: Retinal ganglion
cell disorders: Types and treatments. Prog Retin Eye Res.
21:465–484. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Fry LE, Fahy E, Chrysostomou V, Hui F,
Tang J, van Wijngaarden P, Petrou S and Crowston JG: The coma in
glaucoma: Retinal ganglion cell dysfunction and recovery. Prog
Retin Eye Res. 65:77–92. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Jiang S, Kametani M and Chen DF: Adaptive
immunity: New aspects of pathogenesis underlying neurodegeneration
in glaucoma and optic neuropathy. Front Immunol. 11:652020.
View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Bojcevski J, Stojic A, Hoffmann DB,
Williams SK, Muller A, Diem R and Fairless R: Influence of retinal
NMDA receptor activity during autoimmune optic neuritis. J
Neurochem. 153:693–709. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Almasieh M, Wilson AM, Morquette B, Cueva
Vargas JL and Di Polo A: The molecular basis of retinal ganglion
cell death in glaucoma. Prog Retin Eye Res. 31:152–181. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Wert KJ, Velez G, Kanchustambham VL,
Shankar V, Evans LP, Sengillo JD, Zare RN, Bassuk AG, Tsang SH and
Mahajan VB: Metabolite therapy guided by liquid biopsy proteomics
delays retinal neurodegeneration. EBioMedicine. 52:1026362020.
View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Lehtonen Š, Sonninen TM, Wojciechowski S,
Goldsteins G and Koistinaho J: Dysfunction of cellular proteostasis
in Parkinson's disease. Front Neurosci. 13:4572019. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Pardue MT and Allen RS: Neuroprotective
strategies for retinal disease. Prog Retin Eye Res. 65:50–76. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Tran AP, Warren PM and Silver J: The
biology of regeneration failure and success after spinal cord
injury. Physiol Rev. 98:881–917. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Fung JCL and Cho EYP: Methylene blue
promotes survival and GAP-43 expression of retinal ganglion cells
after optic nerve transection. Life Sci. 262:1184622020. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Tran NM, Shekhar K, Whitney IE, Jacobi A,
Benhar I, Hong G, Yan W, Adiconis X, Arnold ME, Lee JM, et al:
Single-cell profiles of retinal ganglion cells differing in
resilience to injury reveal neuroprotective genes. Neuron.
104:1039–1055.e12. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Mead B, Kerr A, Nakaya N and Tomarev SI:
miRNA changes in retinal ganglion cells after optic nerve crush and
glaucomatous damage. Cells. 10:15642021. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Ayupe AC, Beckedorff F, Levay K, Yon B,
Salgueiro Y, Shiekhattar R and Park KK: Identification of long
noncoding RNAs in injury-resilient and injury-susceptible mouse
retinal ganglion cells. BMC Genomics. 22:7412021. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Wang JJ, Liu C, Shan K, Liu BH, Li XM,
Zhang SJ, Zhou RM, Dong R, Yan B and Sun XH: Circular RNA-ZNF609
regulates retinal neurodegeneration by acting as miR-615 sponge.
Theranostics. 8:3408–3415. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Rinschen MM, Ivanisevic J, Giera M and
Siuzdak G: Identification of bioactive metabolites using activity
metabolomics. Nat Rev Mol Cell Biol. 20:353–367. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Li Q, Wei S, Wu D, Wen C and Zhou J:
Urinary metabolomics study of patients with gout using gas
chromatography-mass spectrometry. Biomed Res Int. 2018:34615722018.
View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Yang QJ, Zhao JR, Hao J, Li B, Huo Y, Han
YL, Wan LL, Li J, Huang J, Lu J, et al: Serum and urine
metabolomics study reveals a distinct diagnostic model for cancer
cachexia. J Cachexia Sarcopenia Muscle. 9:71–85. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Shao Y and Le W: Recent advances and
perspectives of metabolomics-based investigations in Parkinson's
disease. Mol Neurodegener. 14:32019. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
McGarrah RW, Crown SB, Zhang GF, Shah SH
and Newgard CB: Cardiovascular metabolomics. Circ Res.
122:1238–1258. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Mapstone M, Cheema AK, Fiandaca MS, Zhong
X, Mhyre TR, MacArthur LH, Hall WJ, Fisher SG, Peterson DR, Haley
JM, et al: Plasma phospholipids identify antecedent memory
impairment in older adults. Nat Med. 20:415–418. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Graham SF, Rey NL, Yilmaz A, Kumar P,
Madaj Z, Maddens M, Bahado-Singh RO, Becker K, Schulz E, Meyerdirk
LK, et al: Biochemical profiling of the brain and blood metabolome
in a mouse model of prodromal Parkinson's disease reveals distinct
metabolic profiles. J Proteome Res. 17:2460–2469. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Botas A, Campbell HM, Han X and
Maletic-Savatic M: Metabolomics of neurodegenerative diseases. Int
Rev Neurobiol. 122:53–80. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Mayordomo-Febrer A, López-Murcia M,
Morales-Tatay JM, Monleón-Salvado D and Pinazo-Durán MD:
Metabolomics of the aqueous humor in the rat glaucoma model induced
by a series of intracamerular sodium hyaluronate injection. Exp Eye
Res. 131:84–92. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Leruez S, Marill A, Bresson T, de Saint
Martin G, Buisset A, Muller J, Tessier L, Gadras C, Verny C, Gohier
P, et al: A metabolomics profiling of glaucoma points to
mitochondrial dysfunction, senescence, and polyamines deficiency.
Invest Ophthalmol Vis Sci. 59:4355–4361. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Liu J, Cao C, Jin Y, Wang Y, Ma X, Li J,
Guo S, Yang J, Niu J and Liang X: Induced neural stem cells
suppressed neuroinflammation by inhibiting the microglial
pyroptotic pathway in intracerebral hemorrhage rats. iScience.
26:1070222023. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Kao YC, Ho PC, Tu YK, Jou IM and Tsai KJ:
Lipids and Alzheimer's disease. Int J Mol Sci. 21:15052020.
View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Sastry PS: Lipids of nervous tissue:
Composition and metabolism. Prog Lipid Res. 24:69–176. 1985.
View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Smith JA, Nicaise AM, Ionescu RB, Hamel R,
Peruzzotti-Jametti L and Pluchino S: Stem cell therapies for
progressive multiple sclerosis. Front Cell Dev Biol. 9:6964342021.
View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Kang EY, Liu PK, Wen YT, Quinn PMJ, Levi
SR, Wang NK and Tsai RK: Role of oxidative stress in ocular
diseases associated with retinal ganglion cells degeneration.
Antioxidants (Basel). 10:19482021. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Belforte N, Agostinone J, Alarcon-Martinez
L, Villafranca-Baughman D, Dotigny F, Cueva Vargas JL and Di Polo
A: AMPK hyperactivation promotes dendrite retraction, synaptic
loss, and neuronal dysfunction in glaucoma. Mol Neurodegener.
16:432021. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Galan A, Dergham P, Escoll P, de-la-Hera
A, D'Onofrio PM, Magharious MM, Koeberle PD, Frade JM and Saragovi
HU: Neuronal injury external to the retina rapidly activates
retinal glia, followed by elevation of markers for cell cycle
re-entry and death in retinal ganglion cells. PLoS One.
9:e1013492014. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Syc-Mazurek SB, Fernandes KA and Libby RT:
JUN is important for ocular hypertension-induced retinal ganglion
cell degeneration. Cell Death Dis. 8:e29452017. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Do JL, Allahwerdy S, David RC, Weinreb RN
and Welsbie DS: Sheath-preserving optic nerve transection in rats
to assess axon regeneration and interventions targeting the retinal
ganglion cell axon. J Vis Exp. 6:3791/61748. 2020.
|
|
36
|
Rosenberg LJ, Emery DG and Lucas JH:
Effects of sodium and chloride on neuronal survival after neurite
transection. J Neuropathol Exp Neurol. 60:33–48. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Gerdts J, Summers DW, Milbrandt J and
DiAntonio A: Axon self-destruction: New links among SARM1, MAPKs,
and NAD+ metabolism. Neuron. 89:449–460. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Krishnan A, Kocab AJ, Zacks DN,
Marshak-Rothstein A and Gregory-Ksander M: A small peptide
antagonist of the Fas receptor inhibits neuroinflammation and
prevents axon degeneration and retinal ganglion cell death in an
inducible mouse model of glaucoma. J Neuroinflammation. 16:1842019.
View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Gertsman I and Barshop BA: Promises and
pitfalls of untargeted metabolomics. J Inherit Metab Dis.
41:355–366. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Di Minno A, Gelzo M, Stornaiuolo M,
Ruoppolo M and Castaldo G: The evolving landscape of untargeted
metabolomics. Nutr Metab Cardiovasc Dis. 31:1645–1652. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Hallett PJ, Engelender S and Isacson O:
Lipid and immune abnormalities causing age-dependent
neurodegeneration and Parkinson's disease. J Neuroinflammation.
16:1532019. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Bradke F, Fawcett JW and Spira ME:
Assembly of a new growth cone after axotomy: The precursor to axon
regeneration. Nat Rev Neurosci. 13:183–193. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Yang C, Wang X, Wang J, Wang X, Chen W, Lu
N, Siniossoglou S, Yao Z and Liu K: Rewiring neuronal glycerolipid
metabolism determines the extent of axon regeneration. Neuron.
105:276–292.e5. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Wang J, Wang Z, Zhang Y and Li J:
Proteomic analysis of vitreal exosomes in patients with
proliferative diabetic retinopathy. Eye (Lond). 37:2061–2068. 2023.
View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Haines NR, Manoharan N, Olson JL,
D'Alessandro A and Reisz JA: Metabolomics analysis of human
vitreous in diabetic retinopathy and rhegmatogenous retinal
detachment. J Proteome Res. 17:2421–2427. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Li L, Yang K, Li C, Zhang H, Yu H, Chen K,
Yang X and Liu L: Metagenomic shotgun sequencing and metabolomic
profiling identify specific human gut microbiota associated with
diabetic retinopathy in patients with type 2 diabetes. Front
Immunol. 13:9433252022. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Paris LP, Johnson CH, Aguilar E, Usui Y,
Cho K, Hoang LT, Feitelberg D, Benton HP, Westenskow PD, Kurihara
T, et al: Global metabolomics reveals metabolic dysregulation in
ischemic retinopathy. Metabolomics. 12:152016. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Ensari Delioğlu EN, Uğurlu N, Erdal E,
Malekghasemi S and Çağıl N: Evaluation of sphingolipid metabolism
on diabetic retinopathy. Indian J Ophthalmol. 69:3376–3380. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Chaurasia RK, Singh R, Agrawal JK and
Maurya OP: Sex hormones and diabetic retinopathy. Ann Ophthalmol.
25:227–230. 1993.PubMed/NCBI
|
|
50
|
Aljohani AJ, Edwards G, Guerra Y, Dubovy
S, Miller D, Lee RK and Bhattacharya SK: Human trabecular meshwork
sphingolipid and ceramide profiles and potential latent fungal
commensalism. Invest Ophthalmol Vis Sci. 55:3413–3422. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Kouassi Nzoughet J, Guehlouz K, Leruez S,
Gohier P, Bocca C, Muller J, Blanchet O, Bonneau D, Simard G, Milea
D, et al: A data mining metabolomics exploration of glaucoma.
Metabolites. 10:492020. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Qiu Y, Yu J, Tang L, Ren J, Shao M, Li S,
Song Y, Cao W and Sun X: Association between sex hormones and
visual field progression in women with primary open angle glaucoma:
A cross-sectional and prospective cohort study. Front Aging
Neurosci. 13:7561862021. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Chang R, Zhu Y, Xu J, Chen L, Su G,
Kijlstra A and Yang P: Identification of urine metabolic biomarkers
for Vogt-Koyanagi-Harada disease. Front Cell Dev Biol.
9:6374892021. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Warden C, Barnett JM and Brantley MA Jr:
Taurocholic acid inhibits features of age-related macular
degeneration in vitro. Exp Eye Res. 193:1079742020. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Sinha T, Ikelle L, Makia MS, Crane R, Zhao
X, Kakakhel M, Al-Ubaidi MR and Naash MI: Riboflavin deficiency
leads to irreversible cellular changes in the RPE and disrupts
retinal function through alterations in cellular metabolic
homeostasis. Redox Biol. 54:1023752022. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Chen H, Chan AY, Stone DU and Mandal NA:
Beyond the cherry-red spot: Ocular manifestations of
sphingolipid-mediated neurodegenerative and inflammatory disorders.
Surv Ophthalmol. 59:64–76. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Chiang JYL and Ferrell JM: Bile acid
receptors FXR and TGR5 signaling in fatty liver diseases and
therapy. Am J Physiol Gastrointest Liver Physiol. 318:G554–G573.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
MahmoudianDehkordi S, Arnold M, Nho K,
Ahmad S, Jia W, Xie G, Louie G, Kueider-Paisley A, Moseley MA,
Thompson JW, et al: Altered bile acid profile associates with
cognitive impairment in Alzheimer's disease-An emerging role for
gut microbiome. Alzheimers Dement. 15:76–92. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Rafiee Z, Garcia-Serrano AM and Duarte
JMN: Taurine supplementation as a neuroprotective strategy upon
brain dysfunction in metabolic syndrome and diabetes. Nutrients.
14:12922022. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Bocca C, Le Paih V, Chao de la Barca JM,
Kouassy Nzoughet J, Amati-Bonneau P, Blanchet O, Védie B, Géromin
D, Simard G, Procaccio V, et al: A plasma metabolomic signature of
Leber hereditary optic neuropathy showing taurine and nicotinamide
deficiencies. Hum Mol Genet. 30:21–29. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Seol SI, Kim HJ, Choi EB, Kang IS, Lee HK,
Lee JK and Kim C: Taurine protects against postischemic brain
injury via the antioxidant activity of taurine chloramine.
Antioxidants (Basel). 10:3722021. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Wu JY and Prentice H: Role of taurine in
the central nervous system. J Biomed Sci. 17 (Suppl 1):S12010.
View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Menzie J, Prentice H and Wu JY:
Neuroprotective mechanisms of taurine against ischemic stroke.
Brain Sci. 3:877–907. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Jafri AJA, Agarwal R, Iezhitsa I, Agarwal
P and Ismail NM: Taurine protects against NMDA-induced retinal
damage by reducing retinal oxidative stress. Amino Acids.
51:641–646. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Wang X, Xie G, Zhao A, Zheng X, Huang F,
Wang Y, Yao C, Jia W and Liu P: Serum bile acids are associated
with pathological progression of hepatitis B-induced cirrhosis. J
Proteome Res. 15:1126–1134. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Qi Y, Shi L, Duan G, Ma Y and Li P:
Taurochenodeoxycholic acid increases cAMP content via specially
interacting with bile acid receptor TGR5. Molecules. 26:70662021.
View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Mahalak KK, Bobokalonov J, Firrman J,
Williams R, Evans B, Fanelli B, Soares JW, Kobori M and Liu L:
Analysis of the ability of capsaicin to modulate the human gut
microbiota in vitro. Nutrients. 14:12832022. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Virseda-Berdices A, Rojo D, Martínez I,
Berenguer J, González-García J, Brochado-Kith O,
Fernández-Rodríguez A, Díez C, Hontañon V, Pérez-Latorre L, et al:
Metabolomic changes after DAAs therapy are related to the
improvement of cirrhosis and inflammation in HIV/HCV-coinfected
patients. Biomed Pharmacother. 147:1126232022. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Abou-Ghali M and Stiban J: Regulation of
ceramide channel formation and disassembly: Insights on the
initiation of apoptosis. Saudi J Biol Sci. 22:760–772. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Alaamery M, Albesher N, Aljawini N,
Alsuwailm M, Massadeh S, Wheeler MA, Chao CC and Quintana FJ: Role
of sphingolipid metabolism in neurodegeneration. J Neurochem.
158:25–35. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Petit CS, Lee JJ, Boland S, Swarup S,
Christiano R, Lai ZW, Mejhert N, Elliott SD, McFall D, Haque S, et
al: Inhibition of sphingolipid synthesis improves outcomes and
survival in GARP mutant wobbler mice, a model of motor neuron
degeneration. Proc Natl Acad Sci USA. 117:10565–10574. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Tham CS, Lin FF, Rao TS, Yu N and Webb M:
Microglial activation state and lysophospholipid acid receptor
expression. Int J Dev Neurosci. 21:431–443. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Scheiblich H, Schlütter A, Golenbock DT,
Latz E, Martinez-Martinez P and Heneka MT: Activation of the NLRP3
inflammasome in microglia: the role of ceramide. J Neurochem.
143:534–550. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Agudo-Barriuso M, Lahoz A, Nadal-Nicolás
FM, Sobrado-Calvo P, Piquer-Gil M, Diaz-Llopis M, Vidal-Sanz M and
Mullor JL: Metabolomic changes in the rat retina after optic nerve
crush. Invest Ophthalmol Vis Sci. 54:4249–4259. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Woodcock J: Sphingosine and ceramide
signalling in apoptosis. IUBMB Life. 58:462–466. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Burgess LG, Uppal K, Walker DI, Roberson
RM, Tran V, Parks MB, Wade EA, May AT, Umfress AC, Jarrell KL, et
al: Metabolome-wide association study of primary open angle
glaucoma. Invest Ophthalmol Vis Sci. 56:5020–5028. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Schwedhelm E, Englisch C, Niemann L,
Lezius S, von Lucadou M, Marmann K, Böger R, Peine S, Daum G,
Gerloff C and Choe CU: Sphingosine-1-phosphate, motor severity, and
progression in Parkinson's disease (MARK-PD). Mov Disord.
36:2178–2182. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Garcia CJ, Kosek V, Beltrán D,
Tomás-Barberán FA and Hajslova J: Production of new microbially
conjugated bile acids by human gut microbiota. Biomolecules.
12:6872022. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Styles NA, Shonsey EM, Falany JL, Guidry
AL, Barnes S and Falany CN: Carboxy-terminal mutations of bile acid
CoA:N-acyltransferase alter activity and substrate specificity. J
Lipid Res. 57:1133–1143. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Reilly SJ, O'Shea EM, Andersson U, O'Byrne
J, Alexson SE and Hunt MC: A peroxisomal acyltransferase in mouse
identifies a novel pathway for taurine conjugation of fatty acids.
FASEB J. 21:99–107. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Lin CL, Xu R, Yi JK, Li F, Chen J, Jones
EC, Slutsky JB, Huang L, Rigas B, Cao J, et al: Alkaline ceramidase
1 protects mice from premature hair loss by maintaining the
homeostasis of hair follicle stem cells. Stem Cell Reports.
9:1488–1500. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Hernández-Corbacho MJ, Salama MF, Canals
D, Senkal CE and Obeid LM: Sphingolipids in mitochondria. Biochim
Biophys Acta Mol Cell Biol Lipids. 1862:56–68. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Dalto DB, Tsoi S, Dyck MK and Matte JJ:
Gene ontology analysis of expanded porcine blastocysts from gilts
fed organic or inorganic selenium combined with pyridoxine. BMC
Genomics. 19:8362018. View Article : Google Scholar : PubMed/NCBI
|