Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
October-2023 Volume 28 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
October-2023 Volume 28 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review

Updates on RPE cell damage in diabetic retinopathy (Review)

  • Authors:
    • Min Li
    • Meimei Tian
    • Yuling Wang
    • Huijie Ma
    • Yaru Zhou
    • Xinli Jiang
    • Yan Liu
  • View Affiliations / Copyright

    Affiliations: Department of Endocrinology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, P.R. China, Department of Internal Neurology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, P.R. China, Department of Physiology, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China, Department of Ophthalmology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, P.R. China
  • Article Number: 185
    |
    Published online on: August 17, 2023
       https://doi.org/10.3892/mmr.2023.13072
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Diabetic retinopathy (DR) is a microvascular complication of diabetes. The retinal pigment epithelium (RPE) forms the outer layer of the blood‑retinal barrier and serves a role in maintaining retinal function. RPE cell injury has been revealed in diabetic animal models, and high glucose (HG) levels may cause damage to RPE cells by increasing the levels of oxidative stress, promoting pro‑inflammatory gene expression, disrupting cell proliferation, inducing the endothelial‑mesenchymal transition, weakening tight conjunctions and elevating cell death mechanisms, such as apoptosis, ferroptosis and pyroptosis. Non‑coding RNAs including microRNAs, long non‑coding RNAs and circular RNAs participate in RPE cell damage caused by HG levels, which may provide targeted therapeutic strategies for the treatment of DR. Plant extracts such as citrusin and hesperidin, and a number of hypoglycemic drugs, such as sodium‑glucose co‑transporter 2 inhibitors, metformin and glucagon‑like peptide‑1 receptor agonists, exhibit potential RPE protective effects; however, the detailed mechanisms behind these effects remain to be fully elucidated. An in‑depth understanding of the contribution of the RPE to DR may provide novel perspectives and therapeutic targets for DR.
View Figures

Figure 1

View References

1 

Sun H, Saeedi P, Karuranga S, Pinkepank M, Ogurtsova K, Duncan BB, Stein C, Basit A, Chan JCN, Mbanya JC, et al: IDF diabetes atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res Clin Pract. 183:1091192022. View Article : Google Scholar : PubMed/NCBI

2 

Sabanayagam C, Yip W, Ting DS, Tan G and Wong TY: Ten emerging trends in the epidemiology of diabetic retinopathy. Ophthalmic Epidemiol. 23:209–222. 2016. View Article : Google Scholar : PubMed/NCBI

3 

Song P, Yu J, Chan KY, Theodoratou E and Rudan I: Prevalence, risk factors and burden of diabetic retinopathy in China: A systematic review and meta-analysis. J Glob Health. 8:0108032018. View Article : Google Scholar : PubMed/NCBI

4 

Teo ZL, Tham YC, Yu M, Chee ML, Rim TH, Cheung N, Bikbov MM, Wang YX, Tang Y, Lu Y, et al: Global prevalence of diabetic retinopathy and projection of burden through 2045: Systematic review and Meta-analysis. Ophthalmology. 128:1580–1591. 2021. View Article : Google Scholar : PubMed/NCBI

5 

Kim YH, Kim YS, Roh GS, Choi WS and Cho GJ: Resveratrol blocks diabetes-induced early vascular lesions and vascular endothelial growth factor induction in mouse retinas. Acta Ophthalmol. 90:e31–e37. 2012. View Article : Google Scholar : PubMed/NCBI

6 

Yang S, Zhou J and Li D: Functions and diseases of the retinal pigment epithelium. Front Pharmacol. 12:7278702021. View Article : Google Scholar : PubMed/NCBI

7 

Skarphedinsdottir SB, Eysteinsson T and Arnason SS: Mechanisms of ion transport across the mouse retinal pigment epithelium measured in vitro. Invest Ophthalmol Vis Sci. 61:312020. View Article : Google Scholar : PubMed/NCBI

8 

Dircks C, Williams EH and Campochiaro PA: High glucose concentrations inhibit protein synthesis in retinal pigment epithelium in vitro. Exp Eye Res. 44:951–958. 1987. View Article : Google Scholar : PubMed/NCBI

9 

Xu HZ, Song ZM, Fu SH, Zhu M and Le YZ: RPE barrier breakdown in diabetic retinopathy: Seeing is believing. J Ocul Biol Dis Infor. 4:83–92. 2011. View Article : Google Scholar : PubMed/NCBI

10 

Xu HZ and Le YZ: Significance of outer blood-retina barrier breakdown in diabetes and ischemia. Invest Ophthalmol Vis Sci. 52:2160–2164. 2011. View Article : Google Scholar : PubMed/NCBI

11 

Decanini A, Karunadharma PR, Nordgaard CL, Feng X, Olsen TW and Ferrington DA: Human retinal pigment epithelium proteome changes in early diabetes. Diabetologia. 51:1051–1061. 2008. View Article : Google Scholar : PubMed/NCBI

12 

Kang Q and Yang C: Oxidative stress and diabetic retinopathy: Molecular mechanisms, pathogenetic role and therapeutic implications. Redox Biol. 37:1017992020. View Article : Google Scholar : PubMed/NCBI

13 

Datta S, Cano M, Ebrahimi K, Wang L and Handa JT: The impact of oxidative stress and inflammation on RPE degeneration in non-neovascular AMD. Prog Retin Eye Res. 60:201–218. 2017. View Article : Google Scholar : PubMed/NCBI

14 

Zeng Q, Luo Y, Fang J, Xu S, Hu YH and Yin M: Circ_0000615 promotes high glucose-induced human retinal pigment epithelium cell apoptosis, inflammation and oxidative stress via miR-646/YAP1 axis in diabetic retinopathy. Eur J Ophthalmol. 32:1584–1595. 2022. View Article : Google Scholar : PubMed/NCBI

15 

Liang Z, Lu C, Feng T, Gao X, Tu Y, Yang W and Wang Y: Circ-ADAM9 promotes high glucose-induced retinal pigment epithelial cell injury in DR via regulating miR-338-3p/CARM1 axis. J Ophthalmol. 2022:25222492022. View Article : Google Scholar : PubMed/NCBI

16 

Kim DI, Park MJ, Choi JH, Kim IS, Han HJ, Yoon KC, Park SW, Lee MY, Oh KS and Park SH: PRMT1 and PRMT4 regulate oxidative stress-induced retinal pigment epithelial cell damage in SIRT1-dependent and SIRT1-independent manners. Oxid Med Cell Longev. 2015:6179192015. View Article : Google Scholar : PubMed/NCBI

17 

Cano M, Wang L, Wan J, Barnett BP, Ebrahimi K, Qian J and Handa JT: Oxidative stress induces mitochondrial dysfunction and a protective unfolded protein response in RPE cells. Free Radic Biol Med. 69:1–14. 2014. View Article : Google Scholar : PubMed/NCBI

18 

Farnoodian M, Halbach C, Slinger C, Pattnaik BR, Sorenson CM and Sheibani N: High glucose promotes the migration of retinal pigment epithelial cells through increased oxidative stress and PEDF expression. Am J Physiol Cell Physiol. 311:C418–C436. 2016. View Article : Google Scholar : PubMed/NCBI

19 

Fisher CR, Shaaeli AA, Ebeling MC, Montezuma SR and Ferrington DA: Investigating mitochondrial fission, fusion, and autophagy in retinal pigment epithelium from donors with age-related macular degeneration. Sci Rep. 12:217252022. View Article : Google Scholar : PubMed/NCBI

20 

Huang L, Yao T, Chen J, Zhang Z, Yang W, Gao X, Dan Y and He Y: Effect of Sirt3 on retinal pigment epithelial cells in high glucose through Foxo3a/PINK1-Parkin pathway mediated mitophagy. Exp Eye Res. 218:1090152022. View Article : Google Scholar : PubMed/NCBI

21 

Zhang Y, Xi X, Mei Y, Zhao X, Zhou L, Ma M, Liu S, Zha X and Yang Y: High-glucose induces retinal pigment epithelium mitochondrial pathways of apoptosis and inhibits mitophagy by regulating ROS/PINK1/Parkin signal pathway. Biomed Pharmacother. 111:1315–1325. 2019. View Article : Google Scholar : PubMed/NCBI

22 

Enzmann V, Kaufmann A, Hollborn M, Wiedemann P, Gemsa D and Kohen L: Effective chemokines and cytokines in the rejection of human retinal pigment epithelium (RPE) cell grafts. Transpl Immunol. 7:9–14. 1999. View Article : Google Scholar : PubMed/NCBI

23 

Juel HB, Faber C, Udsen MS, Folkersen L and Nissen MH: Chemokine expression in retinal pigment epithelial ARPE-19 cells in response to coculture with activated T cells. Invest Ophthalmol Vis Sci. 53:8472–8480. 2012. View Article : Google Scholar : PubMed/NCBI

24 

Tang X, Dai Y, Wang X, Zeng J and Li G: MicroRNA-27a protects retinal pigment epithelial cells under high glucose conditions by targeting TLR4. Exp Ther Med. 16:452–458. 2018.PubMed/NCBI

25 

Wang W, Matsukura M, Fujii I, Ito K, Zhao JE, Shinohara M, Wang YQ and Zhang XM: Inhibition of high glucose-induced VEGF and ICAM-1 expression in human retinal pigment epithelium cells by targeting ILK with small interference RNA. Mol Biol Rep. 39:613–620. 2012. View Article : Google Scholar : PubMed/NCBI

26 

Taghavi Y, Hassanshahi G, Kounis NG, Koniari I and Khorramdelazad H: Monocyte chemoattractant protein-1 (MCP-1/CCL2) in diabetic retinopathy: Latest evidence and clinical considerations. J Cell Commun Signal. 13:451–462. 2019. View Article : Google Scholar : PubMed/NCBI

27 

Yang D, Elner SG, Bian ZM, Till GO, Petty HR and Elner VM: Pro-inflammatory cytokines increase reactive oxygen species through mitochondria and NADPH oxidase in cultured RPE cells. Exp Eye Res. 85:462–472. 2007. View Article : Google Scholar : PubMed/NCBI

28 

Stern J and Temple S: Retinal pigment epithelial cell proliferation. Exp Biol Med (Maywood). 240:1079–1086. 2015. View Article : Google Scholar : PubMed/NCBI

29 

Al-Hussaini H and Kilarkaje N: Effects of diabetes on retinal pigment epithelial cell proliferation and mitogen-activated protein kinase signaling in dark Agouti rats. Exp Toxicol Pathol. 67:117–124. 2015. View Article : Google Scholar : PubMed/NCBI

30 

Yao R, Yao X, Liu R, Peng J and Tian T: Glucose-induced microRNA-218 suppresses the proliferation and promotes the apoptosis of human retinal pigment epithelium cells by targeting RUNX2. Biosci Rep. 39:BSR201925802019. View Article : Google Scholar : PubMed/NCBI

31 

Shao Y, Dong LJ, Takahashi Y, Chen J, Liu X, Chen Q, Ma JX and Li XR: miRNA-451a regulates RPE function through promoting mitochondrial function in proliferative diabetic retinopathy. Am J Physiol Endocrinol Metab. 316:e443–e452. 2019. View Article : Google Scholar : PubMed/NCBI

32 

Chen DY and Su GF: Tumor necrosis factor-like weak inducer of apoptosis association with proliferative diabetic retinopathy and promotes proliferation and collagen synthesis in retinal ARPE-19 cells. Genet Mol Res. 15:2016.doi: 10.4238/gmr.15016920.

33 

Zhou W, Yu W, Xie W, Huang L, Xu Y and Li X: The role of SLIT-ROBO signaling in proliferative diabetic retinopathy and retinal pigment epithelial cells. Mol Vis. 17:1526–1536. 2011.PubMed/NCBI

34 

Zhou M, Geathers JS, Grillo SL, Weber SR, Wang W, Zhao Y and Sundstrom JM: Role of Epithelial-mesenchymal transition in retinal pigment epithelium dysfunction. Front Cell Dev Biol. 8:5012020. View Article : Google Scholar : PubMed/NCBI

35 

Yang S, Li H, Li M and Wang F: Mechanisms of epithelial-mesenchymal transition in proliferative vitreoretinopathy. Discov Med. 20:207–217. 2015.PubMed/NCBI

36 

Shu DY, Butcher E and Saint-Geniez M: EMT and EndMT: Emerging roles in Age-related macular degeneration. Int J Mol Sci. 21:42712020. View Article : Google Scholar : PubMed/NCBI

37 

Friedlander M: Fibrosis and diseases of the eye. J Clin Invest. 117:576–586. 2007. View Article : Google Scholar : PubMed/NCBI

38 

Che D, Zhou T, Lan Y, Xie J, Gong H, Li C, Feng J, Hong H, Qi W, Ma C, et al: High glucose-induced epithelial-mesenchymal transition contributes to the upregulation of fibrogenic factors in retinal pigment epithelial cells. Int J Mol Med. 38:1815–1822. 2016. View Article : Google Scholar : PubMed/NCBI

39 

Yang Y, Zhou J, Li WH, Zhou ZX and Xia XB: LncRNA NEAT1 regulated diabetic retinal epithelial-mesenchymal transition through regulating miR-204/SOX4 axis. PeerJ. 9:e118172021. View Article : Google Scholar : PubMed/NCBI

40 

Naylor A, Hopkins A, Hudson N and Campbell M: Tight Junctions of the outer blood retina barrier. Int J Mol Sci. 21:2112019. View Article : Google Scholar : PubMed/NCBI

41 

Xiao H and Liu Z: Effects of microRNA-217 on high glucose*-induced inflammation and apoptosis of human retinal pigment epithelial cells (ARPE-19) and its underlying mechanism. Mol Med Rep. 20:5125–5133. 2019.PubMed/NCBI

42 

Maugeri G, Bucolo C, Drago F, Rossi S, Di Rosa M, Imbesi R, D'Agata V and Giunta S: Attenuation of high glucose-induced damage in RPE cells through p38 MAPK signaling pathway inhibition. Front Pharmacol. 12:6846802021. View Article : Google Scholar : PubMed/NCBI

43 

Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, Patel DN, Bauer AJ, Cantley AM, Yang WS, et al: Ferroptosis: An iron-dependent form of nonapoptotic cell death. Cell. 149:1060–1072. 2012. View Article : Google Scholar : PubMed/NCBI

44 

Jiang X, Stockwell BR and Conrad M: Ferroptosis: Mechanisms, biology and role in disease. Nat Rev Mol Cell Biol. 22:266–282. 2021. View Article : Google Scholar : PubMed/NCBI

45 

Totsuka K, Ueta T, Uchida T, Roggia MF, Nakagawa S, Vavvas DG, Honjo M and Aihara M: Oxidative stress induces ferroptotic cell death in retinal pigment epithelial cells. Exp Eye Res. 181:316–324. 2019. View Article : Google Scholar : PubMed/NCBI

46 

Tang Z, Ju Y, Dai X, Ni N, Liu Y, Zhang D, Gao H, Sun H, Zhang J and Gu P: HO-1-mediated ferroptosis as a target for protection against retinal pigment epithelium degeneration. Redox Biol. 43:1019712021. View Article : Google Scholar : PubMed/NCBI

47 

Zhao X, Gao M, Liang J, Chen Y, Wang Y, Wang Y, Xiao Y, Zhao Z, Wan X, Jiang M, et al: SLC7A11 reduces laser-induced choroidal neovascularization by inhibiting RPE ferroptosis and VEGF production. Front Cell Dev Biol. 9:6398512021. View Article : Google Scholar : PubMed/NCBI

48 

Fan X, Xu M, Ren Q, Fan Y, Liu B, Chen J, Wang Z and Sun X: Downregulation of fatty acid binding protein 4 alleviates lipid peroxidation and oxidative stress in diabetic retinopathy by regulating peroxisome proliferator-activated receptor gamma-mediated ferroptosis. Bioengineered. 13:10540–10551. 2022. View Article : Google Scholar : PubMed/NCBI

49 

Shao J, Bai Z, Zhang L and Zhang F: Ferrostatin-1 alleviates tissue and cell damage in diabetic retinopathy by improving the antioxidant capacity of the Xc(−)-GPX4 system. Cell Death Discov. 8:4262022. View Article : Google Scholar : PubMed/NCBI

50 

Zhou J, Sun C, Dong X and Wang H: A novel miR-338-3p/SLC1A5 axis reprograms retinal pigment epithelium to increases its resistance to high glucose-induced cell ferroptosis. J Mol Histol. 53:561–571. 2022. View Article : Google Scholar : PubMed/NCBI

51 

Tang X, Li X, Zhang D and Han W: Astragaloside-IV alleviates high glucose-induced ferroptosis in retinal pigment epithelial cells by disrupting the expression of miR-138-5p/Sirt1/Nrf2. Bioengineered. 13:8240–8254. 2022. View Article : Google Scholar : PubMed/NCBI

52 

Chen M, Rong R and Xia X: Spotlight on pyroptosis: Role in pathogenesis and therapeutic potential of ocular diseases. J Neuroinflammation. 19:1832022. View Article : Google Scholar : PubMed/NCBI

53 

Xi X, Yang Y, Ma J, Chen Q, Zeng Y, Li J, Chen L and Li Y: MiR-130a alleviated high-glucose induced retinal pigment epithelium (RPE) death by modulating TNF-α/SOD1/ROS cascade mediated pyroptosis. Biomed Pharmacother. 125:1099242020. View Article : Google Scholar : PubMed/NCBI

54 

Luo R, Jin H, Li L, Hu YX and Xiao F: Long noncoding RNA MEG3 inhibits apoptosis of retinal pigment epithelium cells induced by high glucose via the miR-93/Nrf2 axis. Am J Pathol. 190:1813–1822. 2020. View Article : Google Scholar : PubMed/NCBI

55 

Gu C, Zhang H, Li Q, Zhao S and Gao Y: MiR-192 attenuates high glucose-induced pyroptosis in retinal pigment epithelial cells via inflammasome modulation. Bioengineered. 13:10362–10372. 2022. View Article : Google Scholar : PubMed/NCBI

56 

Liang GH, Luo YN, Wei RZ, Yin JY, Qin ZL, Lu LL and Ma WH: CircZNF532 knockdown protects retinal pigment epithelial cells against high glucose-induced apoptosis and pyroptosis by regulating the miR-20b-5p/STAT3 axis. J Diabetes Investig. 13:781–795. 2022. View Article : Google Scholar : PubMed/NCBI

57 

Zha X, Xi X, Fan X, Ma M, Zhang Y and Yang Y: Overexpression of METTL3 attenuates high-glucose induced RPE cell pyroptosis by regulating miR-25-3p/PTEN/Akt signaling cascade through DGCR8. Aging (Albany NY). 12:8137–8150. 2020. View Article : Google Scholar : PubMed/NCBI

58 

Huang C, Qi P, Cui H, Lu Q and Gao X: CircFAT1 regulates retinal pigment epithelial cell pyroptosis and autophagy via mediating m6A reader protein YTHDF2 expression in diabetic retinopathy. Exp Eye Res. 222:1091522022. View Article : Google Scholar : PubMed/NCBI

59 

Beermann J, Piccoli MT, Viereck J and Thum T: Non-coding RNAs in development and disease: Background, mechanisms, and therapeutic approaches. Physiol Rev. 96:1297–1325. 2016. View Article : Google Scholar : PubMed/NCBI

60 

Bartel DP: MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell. 116:281–297. 2004. View Article : Google Scholar : PubMed/NCBI

61 

Lai EC: Micro RNAs are complementary to 3′UTR sequence motifs that mediate negative post-transcriptional regulation. Nat Genet. 30:363–364. 2002. View Article : Google Scholar : PubMed/NCBI

62 

Intartaglia D, Giamundo G and Conte I: The Impact of miRNAs in health and disease of retinal pigment epithelium. Front Cell Dev Biol. 8:5899852020. View Article : Google Scholar : PubMed/NCBI

63 

Gong Q, Xie J, Liu Y, Li Y and Su G: Differentially expressed MicroRNAs in the development of early diabetic retinopathy. J Diabetes Res. 2017:47279422017. View Article : Google Scholar : PubMed/NCBI

64 

Huang JF, Cheng KP, Wang SJ, Huang HM and Wang ZJ: MicroRNA-125b protects hyperglycemia-induced, human retinal pigment epithelial cells (RPE) from death by targeting hexokinase 2. Int J Clin Exp Pathol. 11:3111–3118. 2018.PubMed/NCBI

65 

Zhao J, Gao S, Zhu Y and Shen X: Significant role of microRNA-219-5p in diabetic retinopathy and its mechanism of action. Mol Med Rep. 18:385–390. 2018.PubMed/NCBI

66 

Hsu MT and Coca-Prados M: Electron microscopic evidence for the circular form of RNA in the cytoplasm of eukaryotic cells. Nature. 280:339–340. 1979. View Article : Google Scholar : PubMed/NCBI

67 

Enuka Y, Lauriola M, Feldman ME, Sas-Chen A, Ulitsky I and Yarden Y: Circular RNAs are long-lived and display only minimal early alterations in response to a growth factor. Nucleic Acids Res. 44:1370–1383. 2016. View Article : Google Scholar : PubMed/NCBI

68 

Li D, Yang Y, Li ZQ, Li LC and Zhu XH: Circular RNAs: From biogenesis and function to diseases. Chin Med J (Engl). 132:2457–2464. 2019. View Article : Google Scholar : PubMed/NCBI

69 

Zhang Y, Zheng L, Xu H and Ling L: Circ_0084043 facilitates high glucose-induced retinal pigment epithelial cell injury by activating miR-128-3p/TXNIP-mediated Wnt/β-catenin signaling pathway. J Cardiovasc Pharmacol. 78:e112–e121. 2021. View Article : Google Scholar : PubMed/NCBI

70 

Zhu Z, Duan P, Song H, Zhou R and Chen T: Downregulation of Circular RNA PSEN1 ameliorates ferroptosis of the high glucose treated retinal pigment epithelial cells via miR-200b-3p/cofilin-2 axis. Bioengineered. 12:12555–12567. 2021. View Article : Google Scholar : PubMed/NCBI

71 

Statello L, Guo CJ, Chen LL and Huarte M: Gene regulation by long non-coding RNAs and its biological functions. Nat Rev Mol Cell Biol. 22:96–118. 2021. View Article : Google Scholar : PubMed/NCBI

72 

Li Y, Xu F, Xiao H and Han F: Long noncoding RNA BDNF-AS inversely regulated BDNF and modulated high-glucose induced apoptosis in human retinal pigment epithelial cells. J Cell Biochem. 119:817–823. 2018. View Article : Google Scholar : PubMed/NCBI

73 

Zhang X, Zou X, Li Y and Wang Y: Downregulation of lncRNA BANCR participates in the development of retinopathy among diabetic patients. Exp Ther Med. 17:4132–4138. 2019.PubMed/NCBI

74 

Yu X, Luo Y, Chen G, Liu H, Tian N, Zen X and Liu Q: Long noncoding RNA IGF2AS regulates high-glucose induced apoptosis in human retinal pigment epithelial cells. IUBMB Life. 71:1611–1618. 2019. View Article : Google Scholar : PubMed/NCBI

75 

May M, Framke T, Junker B, Framme C, Pielen A and Schindler C: How and why SGLT2 inhibitors should be explored as potential treatment option in diabetic retinopathy: Clinical concept and methodology. Ther Adv Endocrinol Metab. 10:20420188198918862019. View Article : Google Scholar : PubMed/NCBI

76 

Sha W, Wen S, Chen L, Xu B, Lei T and Zhou L: The Role of SGLT2 inhibitor on the treatment of diabetic retinopathy. J Diabetes Res. 2020:88678752020. View Article : Google Scholar : PubMed/NCBI

77 

Chen YY, Wu TT, Ho CY, Yeh TC, Sun GC, Kung YH, Wong TY, Tseng CJ and Cheng PW: Dapagliflozin prevents NOX- and SGLT2-dependent oxidative stress in lens cells exposed to fructose-induced diabetes mellitus. Int J Mol Sci. 20:43572019. View Article : Google Scholar : PubMed/NCBI

78 

Matthews J, Herat L, Rooney J, Rakoczy E, Schlaich M and Matthews VB: Determining the role of SGLT2 inhibition with Empagliflozin in the development of diabetic retinopathy. Biosci Rep. 42:BSR202122092022. View Article : Google Scholar : PubMed/NCBI

79 

Hu Y, Xu Q, Li H, Meng Z, Hao M, Ma X, Lin W and Kuang H: Dapagliflozin reduces apoptosis of diabetic retina and human retinal microvascular endothelial cells through ERK1/2/cPLA2/AA/ROS pathway independent of hypoglycemic. Front Pharmacol. 13:8278962022. View Article : Google Scholar : PubMed/NCBI

80 

Sabaner MC, Duman R, Dogan M, Akdogan M, Vurmaz A, Bozkurt E and Beysel S: Do SGLT2 inhibitors prevent preclinical diabetic retinopathy? A prospective pilot optical coherence tomography angiography study. J Fr Ophtalmol. 44:1159–1167. 2021. View Article : Google Scholar : PubMed/NCBI

81 

Gong Q, Zhang R, Wei F, Fang J, Zhang J, Sun J, Sun Q and Wang H: SGLT2 inhibitor-empagliflozin treatment ameliorates diabetic retinopathy manifestations and exerts protective effects associated with augmenting branched chain amino acids catabolism and transportation in db/db mice. Biomed Pharmacother. 152:1132222022. View Article : Google Scholar : PubMed/NCBI

82 

Qu S, Zhang C, Liu D, Wu J, Tian H, Lu L, Xu GT, Liu F and Zhang J: Metformin protects ARPE-19 cells from glyoxal-induced oxidative stress. Oxid Med Cell Longev. 2020:17409432020.PubMed/NCBI

83 

Zhao X, Liu L, Jiang Y, Silva M, Zhen X and Zheng W: Protective effect of metformin against hydrogen peroxide-induced oxidative damage in human retinal pigment epithelial (RPE) cells by enhancing autophagy through activation of AMPK pathway. Oxid Med Cell Longev. 2020:25241742020. View Article : Google Scholar : PubMed/NCBI

84 

Kim YS, Kim M, Choi MY, Lee DH, Roh GS, Kim HJ, Kang SS, Cho GJ, Kim SJ, Yoo JM, et al: Metformin protects against retinal cell death in diabetic mice. Biochem Biophys Res Commun. 492:397–403. 2017. View Article : Google Scholar : PubMed/NCBI

85 

Puddu A, Sanguineti R, Montecucco F and Viviani GL: Retinal pigment epithelial cells express a functional receptor for glucagon-like peptide-1 (GLP-1). Mediators Inflamm. 2013:9750322013. View Article : Google Scholar : PubMed/NCBI

86 

Kim DI, Park MJ, Choi JH, Lim SK, Choi HJ and Park SH: Hyperglycemia-induced GLP-1R downregulation causes RPE cell apoptosis. Int J Biochem Cell Biol. 59:41–51. 2015. View Article : Google Scholar : PubMed/NCBI

87 

Zhao X, Wang J, Li P, Tang L and Bai Y: Casein Kinase 2-interacting Protein-1 alleviates high glucose-reduced autophagy, oxidative stress, and apoptosis in retinal pigment epithelial cells via activating the p62/KEAP1/NRF2 signaling pathway. J Ophthalmol. 2021:66940502021. View Article : Google Scholar : PubMed/NCBI

88 

Wang W, Li S and Song M: Polygonatum sibiricum polysaccharide inhibits high glucose-induced oxidative stress, inflammatory response, and apoptosis in RPE cells. J Recept Signal Transduct Res. 42:189–196. 2022. View Article : Google Scholar : PubMed/NCBI

89 

Cui R, Tian L, Lu D, Li H and Cui J: Exendin-4 protects human retinal pigment epithelial cells from H2O2-induced oxidative damage via activation of NRF2 Ssignaling. Ophthalmic Res. 63:404–412. 2020. View Article : Google Scholar : PubMed/NCBI

90 

Han F, Zhang J, Li K, Wang W and Dai D: Triptolide protects human retinal pigment epithelial ARPE-19 cells against high glucose-induced cell injury by regulation of miR-29b/PTEN. Arch Physiol Biochem. 129:54–60. 2023. View Article : Google Scholar : PubMed/NCBI

91 

Liu R, Li X and Zhang X: Dexmedetomidine protects high-glucose induced apoptosis in human retinal pigment epithelial cells through inhibition on p75(NTR). Biomed Pharmacother. 106:466–471. 2018. View Article : Google Scholar : PubMed/NCBI

92 

Zhu D, Zou W, Cao X, Xu W, Lu Z, Zhu Y, Hu X, Hu J and Zhu Q: Ferulic acid attenuates high glucose-induced apoptosis in retinal pigment epithelium cells and protects retina in db/db mice. PeerJ. 10:e133752022. View Article : Google Scholar : PubMed/NCBI

93 

Guo ZL, Li Y, Liu XW, Wu MY, Guo Q, Yao XC, Wang YD and Wu WY: Sodium Tanshinone IIA silate alleviates high glucose induced barrier impairment of human retinal pigment epithelium through the reduction of NF-κB activation via the AMPK/p300 pathway. Curr Eye Res. 45:177–183. 2020. View Article : Google Scholar : PubMed/NCBI

94 

Trudeau K and Roy S, Guo W, Hernández C, Villarroel M, Simó R and Roy S: Fenofibric acid reduces fibronectin and collagen type IV overexpression in human retinal pigment epithelial cells grown in conditions mimicking the diabetic milieu: Functional implications in retinal permeability. Invest Ophthalmol Vis Sci. 52:6348–6354. 2011. View Article : Google Scholar : PubMed/NCBI

95 

Qin D and Jiang YR: Tangeretin inhibition of high-glucose-induced IL-1β, IL-6, TGF-β1, and VEGF expression in human RPE cells. J Diabetes Res. 2020:94906422020. View Article : Google Scholar : PubMed/NCBI

96 

Janani R, Anitha RE, Divya P, Chonche M and Baskaran V: Astaxanthin ameliorates hyperglycemia induced inflammation via PI3K/Akt-NF-κB signaling in ARPE-19 cells and diabetic rat retina. Eur J Pharmacol. 926:1749792022. View Article : Google Scholar : PubMed/NCBI

97 

Liao PL, Lin CH, Li CH, Tsai CH, Ho JD, Chiou GC, Kang JJ and Cheng YW: Anti-inflammatory properties of shikonin contribute to improved early-stage diabetic retinopathy. Sci Rep. 7:449852017. View Article : Google Scholar : PubMed/NCBI

98 

Liu WY, Liou SS, Hong TY and Liu IM: Hesperidin prevents high glucose-induced damage of retinal pigment epithelial cells. Planta Med. 84:1030–1037. 2018. View Article : Google Scholar : PubMed/NCBI

99 

Shivarudrappa AH and Ponesakki G: Lutein reverses hyperglycemia-mediated blockage of Nrf2 translocation by modulating the activation of intracellular protein kinases in retinal pigment epithelial (ARPE-19) cells. J Cell Commun Signal. 14:207–221. 2020. View Article : Google Scholar : PubMed/NCBI

100 

Kim DY, Kang MK, Lee EJ, Kim YH, Oh H, Kim SI, Oh SY, Na W and Kang YH: Eucalyptol inhibits Amyloid-β-induced barrier dysfunction in glucose-exposed retinal pigment epithelial cells and diabetic eyes. Antioxidants (Basel). 9:10002020. View Article : Google Scholar : PubMed/NCBI

101 

Liu P, Peng QH, Tong P and Li WJ: Astragalus polysaccharides suppresses high glucose-induced metabolic memory in retinal pigment epithelial cells through inhibiting mitochondrial dysfunction-induced apoptosis by regulating miR-195. Mol Med. 25:212019. View Article : Google Scholar : PubMed/NCBI

102 

Jang SY, Cho IH, Yang JY, Park HY, Woo SE, Madrakhimov SB, Chang HS, Lyu J and Park TK: The retinal pigment epithelial response after retinal laser photocoagulation in diabetic mice. Lasers Med Sci. 34:179–190. 2019. View Article : Google Scholar : PubMed/NCBI

103 

Gagliano C, Toro MD, Avitabile T, Stella S and Uva MG: Intravitreal steroids for the prevention of PVR after surgery for retinal detachment. Curr Pharm Des. 21:4698–4702. 2015. View Article : Google Scholar : PubMed/NCBI

104 

Saxena S, Singh M, Chaubey A, Mohan A, De S, Kaur A, Gilhotra JS, Meyer CH and Akduman L: Anti-Vegf therapy leads to an improvement in grade of retinal pigment epithelium alterations on single layer retinal pigment epithelium map in diabetic macular edema. Eur J Ophthalmol. 33:1412–1417. 2023. View Article : Google Scholar : PubMed/NCBI

105 

Campa C: Effect of VEGF and anti-VEGF compounds on retinal pigment epithelium permeability: An in vitro study. Eur J Ophthalmol. 23:690–696. 2013. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Li M, Tian M, Wang Y, Ma H, Zhou Y, Jiang X and Liu Y: Updates on RPE cell damage in diabetic retinopathy (Review). Mol Med Rep 28: 185, 2023.
APA
Li, M., Tian, M., Wang, Y., Ma, H., Zhou, Y., Jiang, X., & Liu, Y. (2023). Updates on RPE cell damage in diabetic retinopathy (Review). Molecular Medicine Reports, 28, 185. https://doi.org/10.3892/mmr.2023.13072
MLA
Li, M., Tian, M., Wang, Y., Ma, H., Zhou, Y., Jiang, X., Liu, Y."Updates on RPE cell damage in diabetic retinopathy (Review)". Molecular Medicine Reports 28.4 (2023): 185.
Chicago
Li, M., Tian, M., Wang, Y., Ma, H., Zhou, Y., Jiang, X., Liu, Y."Updates on RPE cell damage in diabetic retinopathy (Review)". Molecular Medicine Reports 28, no. 4 (2023): 185. https://doi.org/10.3892/mmr.2023.13072
Copy and paste a formatted citation
x
Spandidos Publications style
Li M, Tian M, Wang Y, Ma H, Zhou Y, Jiang X and Liu Y: Updates on RPE cell damage in diabetic retinopathy (Review). Mol Med Rep 28: 185, 2023.
APA
Li, M., Tian, M., Wang, Y., Ma, H., Zhou, Y., Jiang, X., & Liu, Y. (2023). Updates on RPE cell damage in diabetic retinopathy (Review). Molecular Medicine Reports, 28, 185. https://doi.org/10.3892/mmr.2023.13072
MLA
Li, M., Tian, M., Wang, Y., Ma, H., Zhou, Y., Jiang, X., Liu, Y."Updates on RPE cell damage in diabetic retinopathy (Review)". Molecular Medicine Reports 28.4 (2023): 185.
Chicago
Li, M., Tian, M., Wang, Y., Ma, H., Zhou, Y., Jiang, X., Liu, Y."Updates on RPE cell damage in diabetic retinopathy (Review)". Molecular Medicine Reports 28, no. 4 (2023): 185. https://doi.org/10.3892/mmr.2023.13072
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team