|
1
|
Sun H, Saeedi P, Karuranga S, Pinkepank M,
Ogurtsova K, Duncan BB, Stein C, Basit A, Chan JCN, Mbanya JC, et
al: IDF diabetes atlas: Global, regional and country-level diabetes
prevalence estimates for 2021 and projections for 2045. Diabetes
Res Clin Pract. 183:1091192022. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Sabanayagam C, Yip W, Ting DS, Tan G and
Wong TY: Ten emerging trends in the epidemiology of diabetic
retinopathy. Ophthalmic Epidemiol. 23:209–222. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Song P, Yu J, Chan KY, Theodoratou E and
Rudan I: Prevalence, risk factors and burden of diabetic
retinopathy in China: A systematic review and meta-analysis. J Glob
Health. 8:0108032018. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Teo ZL, Tham YC, Yu M, Chee ML, Rim TH,
Cheung N, Bikbov MM, Wang YX, Tang Y, Lu Y, et al: Global
prevalence of diabetic retinopathy and projection of burden through
2045: Systematic review and Meta-analysis. Ophthalmology.
128:1580–1591. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Kim YH, Kim YS, Roh GS, Choi WS and Cho
GJ: Resveratrol blocks diabetes-induced early vascular lesions and
vascular endothelial growth factor induction in mouse retinas. Acta
Ophthalmol. 90:e31–e37. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Yang S, Zhou J and Li D: Functions and
diseases of the retinal pigment epithelium. Front Pharmacol.
12:7278702021. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Skarphedinsdottir SB, Eysteinsson T and
Arnason SS: Mechanisms of ion transport across the mouse retinal
pigment epithelium measured in vitro. Invest Ophthalmol Vis Sci.
61:312020. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Dircks C, Williams EH and Campochiaro PA:
High glucose concentrations inhibit protein synthesis in retinal
pigment epithelium in vitro. Exp Eye Res. 44:951–958. 1987.
View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Xu HZ, Song ZM, Fu SH, Zhu M and Le YZ:
RPE barrier breakdown in diabetic retinopathy: Seeing is believing.
J Ocul Biol Dis Infor. 4:83–92. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Xu HZ and Le YZ: Significance of outer
blood-retina barrier breakdown in diabetes and ischemia. Invest
Ophthalmol Vis Sci. 52:2160–2164. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Decanini A, Karunadharma PR, Nordgaard CL,
Feng X, Olsen TW and Ferrington DA: Human retinal pigment
epithelium proteome changes in early diabetes. Diabetologia.
51:1051–1061. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Kang Q and Yang C: Oxidative stress and
diabetic retinopathy: Molecular mechanisms, pathogenetic role and
therapeutic implications. Redox Biol. 37:1017992020. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Datta S, Cano M, Ebrahimi K, Wang L and
Handa JT: The impact of oxidative stress and inflammation on RPE
degeneration in non-neovascular AMD. Prog Retin Eye Res.
60:201–218. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Zeng Q, Luo Y, Fang J, Xu S, Hu YH and Yin
M: Circ_0000615 promotes high glucose-induced human retinal pigment
epithelium cell apoptosis, inflammation and oxidative stress via
miR-646/YAP1 axis in diabetic retinopathy. Eur J Ophthalmol.
32:1584–1595. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Liang Z, Lu C, Feng T, Gao X, Tu Y, Yang W
and Wang Y: Circ-ADAM9 promotes high glucose-induced retinal
pigment epithelial cell injury in DR via regulating
miR-338-3p/CARM1 axis. J Ophthalmol. 2022:25222492022. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Kim DI, Park MJ, Choi JH, Kim IS, Han HJ,
Yoon KC, Park SW, Lee MY, Oh KS and Park SH: PRMT1 and PRMT4
regulate oxidative stress-induced retinal pigment epithelial cell
damage in SIRT1-dependent and SIRT1-independent manners. Oxid Med
Cell Longev. 2015:6179192015. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Cano M, Wang L, Wan J, Barnett BP,
Ebrahimi K, Qian J and Handa JT: Oxidative stress induces
mitochondrial dysfunction and a protective unfolded protein
response in RPE cells. Free Radic Biol Med. 69:1–14. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Farnoodian M, Halbach C, Slinger C,
Pattnaik BR, Sorenson CM and Sheibani N: High glucose promotes the
migration of retinal pigment epithelial cells through increased
oxidative stress and PEDF expression. Am J Physiol Cell Physiol.
311:C418–C436. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Fisher CR, Shaaeli AA, Ebeling MC,
Montezuma SR and Ferrington DA: Investigating mitochondrial
fission, fusion, and autophagy in retinal pigment epithelium from
donors with age-related macular degeneration. Sci Rep.
12:217252022. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Huang L, Yao T, Chen J, Zhang Z, Yang W,
Gao X, Dan Y and He Y: Effect of Sirt3 on retinal pigment
epithelial cells in high glucose through Foxo3a/PINK1-Parkin
pathway mediated mitophagy. Exp Eye Res. 218:1090152022. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Zhang Y, Xi X, Mei Y, Zhao X, Zhou L, Ma
M, Liu S, Zha X and Yang Y: High-glucose induces retinal pigment
epithelium mitochondrial pathways of apoptosis and inhibits
mitophagy by regulating ROS/PINK1/Parkin signal pathway. Biomed
Pharmacother. 111:1315–1325. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Enzmann V, Kaufmann A, Hollborn M,
Wiedemann P, Gemsa D and Kohen L: Effective chemokines and
cytokines in the rejection of human retinal pigment epithelium
(RPE) cell grafts. Transpl Immunol. 7:9–14. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Juel HB, Faber C, Udsen MS, Folkersen L
and Nissen MH: Chemokine expression in retinal pigment epithelial
ARPE-19 cells in response to coculture with activated T cells.
Invest Ophthalmol Vis Sci. 53:8472–8480. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Tang X, Dai Y, Wang X, Zeng J and Li G:
MicroRNA-27a protects retinal pigment epithelial cells under high
glucose conditions by targeting TLR4. Exp Ther Med. 16:452–458.
2018.PubMed/NCBI
|
|
25
|
Wang W, Matsukura M, Fujii I, Ito K, Zhao
JE, Shinohara M, Wang YQ and Zhang XM: Inhibition of high
glucose-induced VEGF and ICAM-1 expression in human retinal pigment
epithelium cells by targeting ILK with small interference RNA. Mol
Biol Rep. 39:613–620. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Taghavi Y, Hassanshahi G, Kounis NG,
Koniari I and Khorramdelazad H: Monocyte chemoattractant protein-1
(MCP-1/CCL2) in diabetic retinopathy: Latest evidence and clinical
considerations. J Cell Commun Signal. 13:451–462. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Yang D, Elner SG, Bian ZM, Till GO, Petty
HR and Elner VM: Pro-inflammatory cytokines increase reactive
oxygen species through mitochondria and NADPH oxidase in cultured
RPE cells. Exp Eye Res. 85:462–472. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Stern J and Temple S: Retinal pigment
epithelial cell proliferation. Exp Biol Med (Maywood).
240:1079–1086. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Al-Hussaini H and Kilarkaje N: Effects of
diabetes on retinal pigment epithelial cell proliferation and
mitogen-activated protein kinase signaling in dark Agouti rats. Exp
Toxicol Pathol. 67:117–124. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Yao R, Yao X, Liu R, Peng J and Tian T:
Glucose-induced microRNA-218 suppresses the proliferation and
promotes the apoptosis of human retinal pigment epithelium cells by
targeting RUNX2. Biosci Rep. 39:BSR201925802019. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Shao Y, Dong LJ, Takahashi Y, Chen J, Liu
X, Chen Q, Ma JX and Li XR: miRNA-451a regulates RPE function
through promoting mitochondrial function in proliferative diabetic
retinopathy. Am J Physiol Endocrinol Metab. 316:e443–e452. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Chen DY and Su GF: Tumor necrosis
factor-like weak inducer of apoptosis association with
proliferative diabetic retinopathy and promotes proliferation and
collagen synthesis in retinal ARPE-19 cells. Genet Mol Res.
15:2016.doi: 10.4238/gmr.15016920.
|
|
33
|
Zhou W, Yu W, Xie W, Huang L, Xu Y and Li
X: The role of SLIT-ROBO signaling in proliferative diabetic
retinopathy and retinal pigment epithelial cells. Mol Vis.
17:1526–1536. 2011.PubMed/NCBI
|
|
34
|
Zhou M, Geathers JS, Grillo SL, Weber SR,
Wang W, Zhao Y and Sundstrom JM: Role of Epithelial-mesenchymal
transition in retinal pigment epithelium dysfunction. Front Cell
Dev Biol. 8:5012020. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Yang S, Li H, Li M and Wang F: Mechanisms
of epithelial-mesenchymal transition in proliferative
vitreoretinopathy. Discov Med. 20:207–217. 2015.PubMed/NCBI
|
|
36
|
Shu DY, Butcher E and Saint-Geniez M: EMT
and EndMT: Emerging roles in Age-related macular degeneration. Int
J Mol Sci. 21:42712020. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Friedlander M: Fibrosis and diseases of
the eye. J Clin Invest. 117:576–586. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Che D, Zhou T, Lan Y, Xie J, Gong H, Li C,
Feng J, Hong H, Qi W, Ma C, et al: High glucose-induced
epithelial-mesenchymal transition contributes to the upregulation
of fibrogenic factors in retinal pigment epithelial cells. Int J
Mol Med. 38:1815–1822. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Yang Y, Zhou J, Li WH, Zhou ZX and Xia XB:
LncRNA NEAT1 regulated diabetic retinal epithelial-mesenchymal
transition through regulating miR-204/SOX4 axis. PeerJ.
9:e118172021. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Naylor A, Hopkins A, Hudson N and Campbell
M: Tight Junctions of the outer blood retina barrier. Int J Mol
Sci. 21:2112019. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Xiao H and Liu Z: Effects of microRNA-217
on high glucose*-induced inflammation and apoptosis of human
retinal pigment epithelial cells (ARPE-19) and its underlying
mechanism. Mol Med Rep. 20:5125–5133. 2019.PubMed/NCBI
|
|
42
|
Maugeri G, Bucolo C, Drago F, Rossi S, Di
Rosa M, Imbesi R, D'Agata V and Giunta S: Attenuation of high
glucose-induced damage in RPE cells through p38 MAPK signaling
pathway inhibition. Front Pharmacol. 12:6846802021. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Dixon SJ, Lemberg KM, Lamprecht MR, Skouta
R, Zaitsev EM, Gleason CE, Patel DN, Bauer AJ, Cantley AM, Yang WS,
et al: Ferroptosis: An iron-dependent form of nonapoptotic cell
death. Cell. 149:1060–1072. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Jiang X, Stockwell BR and Conrad M:
Ferroptosis: Mechanisms, biology and role in disease. Nat Rev Mol
Cell Biol. 22:266–282. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Totsuka K, Ueta T, Uchida T, Roggia MF,
Nakagawa S, Vavvas DG, Honjo M and Aihara M: Oxidative stress
induces ferroptotic cell death in retinal pigment epithelial cells.
Exp Eye Res. 181:316–324. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Tang Z, Ju Y, Dai X, Ni N, Liu Y, Zhang D,
Gao H, Sun H, Zhang J and Gu P: HO-1-mediated ferroptosis as a
target for protection against retinal pigment epithelium
degeneration. Redox Biol. 43:1019712021. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Zhao X, Gao M, Liang J, Chen Y, Wang Y,
Wang Y, Xiao Y, Zhao Z, Wan X, Jiang M, et al: SLC7A11 reduces
laser-induced choroidal neovascularization by inhibiting RPE
ferroptosis and VEGF production. Front Cell Dev Biol. 9:6398512021.
View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Fan X, Xu M, Ren Q, Fan Y, Liu B, Chen J,
Wang Z and Sun X: Downregulation of fatty acid binding protein 4
alleviates lipid peroxidation and oxidative stress in diabetic
retinopathy by regulating peroxisome proliferator-activated
receptor gamma-mediated ferroptosis. Bioengineered. 13:10540–10551.
2022. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Shao J, Bai Z, Zhang L and Zhang F:
Ferrostatin-1 alleviates tissue and cell damage in diabetic
retinopathy by improving the antioxidant capacity of the Xc(−)-GPX4
system. Cell Death Discov. 8:4262022. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Zhou J, Sun C, Dong X and Wang H: A novel
miR-338-3p/SLC1A5 axis reprograms retinal pigment epithelium to
increases its resistance to high glucose-induced cell ferroptosis.
J Mol Histol. 53:561–571. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Tang X, Li X, Zhang D and Han W:
Astragaloside-IV alleviates high glucose-induced ferroptosis in
retinal pigment epithelial cells by disrupting the expression of
miR-138-5p/Sirt1/Nrf2. Bioengineered. 13:8240–8254. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Chen M, Rong R and Xia X: Spotlight on
pyroptosis: Role in pathogenesis and therapeutic potential of
ocular diseases. J Neuroinflammation. 19:1832022. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Xi X, Yang Y, Ma J, Chen Q, Zeng Y, Li J,
Chen L and Li Y: MiR-130a alleviated high-glucose induced retinal
pigment epithelium (RPE) death by modulating TNF-α/SOD1/ROS cascade
mediated pyroptosis. Biomed Pharmacother. 125:1099242020.
View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Luo R, Jin H, Li L, Hu YX and Xiao F: Long
noncoding RNA MEG3 inhibits apoptosis of retinal pigment epithelium
cells induced by high glucose via the miR-93/Nrf2 axis. Am J
Pathol. 190:1813–1822. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Gu C, Zhang H, Li Q, Zhao S and Gao Y:
MiR-192 attenuates high glucose-induced pyroptosis in retinal
pigment epithelial cells via inflammasome modulation.
Bioengineered. 13:10362–10372. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Liang GH, Luo YN, Wei RZ, Yin JY, Qin ZL,
Lu LL and Ma WH: CircZNF532 knockdown protects retinal pigment
epithelial cells against high glucose-induced apoptosis and
pyroptosis by regulating the miR-20b-5p/STAT3 axis. J Diabetes
Investig. 13:781–795. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Zha X, Xi X, Fan X, Ma M, Zhang Y and Yang
Y: Overexpression of METTL3 attenuates high-glucose induced RPE
cell pyroptosis by regulating miR-25-3p/PTEN/Akt signaling cascade
through DGCR8. Aging (Albany NY). 12:8137–8150. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Huang C, Qi P, Cui H, Lu Q and Gao X:
CircFAT1 regulates retinal pigment epithelial cell pyroptosis and
autophagy via mediating m6A reader protein YTHDF2 expression in
diabetic retinopathy. Exp Eye Res. 222:1091522022. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Beermann J, Piccoli MT, Viereck J and Thum
T: Non-coding RNAs in development and disease: Background,
mechanisms, and therapeutic approaches. Physiol Rev. 96:1297–1325.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Bartel DP: MicroRNAs: Genomics,
biogenesis, mechanism, and function. Cell. 116:281–297. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Lai EC: Micro RNAs are complementary to
3′UTR sequence motifs that mediate negative post-transcriptional
regulation. Nat Genet. 30:363–364. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Intartaglia D, Giamundo G and Conte I: The
Impact of miRNAs in health and disease of retinal pigment
epithelium. Front Cell Dev Biol. 8:5899852020. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Gong Q, Xie J, Liu Y, Li Y and Su G:
Differentially expressed MicroRNAs in the development of early
diabetic retinopathy. J Diabetes Res. 2017:47279422017. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Huang JF, Cheng KP, Wang SJ, Huang HM and
Wang ZJ: MicroRNA-125b protects hyperglycemia-induced, human
retinal pigment epithelial cells (RPE) from death by targeting
hexokinase 2. Int J Clin Exp Pathol. 11:3111–3118. 2018.PubMed/NCBI
|
|
65
|
Zhao J, Gao S, Zhu Y and Shen X:
Significant role of microRNA-219-5p in diabetic retinopathy and its
mechanism of action. Mol Med Rep. 18:385–390. 2018.PubMed/NCBI
|
|
66
|
Hsu MT and Coca-Prados M: Electron
microscopic evidence for the circular form of RNA in the cytoplasm
of eukaryotic cells. Nature. 280:339–340. 1979. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Enuka Y, Lauriola M, Feldman ME, Sas-Chen
A, Ulitsky I and Yarden Y: Circular RNAs are long-lived and display
only minimal early alterations in response to a growth factor.
Nucleic Acids Res. 44:1370–1383. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Li D, Yang Y, Li ZQ, Li LC and Zhu XH:
Circular RNAs: From biogenesis and function to diseases. Chin Med J
(Engl). 132:2457–2464. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Zhang Y, Zheng L, Xu H and Ling L:
Circ_0084043 facilitates high glucose-induced retinal pigment
epithelial cell injury by activating miR-128-3p/TXNIP-mediated
Wnt/β-catenin signaling pathway. J Cardiovasc Pharmacol.
78:e112–e121. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Zhu Z, Duan P, Song H, Zhou R and Chen T:
Downregulation of Circular RNA PSEN1 ameliorates ferroptosis of the
high glucose treated retinal pigment epithelial cells via
miR-200b-3p/cofilin-2 axis. Bioengineered. 12:12555–12567. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Statello L, Guo CJ, Chen LL and Huarte M:
Gene regulation by long non-coding RNAs and its biological
functions. Nat Rev Mol Cell Biol. 22:96–118. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Li Y, Xu F, Xiao H and Han F: Long
noncoding RNA BDNF-AS inversely regulated BDNF and modulated
high-glucose induced apoptosis in human retinal pigment epithelial
cells. J Cell Biochem. 119:817–823. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Zhang X, Zou X, Li Y and Wang Y:
Downregulation of lncRNA BANCR participates in the development of
retinopathy among diabetic patients. Exp Ther Med. 17:4132–4138.
2019.PubMed/NCBI
|
|
74
|
Yu X, Luo Y, Chen G, Liu H, Tian N, Zen X
and Liu Q: Long noncoding RNA IGF2AS regulates high-glucose induced
apoptosis in human retinal pigment epithelial cells. IUBMB Life.
71:1611–1618. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
May M, Framke T, Junker B, Framme C,
Pielen A and Schindler C: How and why SGLT2 inhibitors should be
explored as potential treatment option in diabetic retinopathy:
Clinical concept and methodology. Ther Adv Endocrinol Metab.
10:20420188198918862019. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Sha W, Wen S, Chen L, Xu B, Lei T and Zhou
L: The Role of SGLT2 inhibitor on the treatment of diabetic
retinopathy. J Diabetes Res. 2020:88678752020. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Chen YY, Wu TT, Ho CY, Yeh TC, Sun GC,
Kung YH, Wong TY, Tseng CJ and Cheng PW: Dapagliflozin prevents
NOX- and SGLT2-dependent oxidative stress in lens cells exposed to
fructose-induced diabetes mellitus. Int J Mol Sci. 20:43572019.
View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Matthews J, Herat L, Rooney J, Rakoczy E,
Schlaich M and Matthews VB: Determining the role of SGLT2
inhibition with Empagliflozin in the development of diabetic
retinopathy. Biosci Rep. 42:BSR202122092022. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Hu Y, Xu Q, Li H, Meng Z, Hao M, Ma X, Lin
W and Kuang H: Dapagliflozin reduces apoptosis of diabetic retina
and human retinal microvascular endothelial cells through
ERK1/2/cPLA2/AA/ROS pathway independent of hypoglycemic. Front
Pharmacol. 13:8278962022. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Sabaner MC, Duman R, Dogan M, Akdogan M,
Vurmaz A, Bozkurt E and Beysel S: Do SGLT2 inhibitors prevent
preclinical diabetic retinopathy? A prospective pilot optical
coherence tomography angiography study. J Fr Ophtalmol.
44:1159–1167. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Gong Q, Zhang R, Wei F, Fang J, Zhang J,
Sun J, Sun Q and Wang H: SGLT2 inhibitor-empagliflozin treatment
ameliorates diabetic retinopathy manifestations and exerts
protective effects associated with augmenting branched chain amino
acids catabolism and transportation in db/db mice. Biomed
Pharmacother. 152:1132222022. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Qu S, Zhang C, Liu D, Wu J, Tian H, Lu L,
Xu GT, Liu F and Zhang J: Metformin protects ARPE-19 cells from
glyoxal-induced oxidative stress. Oxid Med Cell Longev.
2020:17409432020.PubMed/NCBI
|
|
83
|
Zhao X, Liu L, Jiang Y, Silva M, Zhen X
and Zheng W: Protective effect of metformin against hydrogen
peroxide-induced oxidative damage in human retinal pigment
epithelial (RPE) cells by enhancing autophagy through activation of
AMPK pathway. Oxid Med Cell Longev. 2020:25241742020. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Kim YS, Kim M, Choi MY, Lee DH, Roh GS,
Kim HJ, Kang SS, Cho GJ, Kim SJ, Yoo JM, et al: Metformin protects
against retinal cell death in diabetic mice. Biochem Biophys Res
Commun. 492:397–403. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Puddu A, Sanguineti R, Montecucco F and
Viviani GL: Retinal pigment epithelial cells express a functional
receptor for glucagon-like peptide-1 (GLP-1). Mediators Inflamm.
2013:9750322013. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Kim DI, Park MJ, Choi JH, Lim SK, Choi HJ
and Park SH: Hyperglycemia-induced GLP-1R downregulation causes RPE
cell apoptosis. Int J Biochem Cell Biol. 59:41–51. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Zhao X, Wang J, Li P, Tang L and Bai Y:
Casein Kinase 2-interacting Protein-1 alleviates high
glucose-reduced autophagy, oxidative stress, and apoptosis in
retinal pigment epithelial cells via activating the p62/KEAP1/NRF2
signaling pathway. J Ophthalmol. 2021:66940502021. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Wang W, Li S and Song M: Polygonatum
sibiricum polysaccharide inhibits high glucose-induced oxidative
stress, inflammatory response, and apoptosis in RPE cells. J Recept
Signal Transduct Res. 42:189–196. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Cui R, Tian L, Lu D, Li H and Cui J:
Exendin-4 protects human retinal pigment epithelial cells from
H2O2-induced oxidative damage via activation of NRF2 Ssignaling.
Ophthalmic Res. 63:404–412. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Han F, Zhang J, Li K, Wang W and Dai D:
Triptolide protects human retinal pigment epithelial ARPE-19 cells
against high glucose-induced cell injury by regulation of
miR-29b/PTEN. Arch Physiol Biochem. 129:54–60. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Liu R, Li X and Zhang X: Dexmedetomidine
protects high-glucose induced apoptosis in human retinal pigment
epithelial cells through inhibition on p75(NTR). Biomed
Pharmacother. 106:466–471. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Zhu D, Zou W, Cao X, Xu W, Lu Z, Zhu Y, Hu
X, Hu J and Zhu Q: Ferulic acid attenuates high glucose-induced
apoptosis in retinal pigment epithelium cells and protects retina
in db/db mice. PeerJ. 10:e133752022. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Guo ZL, Li Y, Liu XW, Wu MY, Guo Q, Yao
XC, Wang YD and Wu WY: Sodium Tanshinone IIA silate alleviates high
glucose induced barrier impairment of human retinal pigment
epithelium through the reduction of NF-κB activation via the
AMPK/p300 pathway. Curr Eye Res. 45:177–183. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Trudeau K and Roy S, Guo W, Hernández C,
Villarroel M, Simó R and Roy S: Fenofibric acid reduces fibronectin
and collagen type IV overexpression in human retinal pigment
epithelial cells grown in conditions mimicking the diabetic milieu:
Functional implications in retinal permeability. Invest Ophthalmol
Vis Sci. 52:6348–6354. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Qin D and Jiang YR: Tangeretin inhibition
of high-glucose-induced IL-1β, IL-6, TGF-β1, and VEGF expression in
human RPE cells. J Diabetes Res. 2020:94906422020. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Janani R, Anitha RE, Divya P, Chonche M
and Baskaran V: Astaxanthin ameliorates hyperglycemia induced
inflammation via PI3K/Akt-NF-κB signaling in ARPE-19 cells and
diabetic rat retina. Eur J Pharmacol. 926:1749792022. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Liao PL, Lin CH, Li CH, Tsai CH, Ho JD,
Chiou GC, Kang JJ and Cheng YW: Anti-inflammatory properties of
shikonin contribute to improved early-stage diabetic retinopathy.
Sci Rep. 7:449852017. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Liu WY, Liou SS, Hong TY and Liu IM:
Hesperidin prevents high glucose-induced damage of retinal pigment
epithelial cells. Planta Med. 84:1030–1037. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Shivarudrappa AH and Ponesakki G: Lutein
reverses hyperglycemia-mediated blockage of Nrf2 translocation by
modulating the activation of intracellular protein kinases in
retinal pigment epithelial (ARPE-19) cells. J Cell Commun Signal.
14:207–221. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Kim DY, Kang MK, Lee EJ, Kim YH, Oh H, Kim
SI, Oh SY, Na W and Kang YH: Eucalyptol inhibits Amyloid-β-induced
barrier dysfunction in glucose-exposed retinal pigment epithelial
cells and diabetic eyes. Antioxidants (Basel). 9:10002020.
View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Liu P, Peng QH, Tong P and Li WJ:
Astragalus polysaccharides suppresses high glucose-induced
metabolic memory in retinal pigment epithelial cells through
inhibiting mitochondrial dysfunction-induced apoptosis by
regulating miR-195. Mol Med. 25:212019. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Jang SY, Cho IH, Yang JY, Park HY, Woo SE,
Madrakhimov SB, Chang HS, Lyu J and Park TK: The retinal pigment
epithelial response after retinal laser photocoagulation in
diabetic mice. Lasers Med Sci. 34:179–190. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Gagliano C, Toro MD, Avitabile T, Stella S
and Uva MG: Intravitreal steroids for the prevention of PVR after
surgery for retinal detachment. Curr Pharm Des. 21:4698–4702. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Saxena S, Singh M, Chaubey A, Mohan A, De
S, Kaur A, Gilhotra JS, Meyer CH and Akduman L: Anti-Vegf therapy
leads to an improvement in grade of retinal pigment epithelium
alterations on single layer retinal pigment epithelium map in
diabetic macular edema. Eur J Ophthalmol. 33:1412–1417. 2023.
View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Campa C: Effect of VEGF and anti-VEGF
compounds on retinal pigment epithelium permeability: An in vitro
study. Eur J Ophthalmol. 23:690–696. 2013. View Article : Google Scholar : PubMed/NCBI
|