Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
October-2023 Volume 28 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
October-2023 Volume 28 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Article Open Access

Gleditsiae fructus regulates osteoclastogenesis by inhibiting the c‑Fos/NFATc1 pathway and alleviating bone loss in an ovariectomy model

  • Authors:
    • Chang-Young Cho
    • Se Hwang Kang
    • Byung-Chan Kim
    • Tae-Kyu Kim
    • Jae-Hyun Kim
    • Minsun Kim
    • Youngjoo Sohn
    • Hyuk-Sang Jung
  • View Affiliations / Copyright

    Affiliations: Department of Anatomy, College of Korean Medicine, Kyung Hee University, Seoul 02‑447, Republic of Korea
    Copyright: © Cho et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 187
    |
    Published online on: August 17, 2023
       https://doi.org/10.3892/mmr.2023.13074
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Medical and economic developments have allowed the human lifespan to extend and, as a result, the elderly population has increased worldwide. Osteoporosis is a common geriatric disease that has no symptoms and even a small impact can cause fractures in patients, leading to a serious deterioration in the quality of life. Osteoporosis treatment typically involves bisphosphonates and selective estrogen receptor modulators. However, these treatments are known to cause severe side effects, such as mandibular osteonecrosis and breast cancer, if used for an extended period of time. Therefore, it is essential to develop therapeutic agents from natural products that have fewer side effects. Gleditsiae fructus (GF) is a dried or immature fruit of Gleditsia sinensis Lam. and is composed of various triterpenoid saponins. The anti‑inflammatory effect of GF has been confirmed in various diseases, and since the anti‑inflammatory effect plays a major role in inhibiting osteoclast differentiation, GF was expected to be effective in osteoclast differentiation and menopausal osteoporosis; however, to the best of our knowledge, it has not yet been studied. Therefore, the present study was designed to examine the effect of GF on osteoclastogenesis and to investigate the mechanism underlying inhibition of osteoclast differentiation. The effects of GF on osteoclastogenesis were determined in vitro by tartrate‑resistant acid phosphatase (TRAP) staining, pit formation assays, filamentous actin (F‑actin) ring formation assays, western blotting and reverse transcription‑quantitative PCR analyses. Furthermore, the administration of GF to an animal model exhibiting menopausal osteoporosis allowed for the analysis of alterations in the bone microstructure of the femur using micro‑CT. Additionally, assessments of femoral tissue and serum were conducted. The present study revealed that the administration of GF resulted in a reduction in osteoclast levels, F‑actin rings, TRAP activity and pit area. Furthermore, GF showed a dose‑dependent suppression of nuclear factor of activated T‑cells cytoplasmic, c‑Fos and other osteoclastogenesis‑related markers.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

Figure 8

Figure 9

View References

1 

Crimmins EM: Lifespan and healthspan: Past, present, and promise. Gerontologist. 55:901–911. 2015. View Article : Google Scholar : PubMed/NCBI

2 

Riggs BL and Melton LJ III: The worldwide problem of osteoporosis: Insights afforded by epidemiology. Bone. 17 (5 Suppl):505S–511S. 1995. View Article : Google Scholar : PubMed/NCBI

3 

Cosman F, de Beur SJ, LeBoff MS, Lewiecki EM, Tanner B, Randall S and Lindsay R; National Osteoporosis Foundation, : Clinician's guide to prevention and treatment of osteoporosis. Osteoporos Int. 25:2359–2381. 2014. View Article : Google Scholar : PubMed/NCBI

4 

Matsuo K and Irie N: Osteoclast-osteoblast communication. Arch Biochem Biophys. 473:201–209. 2008. View Article : Google Scholar : PubMed/NCBI

5 

Feng X and McDonald JM: Disorders of bone remodeling. Annu Rev Pathol. 6:121–145. 2011. View Article : Google Scholar : PubMed/NCBI

6 

Sözen T, Özışık L and Başaran NÇ: An overview and management of osteoporosis. Eur J Rheumatol. 4:46–56. 2017. View Article : Google Scholar : PubMed/NCBI

7 

Tella SH and Gallagher JC: Prevention and treatment of postmenopausal osteoporosis. J Steroid Biochem Mol Biol. 142:155–170. 2014. View Article : Google Scholar : PubMed/NCBI

8 

Rasmusson L and Abtahi J: Bisphosphonate associated osteonecrosis of the jaw: An update on pathophysiology, risk factors, and treatment. Int J Dent. 2014:4710352014. View Article : Google Scholar : PubMed/NCBI

9 

Abrahamsen B: Bisphosphonate adverse effects, lessons from large databases. Curr Opin Rheumatol. 22:404–409. 2010. View Article : Google Scholar : PubMed/NCBI

10 

Collin-Osdoby P, Yu X, Zheng H and Osdoby P: RANKL-mediated osteoclast formation from murine RAW 264.7 cells. Methods Mol Med. 80:153–166. 2003.PubMed/NCBI

11 

Clohisy JC, Frazier E, Hirayama T and Abu-Amer Y: RANKL is an essential cytokine mediator of polymethylmethacrylate particle-induced osteoclastogenesis. J Orthop Res. 21:202–212. 2003. View Article : Google Scholar : PubMed/NCBI

12 

Galibert L, Tometsko ME, Anderson DM, Cosman D and Dougall WC: The involvement of multiple tumor necrosis factor receptor (TNFR)-associated factors in the signaling mechanisms of receptor activator of NF-kappaB, a member of the TNFR superfamily. J Biol Chem. 273:34120–34127. 1998. View Article : Google Scholar : PubMed/NCBI

13 

Kobayashi N, Kadono Y, Naito A, Matsumoto K, Yamamoto T, Tanaka S and Inoue J: Segregation of TRAF6-mediated signaling pathways clarifies its role in osteoclastogenesis. EMBO J. 20:1271–1280. 2001. View Article : Google Scholar : PubMed/NCBI

14 

Teitelbaum SL: Bone resorption by osteoclasts. Science. 289:1504–1508. 2000. View Article : Google Scholar : PubMed/NCBI

15 

Boyle WJ, Simonet WS and Lacey DL: Osteoclast differentiation and activation. Nature. 423:337–342. 2003. View Article : Google Scholar : PubMed/NCBI

16 

Takayanagi H, Kim S, Koga T, Nishina H, Isshiki M, Yoshida H, Saiura A, Isobe M, Yokochi T, Inoue J, et al: Induction and activation of the transcription factor NFATc1 (NFAT2) integrate RANKL signaling in terminal differentiation of osteoclasts. Dev Cell. 3:889–901. 2002. View Article : Google Scholar : PubMed/NCBI

17 

Kim JH and Kim N: Regulation of NFATc1 in osteoclast differentiation. J Bone Metab. 21:233–241. 2014. View Article : Google Scholar : PubMed/NCBI

18 

Lai P, Du JR, Zhang MX, Kuang X, Li YJ, Chen YS and He Y: Aqueous extract of Gleditsia sinensis Lam. Fruits improves serum and liver lipid profiles and attenuates atherosclerosis in rabbits fed a high-fat diet. J Ethnopharmacol. 137:1061–1066. 2011. View Article : Google Scholar : PubMed/NCBI

19 

Güçlü-Ustündağ O and Mazza G: Saponins: Properties, applications and processing. Crit Rev Food Sci Nutr. 47:231–258. 2007. View Article : Google Scholar : PubMed/NCBI

20 

Chen J, Li Z, Zheng KY, Guo AJ, Zhu KY, Zhang WL, Zhan JY, Dong TT, Su Z and Tsim KW: Chemical fingerprinting and quantitative analysis of two common Gleditsia sinensis fruits using HPLC-DAD. Acta Pharm. 63:505–515. 2013. View Article : Google Scholar : PubMed/NCBI

21 

Joh EH, Gu W and Kim DH: Echinocystic acid ameliorates lung inflammation in mice and alveolar macrophages by inhibiting the binding of LPS to TLR4 in NF-κB and MAPK pathways. Biochem Pharmacol. 84:331–340. 2012. View Article : Google Scholar : PubMed/NCBI

22 

Hyam SR, Jang SE, Jeong JJ, Joh EH, Han MJ and Kim DH: Echinocystic acid, a metabolite of lancemaside A, inhibits TNBS-induced colitis in mice. Int Immunopharmacol. 15:433–441. 2013. View Article : Google Scholar : PubMed/NCBI

23 

Lee W, Yang EJ, Ku SK, Song KS and Bae JS: Anti-inflammatory effects of oleanolic acid on LPS-induced inflammation in vitro and in vivo. Inflammation. 36:94–102. 2013. View Article : Google Scholar : PubMed/NCBI

24 

Choi JK, Oh HM, Lee S, Park JW, Khang D, Lee SW, Lee WS, Rho MC and Kim SH: Oleanolic acid acetate inhibits atopic dermatitis and allergic contact dermatitis in a murine model. Toxicol Appl Pharmacol. 269:72–80. 2013. View Article : Google Scholar : PubMed/NCBI

25 

Kim JY, Cheon YH, Oh HM, Rho MC, Erkhembaatar M, Kim MS, Lee CH, Kim JJ, Choi MK, Yoon KH, et al: Oleanolic acid acetate inhibits osteoclast differentiation by downregulating PLCγ2-Ca(2+)-NFATc1 signaling, and suppresses bone loss in mice. Bone. 60:104–111. 2014. View Article : Google Scholar : PubMed/NCBI

26 

Lacativa PG and Farias ML: Osteoporosis and inflammation. Arq Bras Endocrinol Metabol. 54:123–132. 2010. View Article : Google Scholar : PubMed/NCBI

27 

Lee S, Kim M, Hong S, Kim EJ, Kim JH, Sohn Y and Jung HS: Effects of sparganii rhizoma on osteoclast formation and osteoblast differentiation and on an OVX-induced bone loss model. Front Pharmacol. 12:7978922022. View Article : Google Scholar : PubMed/NCBI

28 

Tschöp MH, Speakman JR, Arch JR, Auwerx J, Brüning JC, Chan L, Eckel RH, Farese RV Jr, Galgani JE, Hambly C, et al: A guide to analysis of mouse energy metabolism. Nat Methods. 9:57–63. 2011. View Article : Google Scholar : PubMed/NCBI

29 

Wang Y, Huang P, Tang PF, Chan KM and Li G: Alendronate (ALN) combined with osteoprotegerin (OPG) significantly improves mechanical properties of long bone than the single use of ALN or OPG in the ovariectomized rats. J Orthop Surg Res. 6:342011. View Article : Google Scholar : PubMed/NCBI

30 

Beeton C, Garcia A and Chandy KG: Drawing blood from rats through the saphenous vein and by cardiac puncture. J Vis Exp. 2662007.PubMed/NCBI

31 

Dietz BM, Hajirahimkhan A, Dunlap TL and Bolton JL: Botanicals and their bioactive phytochemicals for women's health. Pharmacol Rev. 68:1026–1073. 2016. View Article : Google Scholar : PubMed/NCBI

32 

He J, Li X, Wang Z, Bennett S, Chen K, Xiao Z, Zhan J, Chen S, Hou Y, Chen J, et al: Therapeutic anabolic and anticatabolic benefits of natural Chinese medicines for the treatment of osteoporosis. Front Pharmacol. 10:13442019. View Article : Google Scholar : PubMed/NCBI

33 

Słupski W, Jawień P and Nowak B: Botanicals in postmenopausal osteoporosis. Nutrients. 13:16092021. View Article : Google Scholar : PubMed/NCBI

34 

Wang T, Liu Q, Tjhioe W, Zhao J, Lu A, Zhang G, Tan RX, Zhou M, Xu J and Feng HT: Therapeutic potential and outlook of alternative medicine for osteoporosis. Curr Drug Targets. 18:1051–1068. 2017. View Article : Google Scholar : PubMed/NCBI

35 

Hartley JW, Evans LH, Green KY, Naghashfar Z, Macias AR, Zerfas PM and Ward JM: Expression of infectious murine leukemia viruses by RAW264.7 cells, a potential complication for studies with a widely used mouse macrophage cell line. Retrovirology. 5:12008. View Article : Google Scholar : PubMed/NCBI

36 

Vincent C, Kogawa M, Findlay DM and Atkins GJ: The generation of osteoclasts from RAW 264.7 precursors in defined, serum-free conditions. J Bone Miner Metab. 27:114–119. 2009. View Article : Google Scholar : PubMed/NCBI

37 

Vesprey A and Yang W: Pit assay to measure the bone resorptive activity of bone marrow-derived osteoclasts. Bio Protoc. 6:e18362016. View Article : Google Scholar : PubMed/NCBI

38 

Matsubara T, Kinbara M, Maeda T, Yoshizawa M, Kokabu S and Takano Yamamoto T: Regulation of osteoclast differentiation and actin ring formation by the cytolinker protein plectin. Biochem Biophys Res Commun. 489:472–476. 2017. View Article : Google Scholar : PubMed/NCBI

39 

Boyce BF and Xing L: Functions of RANKL/RANK/OPG in bone modeling and remodeling. Arch Biochem Biophys. 473:139–146. 2008. View Article : Google Scholar : PubMed/NCBI

40 

Dougall WC, Glaccum M, Charrier K, Rohrbach K, Brasel K, De Smedt T, Daro E, Smith J, Tometsko ME, Maliszewski CR, et al: RANK is essential for osteoclast and lymph node development. Genes Dev. 13:2412–2424. 1999. View Article : Google Scholar : PubMed/NCBI

41 

Yamashita T, Yao Z, Li F, Zhang Q, Badell IR, Schwarz EM, Takeshita S, Wagner EF, Noda M, Matsuo K, et al: NF-kappaB p50 and p52 regulate receptor activator of NF-kappaB ligand (RANKL) and tumor necrosis factor-induced osteoclast precursor differentiation by activating c-Fos and NFATc1. J Biol Chem. 282:18245–18253. 2007. View Article : Google Scholar : PubMed/NCBI

42 

Fujioka S, Niu J, Schmidt C, Sclabas GM, Peng B, Uwagawa T, Li Z, Evans DB, Abbruzzese JL and Chiao PJ: NF-kappaB and AP-1 connection: Mechanism of NF-kappaB-dependent regulation of AP-1 activity. Mol Cell Biol. 24:7806–7819. 2004. View Article : Google Scholar : PubMed/NCBI

43 

Asagiri M, Sato K, Usami T, Ochi S, Nishina H, Yoshida H, Morita I, Wagner EF, Mak TW, Serfling E and Takayanagi H: Autoamplification of NFATc1 expression determines its essential role in bone homeostasis. J Exp Med. 202:1261–1269. 2005. View Article : Google Scholar : PubMed/NCBI

44 

Grigoriadis AE, Wang ZQ, Cecchini MG, Hofstetter W, Felix R, Fleisch HA and Wagner EF: c-Fos: A key regulator of osteoclast-macrophage lineage determination and bone remodeling. Science. 266:443–448. 1994. View Article : Google Scholar : PubMed/NCBI

45 

Arai A, Mizoguchi T, Harada S, Kobayashi Y, Nakamichi Y, Yasuda H, Penninger JM, Yamada K, Udagawa N and Takahashi N: Fos plays an essential role in the upregulation of RANK expression in osteoclast precursors within the bone microenvironment. J Cell Sci. 125:2910–2917. 2012.PubMed/NCBI

46 

Ballanti P, Minisola S, Pacitti MT, Scarnecchia L, Rosso R, Mazzuoli GF and Bonucci E: Tartrate-resistant acid phosphate activity as osteoclastic marker: Sensitivity of cytochemical assessment and serum assay in comparison with standardized osteoclast histomorphometry. Osteoporos Int. 7:39–43. 1997. View Article : Google Scholar : PubMed/NCBI

47 

Bune AJ, Hayman AR, Evans MJ and Cox TM: Mice lacking tartrate-resistant acid phosphatase (Acp 5) have disordered macrophage inflammatory responses and reduced clearance of the pathogen, Staphylococcus aureus. Immunology. 102:103–113. 2001. View Article : Google Scholar : PubMed/NCBI

48 

Blumer MJ, Hausott B, Schwarzer C, Hayman AR, Stempel J and Fritsch H: Role of tartrate-resistant acid phosphatase (TRAP) in long bone development. Mech Dev. 129:162–176. 2012. View Article : Google Scholar : PubMed/NCBI

49 

Ortega N, Behonick DJ, Colnot C, Cooper DNW and Werb Z: Galectin-3 is a downstream regulator of matrix metalloproteinase-9 function during endochondral bone formation. Mol Biol Cell. 16:3028–3039. 2005. View Article : Google Scholar : PubMed/NCBI

50 

Vu TH, Shipley JM, Bergers G, Berger JE, Helms JA, Hanahan D, Shapiro SD, Senior RM and Werb Z: MMP-9/gelatinase B is a key regulator of growth plate angiogenesis and apoptosis of hypertrophic chondrocytes. Cell. 93:411–422. 1998. View Article : Google Scholar : PubMed/NCBI

51 

David JP, Rincon M, Neff L, Horne WC and Baron R: Carbonic anhydrase II is an AP-1 target gene in osteoclasts. J Cell Physiol. 188:89–97. 2001. View Article : Google Scholar : PubMed/NCBI

52 

Negishi-Koga T and Takayanagi H: Ca2+-NFATc1 signaling is an essential axis of osteoclast differentiation. Immunol Rev. 231:241–256. 2009. View Article : Google Scholar : PubMed/NCBI

53 

Alsharidi A, Al-Hamed M and Alsuwaida A: Carbonic anhydrase II deficiency: Report of a novel mutation. CEN Case Rep. 5:108–112. 2016. View Article : Google Scholar : PubMed/NCBI

54 

Nedeva IR, Vitale M, Elson A, Hoyland JA and Bella J: Role of OSCAR signaling in osteoclastogenesis and bone disease. Front Cell Dev Biol. 9:6411622021. View Article : Google Scholar : PubMed/NCBI

55 

Nemeth K, Schoppet M, Al-Fakhri N, Helas S, Jessberger R, Hofbauer LC and Goettsch C: The role of osteoclast-associated receptor in osteoimmunology. J Immunol. 186:13–18. 2011. View Article : Google Scholar : PubMed/NCBI

56 

Wu H, Xu G and Li YP: Atp6v0d2 is an essential component of the osteoclast-specific proton pump that mediates extracellular acidification in bone resorption. J Bone Miner Res. 24:871–885. 2009. View Article : Google Scholar : PubMed/NCBI

57 

Chiu YH and Ritchlin CT: DC-STAMP: A key regulator in osteoclast differentiation. J Cell Physiol. 231:2402–2407. 2016. View Article : Google Scholar : PubMed/NCBI

58 

Yagi M, Miyamoto T, Sawatani Y, Iwamoto K, Hosogane N, Fujita N, Morita K, Ninomiya K, Suzuki T, Miyamoto K, et al: DC-STAMP is essential for cell-cell fusion in osteoclasts and foreign body giant cells. J Exp Med. 202:345–351. 2005. View Article : Google Scholar : PubMed/NCBI

59 

Lee SH, Rho J, Jeong D, Sul JY, Kim T, Kim N, Kang JS, Miyamoto T, Suda T, Lee SK, et al: v-ATPase V0 subunit d2-deficient mice exhibit impaired osteoclast fusion and increased bone formation. Nat Med. 12:1403–1409. 2006. View Article : Google Scholar : PubMed/NCBI

60 

Kalu DN: The ovariectomized rat model of postmenopausal bone loss. Bone Miner. 15:175–191. 1991. View Article : Google Scholar : PubMed/NCBI

61 

Kim M, Kim JH, Hong S, Kwon B, Kim EY, Jung HS and Sohn Y: Effects of melandrium firmum rohrbach on RANKL-induced osteoclast differentiation and OVX rats. Mol Med Rep. 24:6102021. View Article : Google Scholar : PubMed/NCBI

62 

Seibel MJ: Biochemical markers of bone turnover: Part I: Biochemistry and variability. Clin Biochem Rev. 26:97–122. 2005.PubMed/NCBI

63 

Kuo TR and Chen CH: Bone biomarker for the clinical assessment of osteoporosis: Recent developments and future perspectives. Biomark Res. 5:182017. View Article : Google Scholar : PubMed/NCBI

64 

Väänänen HK and Härkönen PL: Estrogen and bone metabolism. Maturitas. 23 (Suppl):S65–S69. 1996. View Article : Google Scholar : PubMed/NCBI

65 

Tantikanlayaporn D, Wichit P, Weerachayaphorn J, Chairoungdua A, Chuncharunee A, Suksamrarn A and Piyachaturawat P: Bone sparing effect of a novel phytoestrogen diarylheptanoid from Curcuma comosa Roxb. In ovariectomized rats. PLoS One. 8:e787392013. View Article : Google Scholar : PubMed/NCBI

66 

Wagner PP, Whittier DE, Foesser D, Boyd SK, Chapurlat R and Szulc P: Bone microarchitecture decline and risk of fall and fracture in men with poor physical performance-the STRAMBO study. J Clin Endocrinol Metab. 106:e5180–e5194. 2021.PubMed/NCBI

67 

Osterhoff G, Morgan EF, Shefelbine SJ, Karim L, McNamara LM and Augat P: Bone mechanical properties and changes with osteoporosis. Injury. 47 (Suppl 2):S11–S20. 2016. View Article : Google Scholar : PubMed/NCBI

68 

Czeibert K, Baksa G, Grimm A, Nagy SA, Kubinyi E and Petneházy Ö: MRI, CT and high resolution macro-anatomical images with cryosectioning of a Beagle brain: Creating the base of a multimodal imaging atlas. PLoS One. 14:e02134582019. View Article : Google Scholar : PubMed/NCBI

69 

Lasbleiz J, Burgun A, Marin F, Rolland Y and Duvauferrier R: Vertebral trabecular network analysis on CT images. J Radiol. 86:645–649. 2005.(In French). View Article : Google Scholar : PubMed/NCBI

70 

Cortet B, Chappard D, Boutry N, Dubois P, Cotten A and Marchandise X: Relationship between computed tomographic image analysis and histomorphometry for microarchitectural characterization of human calcaneus. Calcif Tissue Int. 75:23–31. 2004. View Article : Google Scholar : PubMed/NCBI

71 

Torres A, Lorenzo V and Gonzalez-Posada JM: Comparison of histomorphometry and computerized tomography of the spine in quantitating trabecular bone in renal osteodystrophy. Nephron. 44:282–287. 1986. View Article : Google Scholar : PubMed/NCBI

72 

Park SB, Lee YJ and Chung CK: Bone mineral density changes after ovariectomy in rats as an osteopenic model: Stepwise description of double dorso-lateral approach. J Korean Neurosurg Soc. 48:309–312. 2010. View Article : Google Scholar : PubMed/NCBI

73 

Laib A, Kumer JL, Majumdar S and Lane NE: The temporal changes of trabecular architecture in ovariectomized rats assessed by MicroCT. Osteoporos Int. 12:936–941. 2001. View Article : Google Scholar : PubMed/NCBI

74 

Bouxsein ML, Boyd SK, Christiansen BA, Guldberg RE, Jepsen KJ and Müller R: Guidelines for assessment of bone microstructure in rodents using micro-computed tomography. J Bone Miner Res. 25:1468–1486. 2010. View Article : Google Scholar : PubMed/NCBI

75 

Wu Y, Adeeb S and Doschak MR: Using Micro-CT derived bone microarchitecture to analyze bone stiffness-a case study on osteoporosis rat bone. Front Endocrinol (Lausanne). 6:802015. View Article : Google Scholar : PubMed/NCBI

76 

Lee KY, Kim JH, Kim EY, Yeom M, Jung HS and Sohn Y: Water extract of Cnidii Rhizoma suppresses RANKL-induced osteoclastogenesis in RAW 264.7 cell by inhibiting NFATc1/c-Fos signaling and prevents ovariectomized bone loss in SD-rat. BMC Complement Altern Med. 19:2072019. View Article : Google Scholar : PubMed/NCBI

77 

Lee K, Chung YH, Ahn H, Kim H, Rho J and Jeong D: Selective regulation of MAPK signaling mediates RANKL-dependent osteoclast differentiation. Int J Biol Sci. 12:235–245. 2016. View Article : Google Scholar : PubMed/NCBI

78 

Yang JH, Li B, Wu Q, Lv JG and Nie HY: Echinocystic acid inhibits RANKL-induced osteoclastogenesis by regulating NF-κB and ERK signaling pathways. Biochem Biophys Res Commun. 477:673–677. 2016. View Article : Google Scholar : PubMed/NCBI

79 

Xie BP, Shi LY, Li JP, Zeng Y, Liu W, Tang SY, Jia LJ, Zhang J and Gan GX: Oleanolic acid inhibits RANKL-induced osteoclastogenesis via ER alpha/miR-503/RANK signaling pathway in RAW264.7 cells. Biomed Pharmacother. 117:1090452019. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Cho C, Kang SH, Kim B, Kim T, Kim J, Kim M, Sohn Y and Jung H: <em>Gleditsiae fructus</em> regulates osteoclastogenesis by inhibiting the c‑Fos/NFATc1 pathway and alleviating bone loss in an ovariectomy model. Mol Med Rep 28: 187, 2023.
APA
Cho, C., Kang, S.H., Kim, B., Kim, T., Kim, J., Kim, M. ... Jung, H. (2023). <em>Gleditsiae fructus</em> regulates osteoclastogenesis by inhibiting the c‑Fos/NFATc1 pathway and alleviating bone loss in an ovariectomy model. Molecular Medicine Reports, 28, 187. https://doi.org/10.3892/mmr.2023.13074
MLA
Cho, C., Kang, S. H., Kim, B., Kim, T., Kim, J., Kim, M., Sohn, Y., Jung, H."<em>Gleditsiae fructus</em> regulates osteoclastogenesis by inhibiting the c‑Fos/NFATc1 pathway and alleviating bone loss in an ovariectomy model". Molecular Medicine Reports 28.4 (2023): 187.
Chicago
Cho, C., Kang, S. H., Kim, B., Kim, T., Kim, J., Kim, M., Sohn, Y., Jung, H."<em>Gleditsiae fructus</em> regulates osteoclastogenesis by inhibiting the c‑Fos/NFATc1 pathway and alleviating bone loss in an ovariectomy model". Molecular Medicine Reports 28, no. 4 (2023): 187. https://doi.org/10.3892/mmr.2023.13074
Copy and paste a formatted citation
x
Spandidos Publications style
Cho C, Kang SH, Kim B, Kim T, Kim J, Kim M, Sohn Y and Jung H: <em>Gleditsiae fructus</em> regulates osteoclastogenesis by inhibiting the c‑Fos/NFATc1 pathway and alleviating bone loss in an ovariectomy model. Mol Med Rep 28: 187, 2023.
APA
Cho, C., Kang, S.H., Kim, B., Kim, T., Kim, J., Kim, M. ... Jung, H. (2023). <em>Gleditsiae fructus</em> regulates osteoclastogenesis by inhibiting the c‑Fos/NFATc1 pathway and alleviating bone loss in an ovariectomy model. Molecular Medicine Reports, 28, 187. https://doi.org/10.3892/mmr.2023.13074
MLA
Cho, C., Kang, S. H., Kim, B., Kim, T., Kim, J., Kim, M., Sohn, Y., Jung, H."<em>Gleditsiae fructus</em> regulates osteoclastogenesis by inhibiting the c‑Fos/NFATc1 pathway and alleviating bone loss in an ovariectomy model". Molecular Medicine Reports 28.4 (2023): 187.
Chicago
Cho, C., Kang, S. H., Kim, B., Kim, T., Kim, J., Kim, M., Sohn, Y., Jung, H."<em>Gleditsiae fructus</em> regulates osteoclastogenesis by inhibiting the c‑Fos/NFATc1 pathway and alleviating bone loss in an ovariectomy model". Molecular Medicine Reports 28, no. 4 (2023): 187. https://doi.org/10.3892/mmr.2023.13074
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team