Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
October-2023 Volume 28 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
October-2023 Volume 28 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Perspectives of circular RNAs in diabetic complications from biological markers to potential therapeutic targets (Review)

  • Authors:
    • Lingling Yuan
    • Jinsheng Duan
    • Hong Zhou
  • View Affiliations / Copyright

    Affiliations: Department of Endocrinology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China, Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China, Department of Endocrinology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
    Copyright: © Yuan et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 194
    |
    Published online on: September 1, 2023
       https://doi.org/10.3892/mmr.2023.13081
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Chronic complications of diabetes increase mortality and disability of patients. It is crucial to find potential early biomarkers and provide novel therapeutic strategies for diabetic complications. Circular RNAs (circRNAs), covalently closed RNA molecules in eukaryotes, have high stability. Recent studies have confirmed that differentially expressed circRNAs have a vital role in diabetic complications. Certain circRNAs, such as circRNA ankyrin repeat domain 36, circRNA homeodomain‑interacting protein kinase 3 (circHIPK3) and circRNA WD repeat domain 77, are associated with inflammation, endothelial cell apoptosis and smooth muscle cell proliferation, leading to vascular endothelial dysfunction and atherosclerosis. CircRNA LDL receptor related protein 6, circRNA actin related protein 2, circ_0000064, circ‑0101383, circ_0123996, hsa_circ_0003928 and circ_0000285 mediate inflammation, apoptosis and autophagy of podocytes, mesangial cell hypertrophy and proliferation, as well as tubulointerstitial fibrosis, in diabetic nephropathy by regulating the expression of microRNAs and proteins. Circ_0005015, circRNA PWWP domain containing 2A, circRNA zinc finger protein 532, circRNA zinc finger protein 609, circRNA DNA methyltransferase 3β, circRNA collagen type I α2 chain and circHIPK3 widely affect multiple biological processes of diabetic retinopathy. Furthermore, circ_000203, circ_010567, circHIPK3, hsa_circ_0076631 and circRNA cerebellar degeneration‑related protein 1 antisense are involved in the pathology of diabetic cardiomyopathy. CircHIPK3 is the most well‑studied circRNA in the field of diabetic complications and is most likely to become a biological marker and therapeutic target for diabetic complications. The applications of circRNAs may be a promising treatment strategy for human diseases at the molecular level. The relationship between circRNAs and diabetic complications is summarized in the present study. Of note, circRNA‑targeted therapy and the role of circRNAs as biomarkers may potentially be used in diabetic complications in the future.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

View References

1 

Cho NH, Shaw JE, Karuranga S, Huang Y, da Rocha Fernandes JD, Ohlrogge AW and Malanda B: IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res Clin Pract. 138:271–281. 2018. View Article : Google Scholar : PubMed/NCBI

2 

Morrish NJ, Wang SL, Stevens LK, Fuller JH and Keen H: Mortality and causes of death in the WHO multinational study of vascular disease in diabetes. Diabetologia. 44 (Suppl 2):S14–S21. 2001. View Article : Google Scholar : PubMed/NCBI

3 

Wang PL, Bao Y, Yee MC, Barrett SP, Hogan GJ, Olsen MN, Dinneny JR, Brown PO and Salzman J: Circular RNA is expressed across the eukaryotic tree of life. PLoS One. 9:e908592014. View Article : Google Scholar : PubMed/NCBI

4 

Salzman J, Chen RE, Olsen MN, Wang PL and Brown PO: Cell-type specific features of circular RNA expression. PLoS Genet. 9:e10037772013. View Article : Google Scholar : PubMed/NCBI

5 

Zhang HD, Jiang LH, Sun DW, Hou JC and Ji ZL: CircRNA: A novel type of biomarker for cancer. Breast Cancer. 25:1–7. 2018. View Article : Google Scholar : PubMed/NCBI

6 

Qu S, Yang X, Li X, Wang J, Gao Y, Shang R, Sun W, Dou K and Li H: Circular RNA: A new star of noncoding RNAs. Cancer Lett. 365:141–148. 2015. View Article : Google Scholar : PubMed/NCBI

7 

Jiang G, Ma Y, An T, Pan Y, Mo F, Zhao D, Liu Y, Miao JN, Gu YJ, Wang Y and Gao SH: Relationships of circular RNA with diabetes and depression. Sci Rep. 7:72852017. View Article : Google Scholar : PubMed/NCBI

8 

Memczak S, Jens M, Elefsinioti A, Torti F, Krueger J, Rybak A, Maier L, Mackowiak SD, Gregersen LH, Munschauer M, et al: Circular RNAs are a large class of animal RNAs with regulatory potency. Nature. 495:333–338. 2013. View Article : Google Scholar : PubMed/NCBI

9 

Fan X, Weng X, Zhao Y, Chen W, Gan T and Xu D: Circular RNAs in cardiovascular disease: An overview. Biomed Res Int. 2017:51357812017. View Article : Google Scholar : PubMed/NCBI

10 

Li Y, Zheng Q, Bao C, Li S, Guo W, Zhao J, Chen D, Gu J, He X and Huang S: Circular RNA is enriched and stable in exosomes: A promising biomarker for cancer diagnosis. Cell Res. 25:981–984. 2015. View Article : Google Scholar : PubMed/NCBI

11 

Smid M, Wilting SM, Uhr K, Rodríguez-González FG, de Weerd V, Prager-Van der Smissen WJC, van der Vlugt-Daane M, van Galen A, Nik-Zainal S, Butler A, et al: The circular RNome of primary breast cancer. Genome Res. 29:356–366. 2019. View Article : Google Scholar : PubMed/NCBI

12 

Hu W, Han Q, Zhao L and Wang L: Circular RNA circRNA_15698 aggravates the extracellular matrix of diabetic nephropathy mesangial cells via miR-185/TGF-β1. J Cell Physiol. 234:1469–1476. 2019. View Article : Google Scholar : PubMed/NCBI

13 

Shan K, Liu C, Liu BH, Chen X, Dong R, Liu X, Zhang YY, Liu B, Zhang SJ, Wang JJ, et al: Circular noncoding RNA HIPK3 mediates retinal vascular dysfunction in diabetes mellitus. Circulation. 136:1629–1642. 2017. View Article : Google Scholar : PubMed/NCBI

14 

Wang W, Zhang S, Xu L, Feng Y, Wu X, Zhang M, Yu Z and Zhou X: Involvement of circHIPK3 in the pathogenesis of diabetic cardiomyopathy in mice. Diabetologia. 64:681–692. 2021. View Article : Google Scholar : PubMed/NCBI

15 

Tang CM, Zhang M, Huang L, Hu ZQ, Zhu JN, Xiao Z, Zhang Z, Lin QX, Zheng XL, Yang M, et al: CircRNA_000203 enhances the expression of fibrosis-associated genes by derepressing targets of miR-26b-5p, Col1a2 and CTGF, in cardiac fibroblasts. Sci Rep. 7:403422017. View Article : Google Scholar : PubMed/NCBI

16 

Yang F, Li A, Qin Y, Che H, Wang Y, Lv J, Li Y, Li H, Yue E, Ding X, et al: A novel circular RNA mediates pyroptosis of diabetic cardiomyopathy by functioning as a competing endogenous RNA. Mol Ther Nucleic Acids. 17:636–643. 2019. View Article : Google Scholar : PubMed/NCBI

17 

Kristensen LS, Andersen MS, Stagsted LVW, Ebbesen KK, Hansen TB and Kjems J: The biogenesis, biology and characterization of circular RNAs. Nat Rev Genet. 20:675–691. 2019. View Article : Google Scholar : PubMed/NCBI

18 

Jeck WR, Sorrentino JA, Wang K, Slevin MK, Burd CE, Liu J, Marzluff WF and Sharpless NE: Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA. 19:141–157. 2013. View Article : Google Scholar : PubMed/NCBI

19 

Bahn JH, Zhang Q, Li F, Chan TM, Lin X, Kim Y, Wong DT and Xiao X: The landscape of microRNA, Piwi-interacting RNA, and circular RNA in human saliva. Clin Chem. 61:221–230. 2015. View Article : Google Scholar : PubMed/NCBI

20 

Memczak S, Papavasileiou P, Peters O and Rajewsky N: Identification and characterization of circular RNAs As a new class of putative biomarkers in human blood. PLoS One. 10:e01412142015. View Article : Google Scholar : PubMed/NCBI

21 

Ashwal-Fluss R, Meyer M, Pamudurti N, Ivanov A, Bartok O, Hanan M, Evantal N, Memczak S, Rajewsky N and Kadener S: circRNA biogenesis competes with pre-mRNA splicing. Mol Cell. 56:55–66. 2014. View Article : Google Scholar : PubMed/NCBI

22 

Liu CX, Li X, Nan F, Jiang S, Gao X, Guo SK, Xue W, Cui Y, Dong K, Ding H, et al: Structure and degradation of circular RNAs regulate PKR activation in innate immunity. Cell. 177:865–880.e21. 2019. View Article : Google Scholar : PubMed/NCBI

23 

Hansen TB, Wiklund ED, Bramsen JB, Villadsen SB, Statham AL, Clark SJ and Kjems J: miRNA-dependent gene silencing involving Ago2-mediated cleavage of a circular antisense RNA. EMBO J. 30:4414–4422. 2011. View Article : Google Scholar : PubMed/NCBI

24 

Wang Y, Liu J, Ma J, Sun T, Zhou Q, Wang W, Wang G, Wu P, Wang H, Jiang L, et al: Exosomal circRNAs: Biogenesis, effect and application in human diseases. Mol Cancer. 18:1162019. View Article : Google Scholar : PubMed/NCBI

25 

Zhang XO, Wang HB, Zhang Y, Lu X, Chen LL and Yang L: Complementary sequence-mediated exon circularization. Cell. 159:134–147. 2014. View Article : Google Scholar : PubMed/NCBI

26 

Yoshimoto R, Rahimi K, Hansen TB, Kjems J and Mayeda A: Biosynthesis of Circular RNA ciRS-7/CDR1as is mediated by mammalian-wide interspersed repeats. iScience. 23:1013452020. View Article : Google Scholar : PubMed/NCBI

27 

Hansen TB, Jensen TI, Clausen BH, Bramsen JB, Finsen B, Damgaard CK and Kjems J: Natural RNA circles function as efficient microRNA sponges. Nature. 495:384–388. 2013. View Article : Google Scholar : PubMed/NCBI

28 

Piwecka M, Glažar P, Hernandez-Miranda LR, Memczak S, Wolf SA, Rybak-Wolf A, Filipchyk A, Klironomos F, Cerda Jara CA, Fenske P, et al: Loss of a mammalian circular RNA locus causes miRNA deregulation and affects brain function. Science. 357:eaam85262017. View Article : Google Scholar : PubMed/NCBI

29 

Kristensen LS, Okholm TLH, Venø MT and Kjems J: Circular RNAs are abundantly expressed and upregulated during human epidermal stem cell differentiation. RNA Biol. 15:280–291. 2018. View Article : Google Scholar : PubMed/NCBI

30 

Hsiao KY, Lin YC, Gupta SK, Chang N, Yen L, Sun HS and Tsai SJ: Noncoding effects of circular RNA CCDC66 promote colon cancer growth and metastasis. Cancer Res. 77:2339–2350. 2017. View Article : Google Scholar : PubMed/NCBI

31 

Cao Y, Yuan G, Zhang Y and Lu R: High glucose-induced circHIPK3 downregulation mediates endothelial cell injury. Biochem Biophys Res Commun. 507:362–368. 2018. View Article : Google Scholar : PubMed/NCBI

32 

Barbagallo D, Caponnetto A, Brex D, Mirabella F, Barbagallo C, Lauretta G, Morrone A, Certo F, Broggi G, Caltabiano R, et al: CircSMARCA5 Regulates VEGFA mRNA splicing and angiogenesis in glioblastoma multiforme through the binding of SRSF1. Cancers (Basel). 11:1942019. View Article : Google Scholar : PubMed/NCBI

33 

Abdelmohsen K, Panda AC, Munk R, Grammatikakis I, Dudekula DB, De S, Kim J, Noh JH, Kim KM, Martindale JL and Gorospe M: Identification of HuR target circular RNAs uncovers suppression of PABPN1 translation by CircPABPN1. RNA Biol. 14:361–369. 2017. View Article : Google Scholar : PubMed/NCBI

34 

Li XX, Xiao L, Chung HK, Ma XX, Liu X, Song JL, Jin CZ, Rao JN, Gorospe M and Wang JY: Interaction between HuR and circPABPN1 Modulates autophagy in the intestinal epithelium by altering ATG16L1 translation. Mol Cell Biol. 40:e004922020. View Article : Google Scholar : PubMed/NCBI

35 

Abe N, Matsumoto K, Nishihara M, Nakano Y, Shibata A, Maruyama H, Shuto S, Matsuda A, Yoshida M, Ito Y and Abe H: Rolling circle translation of circular RNA in living human cells. Sci Rep. 5:164352015. View Article : Google Scholar : PubMed/NCBI

36 

Meyer KD, Patil DP, Zhou J, Zinoviev A, Skabkin MA, Elemento O, Pestova TV, Qian SB and Jaffrey SR: 5′ UTR m(6)A Promotes Cap-Independent Translation. Cell. 163:999–1010. 2015. View Article : Google Scholar : PubMed/NCBI

37 

Li Y, Wang Z, Su P, Liang Y, Li Z, Zhang H, Song X, Han D, Wang X, Liu Y, et al: Circ-EIF6 encodes EIF6-224aa to promote TNBC progression via stabilizing MYH9 and activating Wnt/beta-catenin pathway. Mol Ther. 30:415–430. 2022. View Article : Google Scholar : PubMed/NCBI

38 

Han YN, Xia SQ, Zhang YY, Zheng JH and Li W: Circular RNAs: A novel type of biomarker and genetic tools in cancer. Oncotarget. 8:64551–64563. 2017. View Article : Google Scholar : PubMed/NCBI

39 

Zhang Y, Zhang XO, Chen T, Xiang JF, Yin QF, Xing YH, Zhu S, Yang L and Chen LL: Circular intronic long noncoding RNAs. Mol Cell. 51:792–806. 2013. View Article : Google Scholar : PubMed/NCBI

40 

Rines AK, Sharabi K, Tavares CD and Puigserver P: Targeting hepatic glucose metabolism in the treatment of type 2 diabetes. Nat Rev Drug Discov. 15:786–804. 2016. View Article : Google Scholar : PubMed/NCBI

41 

Shang FF, Luo S, Liang X and Xia Y: Alterations of circular RNAs in hyperglycemic human endothelial cells. Biochem Biophys Res Commun. 499:551–555. 2018. View Article : Google Scholar : PubMed/NCBI

42 

Jin G, Wang Q, Hu X, Li X, Pei X, Xu E and Li M: Profiling and functional analysis of differentially expressed circular RNAs in high glucose-induced human umbilical vein endothelial cells. FEBS Open Bio. 9:1640–1651. 2019. View Article : Google Scholar : PubMed/NCBI

43 

Pan L, Lian W, Zhang X, Han S, Cao C, Li X and Li M: Human circular RNA-0054633 regulates high glucose-induced vascular endothelial cell dysfunction through the microRNA-218/roundabout 1 and microRNA-218/heme oxygenase-1 axes. Int J Mol Med. 42:597–606. 2018.PubMed/NCBI

44 

Zhang Q, Long J, Li N, Ma X and Zheng L: Circ_CLASP2 regulates high glucose-induced dysfunction of human endothelial cells through targeting miR-140-5p/FBXW7 Axis. Front Pharmacol. 12:5947932021. View Article : Google Scholar : PubMed/NCBI

45 

Wei H, Cao C, Wei X, Meng M, Wu B, Meng L, Wei X, Gu S and Li H: Circular RNA circVEGFC accelerates high glucose-induced vascular endothelial cells apoptosis through miR-338-3p/HIF-1α/VEGFA axis. Aging (Albany NY). 12:14365–14375. 2020. View Article : Google Scholar : PubMed/NCBI

46 

Cheng J, Liu Q, Hu N, Zheng F, Zhang X, Ni Y and Liu J: Downregulation of hsa_circ_0068087 ameliorates TLR4/NF-κB/NLRP3 inflammasome-mediated inflammation and endothelial cell dysfunction in high glucose conditioned by sponging miR-197. Gene. 709:1–7. 2019. View Article : Google Scholar : PubMed/NCBI

47 

Chen J, Cui L, Yuan J, Zhang Y and Sang H: Circular RNA WDR77 target FGF-2 to regulate vascular smooth muscle cells proliferation and migration by sponging miR-124. Biochem Biophys Res Commun. 494:126–132. 2017. View Article : Google Scholar : PubMed/NCBI

48 

Zaiou M: circRNAs signature as potential diagnostic and prognostic biomarker for diabetes mellitus and related cardiovascular complications. Cells. 9:6592020. View Article : Google Scholar : PubMed/NCBI

49 

Fang Y, Wang X, Li W, Han J, Jin J, Su F, Zhang J, Huang W, Xiao F, Pan Q and Zou L: Screening of circular RNAs and validation of circANKRD36 associated with inflammation in patients with type 2 diabetes mellitus. Int J Mol Med. 42:1865–1874. 2018.PubMed/NCBI

50 

An Y, Furber KL and Ji S: Pseudogenes regulate parental gene expression via ceRNA network. J Cell Mol Med. 21:185–192. 2017. View Article : Google Scholar : PubMed/NCBI

51 

Peng F, Gong W, Li S, Yin B, Zhao C, Liu W, Chen X, Luo C, Huang Q, Chen T, et al: circRNA_010383 Acts as a Sponge for miR-135a, and its downregulated expression contributes to renal fibrosis in diabetic nephropathy. Diabetes. 70:603–615. 2021. View Article : Google Scholar : PubMed/NCBI

52 

Chen B, Li Y, Liu Y and Xu Z: circLRP6 regulates high glucose-induced proliferation, oxidative stress, ECM accumulation, and inflammation in mesangial cells. J Cell Physiol. 234:21249–21259. 2019. View Article : Google Scholar : PubMed/NCBI

53 

Wang W, Feng J, Zhou H and Li Q: Circ_0123996 promotes cell proliferation and fibrosisin mouse mesangial cells through sponging miR-149-5p and inducing Bach1 expression. Gene. 761:1449712020. View Article : Google Scholar : PubMed/NCBI

54 

Ge X, Xi L, Wang Q, Li H, Xia L, Cang Z, Peng W and Huang S: Circular RNA Circ_0000064 promotes the proliferation and fibrosis of mesangial cells via miR-143 in diabetic nephropathy. Gene. 758:1449522020. View Article : Google Scholar : PubMed/NCBI

55 

Yao T, Zha D, Hu C and Wu X: Circ_0000285 promotes podocyte injury through sponging miR-654-3p and activating MAPK6 in diabetic nephropathy. Gene. 747:1446612020. View Article : Google Scholar : PubMed/NCBI

56 

Li G, Qin Y, Qin S, Zhou X, Zhao W and Zhang D: Circ_WBSCR17 aggravates inflammatory responses and fibrosis by targeting miR-185-5p/SOX6 regulatory axis in high glucose-induced human kidney tubular cells. Life Sci. 259:1182692020. View Article : Google Scholar : PubMed/NCBI

57 

An L, Ji D, Hu W, Wang J, Jin X, Qu Y and Zhang N: Interference of Hsa_circ_0003928 alleviates high glucose-induced cell apoptosis and inflammation in HK-2 Cells via miR-151-3p/Anxa2. Diabetes Metab Syndr Obes. 13:3157–3168. 2020. View Article : Google Scholar : PubMed/NCBI

58 

Mou X, Chenv JW, Zhou DY, Liu K, Chen LJ, Zhou D and Hu YB: A novel identified circular RNA, circ_0000491, aggravates the extracellular matrix of diabetic nephropathy glomerular mesangial cells through suppressing miR-101b by targeting TGFβRI. Mol Med Rep. 22:3785–3794. 2020.PubMed/NCBI

59 

Wen S, Li S, Li L and Fan Q: circACTR2: A novel mechanism regulating high glucose-induced fibrosis in renal tubular cells via pyroptosis. Biol Pharm Bull. 43:558–564. 2020. View Article : Google Scholar : PubMed/NCBI

60 

Xu B, Wang Q, Li W, Xia L, Ge X, Shen L, Cang Z, Peng W, Shao K and Huang S: Circular RNA circEIF4G2 aggravates renal fibrosis in diabetic nephropathy by sponging miR-218. J Cell Mol Med. 26:1799–1805. 2022. View Article : Google Scholar : PubMed/NCBI

61 

Zhuang L, Wang Z, Hu X, Yang Q, Pei X and Jin G: CircHIPK3 alleviates high glucose toxicity to human renal tubular epithelial HK-2 cells through regulation of miR-326/miR-487a-3p/SIRT1. Diabetes Metab Syndr Obes. 14:729–740. 2021. View Article : Google Scholar : PubMed/NCBI

62 

Jin J, Wang Y, Zheng D, Liang M and He Q: A novel identified circular RNA, mmu_mmu_circRNA_0000309, involves in germacrone-mediated improvement of diabetic nephropathy through regulating ferroptosis by targeting miR-188-3p/GPX4 signaling axis. Antioxid Redox Signal. 36:740–759. 2022. View Article : Google Scholar : PubMed/NCBI

63 

Antonetti DA, Silva PS and Stitt AW: Current understanding of the molecular and cellular pathology of diabetic retinopathy. Nat Rev Endocrinol. 17:195–206. 2021. View Article : Google Scholar : PubMed/NCBI

64 

Gu Y, Ke G, Wang L, Zhou E, Zhu K and Wei Y: Altered expression profile of circular RNAs in the serum of patients with diabetic retinopathy revealed by microarray. Ophthalmic Res. 58:176–184. 2017. View Article : Google Scholar : PubMed/NCBI

65 

Liu C, Ge HM, Liu BM, Dong R, Shan K, Chen X, Yao MD, Li XM, Yao J, Zhou RM, et al: Targeting pericyte-endothelial cell crosstalk by circular RNA-cPWWP2A inhibition aggravates diabetes-induced microvascular dysfunction. Proc Natl Acad Sci USA. 116:7455–7464. 2019. View Article : Google Scholar : PubMed/NCBI

66 

Jiang Q, Liu C, Li CP, Xu SS, Yao MD, Ge HM, Sun YN, Li XM, Zhang SJ, Shan K, et al: Circular RNA-ZNF532 regulates diabetes-induced retinal pericyte degeneration and vascular dysfunction. J Clin Invest. 130:3833–3847. 2020. View Article : Google Scholar : PubMed/NCBI

67 

He M, Wang W, Yu H, Wang D, Cao D, Zeng Y, Wu Q, Zhong P, Cheng Z, Hu Y and Zhang L: Comparison of expression profiling of circular RNAs in vitreous humour between diabetic retinopathy and non-diabetes mellitus patients. Acta Diabetol. 57:479–489. 2020. View Article : Google Scholar : PubMed/NCBI

68 

Wu Z, Liu B, Ma Y, Chen H, Wu J and Wang J: Discovery and validation of hsa_circ_0001953 as a potential biomarker for proliferative diabetic retinopathy in human blood. Acta Ophthalmol. 99:306–313. 2021. View Article : Google Scholar : PubMed/NCBI

69 

Zhang SJ, Chen X, Li CP, Li XM, Liu C, Liu BH, Shan K, Jiang Q, Zhao C and Yan B: Identification and characterization of circular RNAs as a new class of putative biomarkers in diabetes retinopathy. Invest Ophthalmol Vis Sci. 58:6500–6509. 2017. View Article : Google Scholar : PubMed/NCBI

70 

Liu C, Yao MD, Li CP, Shan K, Yang H, Wang JJ, Liu B, Li XM, Yao J, Jiang Q and Yan B: Silencing of circular RNA-ZNF609 ameliorates vascular endothelial dysfunction. Theranostics. 7:2863–2877. 2017. View Article : Google Scholar : PubMed/NCBI

71 

Zou J, Liu KC, Wang WP and Xu Y: Circular RNA COL1A2 promotes angiogenesis via regulating miR-29b/VEGF axis in diabetic retinopathy. Life Sci. 256:1178882020. View Article : Google Scholar : PubMed/NCBI

72 

Yao MD, Jiang Q, Ma Y, Zhu Y, Zhang QY, Shi ZH, Zhao C and Yan B: Targeting circular RNA-MET for anti-angiogenesis treatment via inhibiting endothelial tip cell specialization. Mol Ther. 30:1252–1264. 2022. View Article : Google Scholar : PubMed/NCBI

73 

Guo J, Xiao F, Ren W, Zhu Y, Du Q, Li Q and Li X: ViaCircular Ribonucleic Acid circFTO promotes angiogenesis and impairs blood-retinal barrier targeting the miR-128-3p/Thioredoxin interacting protein axis in diabetic retinopathy. Front Mol Biosci. 8:6854662021. View Article : Google Scholar : PubMed/NCBI

74 

Zhu K, Hu X, Chen H, Li F, Yin N, Liu AL, Shan K, Qin YW, Huang X, Chang Q, et al: Downregulation of circRNA DMNT3B contributes to diabetic retinal vascular dysfunction through targeting miR-20b-5p and BAMBI. EBioMedicine. 49:341–353. 2019. View Article : Google Scholar : PubMed/NCBI

75 

Ye L, Guo H, Wang Y, Peng Y, Zhang Y, Li S, Yang M and Wang L: Exosomal circEhmt1 released from hypoxia-pretreated pericytes regulates high glucose-induced microvascular dysfunction via the NFIA/NLRP3 pathway. Oxid Med Cell Longev. 2021:88330982021. View Article : Google Scholar : PubMed/NCBI

76 

Li Y, Cheng T, Wan C and Cang Y: circRNA_0084043 contributes to the progression of diabetic retinopathy via sponging miR-140-3p and inducing TGFA gene expression in retinal pigment epithelial cells. Gene. 747:1446532020. View Article : Google Scholar : PubMed/NCBI

77 

Sun H and Kang X: hsa_circ_0041795 contributes to human retinal pigment epithelial cells (ARPE 19) injury induced by high glucose via sponging miR-646 and activating VEGFC. Gene. 747:1446542020. View Article : Google Scholar : PubMed/NCBI

78 

Wang L, Luo T, Bao Z, Li Y and Bu W: Intrathecal circHIPK3 shRNA alleviates neuropathic pain in diabetic rats. Biochem Biophys Res Commun. 505:644–650. 2018. View Article : Google Scholar : PubMed/NCBI

79 

Zhang HH, Zhang Y, Wang X, Yang P, Zhang BY, Hu S, Xu GY and Hu J: Circular RNA profile in diabetic peripheral neuropathy: Analysis of coexpression networks of circular RNAs and mRNAs. Epigenomics. 12:843–857. 2020. View Article : Google Scholar : PubMed/NCBI

80 

Liu YT, Xu Z, Liu W, Ren S, Xiong HW, Jiang T, Chen J, Kang Y, Li QY, Wu ZH, et al: The circ_0002538/miR-138-5p/plasmolipin axis regulates Schwann cell migration and myelination in diabetic peripheral neuropathy. Neural Regen Res. 18:1591–1600. 2023. View Article : Google Scholar : PubMed/NCBI

81 

Zhou B and Yu JW: A novel identified circular RNA, circRNA_010567, promotes myocardial fibrosis via suppressing miR-141 by targeting TGF-β1. Biochem Biophys Res Commun. 487:769–775. 2017. View Article : Google Scholar : PubMed/NCBI

82 

Dong S, Tu C, Ye X, Li L, Zhang M, Xue A, Chen S, Zhao Z, Cong B, Lin J and Shen Y: Expression profiling of circular RNAs and their potential role in early-stage diabetic cardiomyopathy. Mol Med Rep. 22:1958–1968. 2020. View Article : Google Scholar : PubMed/NCBI

83 

Shao Y, Li M, Yu Q, Gong M, Wang Y, Yang X, Liu L, Liu D, Tan Z, Zhang Y, et al: CircRNA CDR1as promotes cardiomyocyte apoptosis through activating hippo signaling pathway in diabetic cardiomyopathy. Eur J Pharmacol. 922:1749152022. View Article : Google Scholar : PubMed/NCBI

84 

Li M, Ding W, Tariq MA, Chang W, Zhang X, Xu W, Hou L, Wang Y and Wang J: A circular transcript of ncx1 gene mediates ischemic myocardial injury by targeting miR-133a-3p. Theranostics. 8:5855–5869. 2018. View Article : Google Scholar : PubMed/NCBI

85 

Sun Y, Yang Z, Zheng B, Zhang XH, Zhang ML, Zhao XS, Zhao HY, Suzuki T and Wen JK: A novel regulatory mechanism of smooth muscle α-actin expression by NRG-1/circACTA2/miR-548f-5p axis. Circ Res. 121:628–635. 2017. View Article : Google Scholar : PubMed/NCBI

86 

Ni H, Li W, Zhuge Y, Xu S, Wang Y, Chen Y, Shen G and Wang F: Inhibition of circHIPK3 prevents angiotensin II-induced cardiac fibrosis by sponging miR-29b-3p. Int J Cardiol. 292:188–196. 2019. View Article : Google Scholar : PubMed/NCBI

87 

Zhu Y, Pan W, Yang T, Meng X, Jiang Z, Tao L and Wang L: Upregulation of circular RNA CircNFIB attenuates cardiac fibrosis by sponging miR-433. Front Genet. 10:5642019. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Yuan L, Duan J and Zhou H: Perspectives of circular RNAs in diabetic complications from biological markers to potential therapeutic targets (Review). Mol Med Rep 28: 194, 2023.
APA
Yuan, L., Duan, J., & Zhou, H. (2023). Perspectives of circular RNAs in diabetic complications from biological markers to potential therapeutic targets (Review). Molecular Medicine Reports, 28, 194. https://doi.org/10.3892/mmr.2023.13081
MLA
Yuan, L., Duan, J., Zhou, H."Perspectives of circular RNAs in diabetic complications from biological markers to potential therapeutic targets (Review)". Molecular Medicine Reports 28.4 (2023): 194.
Chicago
Yuan, L., Duan, J., Zhou, H."Perspectives of circular RNAs in diabetic complications from biological markers to potential therapeutic targets (Review)". Molecular Medicine Reports 28, no. 4 (2023): 194. https://doi.org/10.3892/mmr.2023.13081
Copy and paste a formatted citation
x
Spandidos Publications style
Yuan L, Duan J and Zhou H: Perspectives of circular RNAs in diabetic complications from biological markers to potential therapeutic targets (Review). Mol Med Rep 28: 194, 2023.
APA
Yuan, L., Duan, J., & Zhou, H. (2023). Perspectives of circular RNAs in diabetic complications from biological markers to potential therapeutic targets (Review). Molecular Medicine Reports, 28, 194. https://doi.org/10.3892/mmr.2023.13081
MLA
Yuan, L., Duan, J., Zhou, H."Perspectives of circular RNAs in diabetic complications from biological markers to potential therapeutic targets (Review)". Molecular Medicine Reports 28.4 (2023): 194.
Chicago
Yuan, L., Duan, J., Zhou, H."Perspectives of circular RNAs in diabetic complications from biological markers to potential therapeutic targets (Review)". Molecular Medicine Reports 28, no. 4 (2023): 194. https://doi.org/10.3892/mmr.2023.13081
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team