Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
November-2023 Volume 28 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
November-2023 Volume 28 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Immune podocytes in the immune microenvironment of lupus nephritis (Review)

  • Authors:
    • Ruiling Liu
    • Xiaoting Wen
    • Xinyue Peng
    • Miaomiao Zhao
    • Liangyu Mi
    • Jiamin Lei
    • Ke Xu
  • View Affiliations / Copyright

    Affiliations: Department of Microbiology and Immunology, Basic Medical College, Shanxi Medical University, Jinzhong, Shanxi 030619, P.R. China, Department of Rheumatology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi 030032, P.R. China, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, Shanxi 030032, P.R. China, Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China, Department of Rheumatology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi 030032, P.R. China
    Copyright: © Liu et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 204
    |
    Published online on: September 14, 2023
       https://doi.org/10.3892/mmr.2023.13091
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Systemic lupus erythematosus (SLE) is a systemic autoimmune disorder caused by the loss of tolerance to endogenous nuclear antigens such as double‑stranded DNA, leading to the proliferation of T cells and subsequent activation of B cells, which results in serious organ damage and life‑threatening complications such as lupus nephritis. Lupus nephritis (LN) develops as a frequent complication of SLE, accounting for >60% of SLE cases, and is characterized by proteinuria and heterogeneous histopathological findings. Glomerular injury serves a role in proteinuria as podocyte damage is the leading contributor. Numerous studies have reported that podocytes are involved in the immune response that promotes LN progression. In LN, immune complex deposition stimulates dendritic cells to secrete inflammatory cytokines that activate T cells and B cells. B cells secrete autoantibodies that attack and damage the renal podocytes, leading to renal podocyte injury. The injured podocytes trigger inflammatory cells through the expression of toll‑like receptors and trigger T cells through major histocompatibility complexes and CD86, thereby participating in the local immune response and the exacerbation of podocyte injury. Based on the existing literature, the present review summarizes the research progress of podocytes in LN under the local immune microenvironment of the kidney, explores the mechanism of podocyte injury under the immune microenvironment, and evaluates podocytes as a potential therapeutic target for LN.
View Figures

Figure 1

Figure 2

Figure 3

View References

1 

Tian J, Zhang D, Yao X, Huang Y and Lu Q: Global epidemiology of systemic lupus erythematosus: A comprehensive systematic analysis and modelling study. Ann Rheum Dis. 82:351–356. 2023. View Article : Google Scholar : PubMed/NCBI

2 

Kaul A, Gordon C, Crow MK, Touma Z, Urowitz MB, van Vollenhoven R, Ruiz-Irastorza G and Hughes G: Systemic lupus erythematosus. Nat Rev Dis Primers. 2:160392016. View Article : Google Scholar : PubMed/NCBI

3 

Tektonidou MG, Dasgupta A and Ward MM: Risk of end-stage renal disease in patients with lupus nephritis, 1971–2015: A systematic review and bayesian meta-analysis. Arthritis Rheumatol. 68:1432–1441. 2016. View Article : Google Scholar : PubMed/NCBI

4 

Seligman VA, Lum RF, Olson JL, Li H and Criswell LA: Demographic differences in the development of lupus nephritis: A retrospective analysis. Am J Med. 112:726–729. 2002. View Article : Google Scholar : PubMed/NCBI

5 

Aguirre A, Izadi Z, Trupin L, Barbour KE, Greenlund KJ, Katz P, Lanata C, Criswell L, Dall'Era M and Yazdany J: Race, ethnicity, and disparities in the risk of end-organ lupus manifestations following a systemic lupus erythematosus diagnosis in a multiethnic cohort. Arthritis Care Res (Hoboken). 75:34–43. 2023. View Article : Google Scholar : PubMed/NCBI

6 

Tsokos GC, Lo MS, Costa RP and Sullivan KE: New insights into the immunopathogenesis of systemic lupus erythematosus. Nat Rev Rheumatol. 12:716–730. 2016. View Article : Google Scholar : PubMed/NCBI

7 

Mohan C and Putterman C: Genetics and pathogenesis of systemic lupus erythematosus and lupus nephritis. Nat Rev Nephrol. 11:329–341. 2015. View Article : Google Scholar : PubMed/NCBI

8 

Costenbader KH, Desai A, Alarcón GS, Hiraki LT, Shaykevich T, Brookhart MA, Massarotti E, Lu B, Solomon DH and Winkelmayer WC: Trends in the incidence, demographics, and outcomes of end-stage renal disease due to lupus nephritis in the US from 1995 to 2006. Arthritis Rheum. 63:1681–1688. 2011. View Article : Google Scholar : PubMed/NCBI

9 

Parikh SV and Rovin BH: Current and emerging therapies for lupus nephritis. J Am Soc Nephrol. 27:2929–2939. 2016. View Article : Google Scholar : PubMed/NCBI

10 

Davidson A: What is damaging the kidney in lupus nephritis? Nat Rev Rheumatol. 12:143–153. 2016. View Article : Google Scholar : PubMed/NCBI

11 

Kraft SW, Schwartz MM, Korbet SM and Lewis EJ: Glomerular podocytopathy in patients with systemic lupus erythematosus. J Am Soc Nephrol. 16:175–179. 2005. View Article : Google Scholar : PubMed/NCBI

12 

Bomback AS and Markowitz GS: Lupus podocytopathy: A distinct entity. Clin J Am Soc Nephrol. 11:547–548. 2016. View Article : Google Scholar : PubMed/NCBI

13 

Wright RD and Beresford MW: Podocytes contribute, and respond, to the inflammatory environment in lupus nephritis. Am J Physiol Renal Physiol. 315:F1683–F1694. 2018. View Article : Google Scholar : PubMed/NCBI

14 

Moustafa FE, Soliman NA, Bakr AM and El Shwaf IM: Assessment of detached podocytes in the Bowman's space as a marker of disease activity in lupus nephritis. Lupus. 23:146–150. 2014. View Article : Google Scholar : PubMed/NCBI

15 

Hu W, Chen Y, Wang S, Chen H and Liu Z, Zeng C, Zhang H and Liu Z: Clinical-Morphological features and outcomes of lupus podocytopathy. Clin J Am Soc Nephrol. 11:585–592. 2016. View Article : Google Scholar : PubMed/NCBI

16 

Jamaly S, Rakaee M, Abdi R, Tsokos GC and Fenton KA: Interplay of immune and kidney resident cells in the formation of tertiary lymphoid structures in lupus nephritis. Autoimmun Rev. 20:1029802021. View Article : Google Scholar : PubMed/NCBI

17 

Kang S, Fedoriw Y, Brenneman EK, Truong YK, Kikly K and Vilen BJ: BAFF induces tertiary lymphoid structures and positions T cells within the glomeruli during lupus nephritis. J Immunol. 198:2602–2611. 2017. View Article : Google Scholar : PubMed/NCBI

18 

Schwartz N, Goilav B and Putterman C: The pathogenesis, diagnosis and treatment of lupus nephritis. Curr Opin Rheumatol. 26:502–509. 2014. View Article : Google Scholar : PubMed/NCBI

19 

Dieker J, Tel J, Pieterse E, Thielen A, Rother N, Bakker M, Fransen J, Dijkman HB, Berden JH, de Vries JM, et al: Circulating apoptotic microparticles in systemic lupus erythematosus patients drive the activation of dendritic cell subsets and prime neutrophils for NETosis. Arthritis Rheumatol. 68:462–472. 2016. View Article : Google Scholar : PubMed/NCBI

20 

Elkon KB: Review: Cell death, nucleic acids, and immunity: Inflammation beyond the grave. Arthritis Rheumatol. 70:805–816. 2018. View Article : Google Scholar : PubMed/NCBI

21 

Salvi V, Gianello V, Busatto S, Bergese P, Andreoli L, D'Oro U, Zingoni A, Tincani A, Sozzani S and Bosisio D: Exosome-delivered microRNAs promote IFN-α secretion by human plasmacytoid DCs via TLR7. JCI Insight. 3:e982042018. View Article : Google Scholar : PubMed/NCBI

22 

Leonard D, Eloranta ML, Hagberg N, Berggren O, Tandre K, Alm G and Rönnblom L: Activated T cells enhance interferon-α production by plasmacytoid dendritic cells stimulated with RNA-containing immune complexes. Ann Rheum Dis. 75:1728–1734. 2016. View Article : Google Scholar : PubMed/NCBI

23 

Wen L, Zhang B, Wu X, Liu R, Fan H, Han L, Zhang Z, Ma X, Chu CQ and Shi X: Toll-like receptors 7 and 9 regulate the proliferation and differentiation of B cells in systemic lupus erythematosus. Front Immunol. 14:10932082023. View Article : Google Scholar : PubMed/NCBI

24 

Schrezenmeier E, Jayne D and Dörner T: Targeting B cells and plasma cells in glomerular diseases: Translational perspectives. J Am Soc Nephrol. 29:741–758. 2018. View Article : Google Scholar : PubMed/NCBI

25 

Flores-Mendoza G, Sansón SP, Rodríguez-Castro S, Crispín JC and Rosetti F: Mechanisms of tissue injury in lupus nephritis. Trends Mol Med. 24:364–378. 2018. View Article : Google Scholar : PubMed/NCBI

26 

Parikh SV, Almaani S, Brodsky S and Rovin BH: Update on lupus nephritis: Core curriculum 2020. Am J Kidney Dis. 76:265–281. 2020. View Article : Google Scholar : PubMed/NCBI

27 

Sharma M, Vignesh P, Tiewsoh K and Rawat A: Revisiting the complement system in systemic lupus erythematosus. Expert Rev Clin Immunol. 16:397–408. 2020. View Article : Google Scholar : PubMed/NCBI

28 

Pavenstädt H, Kriz W and Kretzler M: Cell biology of the glomerular podocyte. Physiol Rev. 83:253–307. 2003. View Article : Google Scholar : PubMed/NCBI

29 

Garg P: A review of podocyte biology. Am J Nephrol. 47 (Suppl 1):S3–S13. 2018. View Article : Google Scholar

30 

Humphries JD, Wang P, Streuli C, Geiger B, Humphries MJ and Ballestrem C: Vinculin controls focal adhesion formation by direct interactions with talin and actin. J Cell Biol. 179:1043–1057. 2007. View Article : Google Scholar : PubMed/NCBI

31 

Sellin L, Huber TB, Gerke P, Quack I, Pavenstädt H and Walz G: NEPH1 defines a novel family of podocin interacting proteins. FASEB J. 17:115–117. 2003. View Article : Google Scholar : PubMed/NCBI

32 

Garg P, Verma R, Nihalani D, Johnstone DB and Holzman LB: Neph1 cooperates with nephrin to transduce a signal that induces actin polymerization. Mol Cell Biol. 27:8698–8712. 2007. View Article : Google Scholar : PubMed/NCBI

33 

Huber TB, Simons M, Hartleben B, Sernetz L, Schmidts M, Gundlach E, Saleem MA, Walz G and Benzing T: Molecular basis of the functional podocin-nephrin complex: Mutations in the NPHS2 gene disrupt nephrin targeting to lipid raft microdomains. Hum Mol Genet. 12:3397–3405. 2003. View Article : Google Scholar : PubMed/NCBI

34 

Dryer SE and Reiser J: TRPC6 channels and their binding partners in podocytes: Role in glomerular filtration and pathophysiology. Am J Physiol Renal Physiol. 299:F689–F701. 2010. View Article : Google Scholar : PubMed/NCBI

35 

Ha TS: Roles of adaptor proteins in podocyte biology. World J Nephrol. 2:1–10. 2013. View Article : Google Scholar : PubMed/NCBI

36 

Wang Y, Yu F, Song D, Wang SX and Zhao MH: Podocyte involvement in lupus nephritis based on the 2003 ISN/RPS system: A large cohort study from a single centre. Rheumatology (Oxford). 53:1235–1244. 2014. View Article : Google Scholar : PubMed/NCBI

37 

Banas MC, Banas B, Hudkins KL, Wietecha TA, Iyoda M, Bock E, Hauser P, Pippin JW, Shankland SJ, Smith KD, et al: TLR4 links podocytes with the innate immune system to mediate glomerular injury. J Am Soc Nephrol. 19:704–713. 2008. View Article : Google Scholar : PubMed/NCBI

38 

Li X, Ding F, Zhang X, Li B and Ding J: The expression profile of complement components in podocytes. Int J Mol Sci. 17:4712016. View Article : Google Scholar : PubMed/NCBI

39 

Gao S, Cui Z and Zhao MH: Complement C3a and C3a receptor activation mediates podocyte injuries in the mechanism of primary membranous nephropathy. J Am Soc Nephrol. 33:1742–1756. 2022. View Article : Google Scholar : PubMed/NCBI

40 

Wang H, Lv D, Jiang S, Hou Q, Zhang L, Li S, Zhu X, Xu X, Wen J, Zeng C, et al: Complement induces podocyte pyroptosis in membranous nephropathy by mediating mitochondrial dysfunction. Cell Death Dis. 13:2812022. View Article : Google Scholar : PubMed/NCBI

41 

Pippin JW, Durvasula R, Petermann A, Hiromura K, Couser WG and Shankland SJ: DNA damage is a novel response to sublytic complement C5b-9-induced injury in podocytes. J Clin Invest. 111:877–885. 2003. View Article : Google Scholar : PubMed/NCBI

42 

Appay MD, Kazatchkine MD, Levi-Strauss M, Hinglais N and Bariety J: Expression of CR1 (CD35) mRNA in podocytes from adult and fetal human kidneys. Kidney Int. 38:289–293. 1990. View Article : Google Scholar : PubMed/NCBI

43 

Teixeira JE, Costa RS, Lachmann PJ, Würzner R and Barbosa JE: CR1 stump peptide and terminal complement complexes are found in the glomeruli of lupus nephritis patients. Clin Exp Immunol. 105:497–503. 1996. View Article : Google Scholar : PubMed/NCBI

44 

Moll S, Miot S, Sadallah S, Gudat F, Mihatsch MJ and Schifferli JA: No complement receptor 1 stumps on podocytes in human glomerulopathies. Kidney Int. 59:160–168. 2001. View Article : Google Scholar : PubMed/NCBI

45 

Bao L, Haas M and Quigg RJ: Complement factor H deficiency accelerates development of lupus nephritis. J Am Soc Nephrol. 22:285–295. 2011. View Article : Google Scholar : PubMed/NCBI

46 

Pickering MC, Ismajli M, Condon MB, McKenna N, Hall AE, Lightstone L, Terence Cook H and Cairns TD: Eculizumab as rescue therapy in severe resistant lupus nephritis. Rheumatology (Oxford). 54:2286–2288. 2015.PubMed/NCBI

47 

Coppo R, Peruzzi L, Amore A, Martino S, Vergano L, Lastauka I, Schieppati A, Noris M, Tovo PA and Remuzzi G: Dramatic effects of eculizumab in a child with diffuse proliferative lupus nephritis resistant to conventional therapy. Pediatr Nephrol. 30:167–172. 2015. View Article : Google Scholar : PubMed/NCBI

48 

Patole PS, Pawar RD, Lech M, Zecher D, Schmidt H, Segerer S, Ellwart A, Henger A, Kretzler M and Anders HJ: Expression and regulation of Toll-like receptors in lupus-like immune complex glomerulonephritis of MRL-Fas(lpr) mice. Nephrol Dial Transplant. 21:3062–3073. 2006. View Article : Google Scholar : PubMed/NCBI

49 

Devarapu SK and Anders HJ: Toll-like receptors in lupus nephritis. J Biomed Sci. 25:352018. View Article : Google Scholar : PubMed/NCBI

50 

Kimura J, Ichii O, Miyazono K, Nakamura T, Horino T, Otsuka-Kanazawa S and Kon Y: Overexpression of Toll-like receptor 8 correlates with the progression of podocyte injury in murine autoimmune glomerulonephritis. Sci Rep. 4:72902014. View Article : Google Scholar : PubMed/NCBI

51 

Marshak-Rothstein A and Rifkin IR: Immunologically active autoantigens: The role of toll-like receptors in the development of chronic inflammatory disease. Annu Rev Immunol. 25:419–441. 2007. View Article : Google Scholar : PubMed/NCBI

52 

Anders HJ, Lichtnekert J and Allam R: Interferon-alpha and -beta in kidney inflammation. Kidney Int. 77:848–854. 2010. View Article : Google Scholar : PubMed/NCBI

53 

Machida H, Ito S, Hirose T, Takeshita F, Oshiro H, Nakamura T, Mori M, Inayama Y, Yan K, Kobayashi N and Yokota S: Expression of Toll-like receptor 9 in renal podocytes in childhood-onset active and inactive lupus nephritis. Nephrol Dial Transplant. 25:2530–2537. 2010. View Article : Google Scholar : PubMed/NCBI

54 

Masum MA, Ichii O, Hosny Ali Elewa Y, Nakamura T, Otani Y, Hosotani M and Kon Y: Overexpression of toll-like receptor 9 correlates with podocyte injury in a murine model of autoimmune membranoproliferative glomerulonephritis. Autoimmunity. 51:386–398. 2018. View Article : Google Scholar : PubMed/NCBI

55 

Takano Y, Yamauchi K, Hayakawa K, Hiramatsu N, Kasai A, Okamura M, Yokouchi M, Shitamura A, Yao J and Kitamura M: Transcriptional suppression of nephrin in podocytes by macrophages: Roles of inflammatory cytokines and involvement of the PI3K/Akt pathway. FEBS Lett. 581:421–426. 2007. View Article : Google Scholar : PubMed/NCBI

56 

Zhang Z, Niu L, Tang X, Feng R, Yao G, Chen W, Li W, Feng X, Chen H and Sun L: Mesenchymal stem cells prevent podocyte injury in lupus-prone B6.MRL-Faslpr mice via polarizing macrophage into an anti-inflammatory phenotype. Nephrol Dial Transplant. 34:597–605. 2019. View Article : Google Scholar : PubMed/NCBI

57 

Sung SJ and Fu SM: Interactions among glomerulus infiltrating macrophages and intrinsic cells via cytokines in chronic lupus glomerulonephritis. J Autoimmun. 106:1023312020. View Article : Google Scholar : PubMed/NCBI

58 

Zoja C, Wang JM, Bettoni S, Sironi M, Renzi D, Chiaffarino F, Abboud HE, Van Damme J, Mantovani A, Remuzzi G, et al: Interleukin-1 beta and tumor necrosis factor-alpha induce gene expression and production of leukocyte chemotactic factors, colony-stimulating factors, and interleukin-6 in human mesangial cells. Am J Pathol. 138:991–1003. 1991.PubMed/NCBI

59 

Latz E, Xiao TS and Stutz A: Activation and regulation of the inflammasomes. Nat Rev Immunol. 13:397–411. 2013. View Article : Google Scholar : PubMed/NCBI

60 

Fu R, Guo C, Wang S, Huang Y, Jin O, Hu H, Chen J, Xu B, Zhou M, Zhao J, et al: Podocyte activation of NLRP3 inflammasomes contributes to the development of proteinuria in lupus nephritis. Arthritis Rheumatol. 69:1636–1646. 2017. View Article : Google Scholar : PubMed/NCBI

61 

Guo C, Fu R, Zhou M, Wang S, Huang Y, Hu H, Zhao J, Gaskin F, Yang N and Fu SM: Pathogenesis of lupus nephritis: RIP3 dependent necroptosis and NLRP3 inflammasome activation. J Autoimmun. 103:1022862019. View Article : Google Scholar : PubMed/NCBI

62 

Cai M, Zhou T, Wang X, Shang M, Zhang Y, Luo M, Xu C and Yuan W: DC-SIGN expression on podocytes and its role in inflammatory immune response of lupus nephritis. Clin Exp Immunol. 183:317–325. 2016. View Article : Google Scholar : PubMed/NCBI

63 

Haymann JP, Levraud JP, Bouet S, Kappes V, Hagège J, Nguyen G, Xu Y, Rondeau E and Sraer JD: Characterization and localization of the neonatal Fc receptor in adult human kidney. J Am Soc Nephrol. 11:632–639. 2000. View Article : Google Scholar : PubMed/NCBI

64 

Ichinose K, Ushigusa T, Nishino A, Nakashima Y, Suzuki T, Horai Y, Koga T, Kawashiri SY, Iwamoto N, Tamai M, et al: Lupus Nephritis IgG induction of calcium/calmodulin-dependent protein kinase IV expression in podocytes and alteration of their function. Arthritis Rheumatol. 68:944–952. 2016. View Article : Google Scholar : PubMed/NCBI

65 

Bhargava R, Lehoux S, Maeda K, Tsokos MG, Krishfield S, Ellezian L, Pollak M, Stillman IE, Cummings RD and Tsokos GC: Aberrantly glycosylated IgG elicits pathogenic signaling in podocytes and signifies lupus nephritis. JCI Insight. 6:e1477892021. View Article : Google Scholar : PubMed/NCBI

66 

Bruschi M, Moroni G, Sinico RA, Franceschini F, Fredi M, Vaglio A, Cavagna L, Petretto A, Pratesi F, Migliorini P, et al: Serum IgG2 antibody multi-composition in systemic lupus erythematosus and in lupus nephritis (Part 2): Prospective study. Rheumatology (Oxford). 60:3388–3397. 2021. View Article : Google Scholar : PubMed/NCBI

67 

Mason LJ, Ravirajan CT, Rahman A, Putterman C and Isenberg DA: Is alpha-actinin a target for pathogenic anti-DNA antibodies in lupus nephritis? Arthritis Rheum. 50:866–870. 2004. View Article : Google Scholar : PubMed/NCBI

68 

Renaudineau Y, Deocharan B, Jousse S, Renaudineau E, Putterman C and Youinou P: Anti-alpha-actinin antibodies: A new marker of lupus nephritis. Autoimmun Rev. 6:464–468. 2007. View Article : Google Scholar : PubMed/NCBI

69 

Chen A, Lee K, D'Agati VD, Wei C, Fu J, Guan TJ, He JC, Schlondorff D and Agudo J: Bowman's capsule provides a protective niche for podocytes from cytotoxic CD8+ T cells. J Clin Invest. 128:3413–3424. 2018. View Article : Google Scholar : PubMed/NCBI

70 

Reiser J, von Gersdorff G, Loos M, Oh J, Asanuma K, Giardino L, Rastaldi MP, Calvaresi N, Watanabe H, Schwarz K, et al: Induction of B7-1 in podocytes is associated with nephrotic syndrome. J Clin Invest. 113:1390–1397. 2004. View Article : Google Scholar : PubMed/NCBI

71 

Greka A, Weins A and Mundel P: Abatacept in B7-1-positive proteinuric kidney disease. N Engl J Med. 370:1263–1266. 2014.PubMed/NCBI

72 

Khullar B, Balyan R, Oswal N, Jain N, Sharma A, Abdin MZ, Bagga A, Bhatnagar S, Wadhwa N, Natchu UCM, et al: Interaction of CD80 with Neph1: A potential mechanism of podocyte injury. Clin Exp Nephrol. 22:508–516. 2018. View Article : Google Scholar : PubMed/NCBI

73 

Coers W, Brouwer E, Vos JT, Chand A, Huitema S, Heeringa P, Kallenberg CG and Weening JJ: Podocyte expression of MHC class I and II and intercellular adhesion molecule-1 (ICAM-1) in experimental pauci-immune crescentic glomerulonephritis. Clin Exp Immunol. 98:279–286. 1994. View Article : Google Scholar : PubMed/NCBI

74 

Goldwich A, Burkard M, Olke M, Daniel C, Amann K, Hugo C, Kurts C, Steinkasserer A and Gessner A: Podocytes are nonhematopoietic professional antigen-presenting cells. J Am Soc Nephrol. 24:906–916. 2013. View Article : Google Scholar : PubMed/NCBI

75 

Li S, Liu Y, He Y, Rong W, Zhang M, Li L, Liu Z and Zen K: Podocytes present antigen to activate specific T cell immune responses in inflammatory renal disease. J Pathol. 252:165–177. 2020. View Article : Google Scholar : PubMed/NCBI

76 

Okamoto A, Fujio K, Tsuno NH, Takahashi K and Yamamoto K: Kidney-infiltrating CD4+ T-cell clones promote nephritis in lupus-prone mice. Kidney Int. 82:969–979. 2012. View Article : Google Scholar : PubMed/NCBI

77 

May CJ, Welsh GI, Chesor M, Lait PJ, Schewitz-Bowers LP, Lee RWJ and Saleem MA: Human Th17 cells produce a soluble mediator that increases podocyte motility via signaling pathways that mimic PAR-1 activation. Am J Physiol Renal Physiol. 317:F913–F921. 2019. View Article : Google Scholar : PubMed/NCBI

78 

Cheng Y, Yang X, Zhang X and An Z: Analysis of expression levels of IL-17 and IL-34 and influencing factors for prognosis in patients with lupus nephritis. Exp Ther Med. 17:2279–2283. 2019.PubMed/NCBI

79 

Wang N, Gao C, Cui S, Qin Y, Zhang C, Yi P, Di X, Liu S, Li T, Gao G and Zheng Z: Induction therapy downregulates the expression of Th17/Tfh cytokines in patients with active lupus nephritis. Am J Clin Exp Immunol. 7:67–75. 2018.PubMed/NCBI

80 

Yan J, Li Y, Yang H, Zhang L, Yang B, Wang M and Li Q: Interleukin-17A participates in podocyte injury by inducing IL-1β secretion through ROS-NLRP3 inflammasome-caspase-1 pathway. Scand J Immunol. 87:e126452018. View Article : Google Scholar : PubMed/NCBI

81 

Yuan DH, Jia Y, Hassan OM, Xu LY and Wu XC: LPS-Treated podocytes polarize naive CD4(+) T Cells into Th17 and treg cells. Biomed Res Int. 2020:85879232020. View Article : Google Scholar : PubMed/NCBI

82 

Chang A, Henderson SG, Brandt D, Liu N, Guttikonda R, Hsieh C, Kaverina N, Utset TO, Meehan SM, Quigg RJ, et al: In situ B cell-mediated immune responses and tubulointerstitial inflammation in human lupus nephritis. J Immunol. 186:1849–1860. 2011. View Article : Google Scholar : PubMed/NCBI

83 

Tsokos GC: Autoimmunity and organ damage in systemic lupus erythematosus. Nat Immunol. 21:605–614. 2020. View Article : Google Scholar : PubMed/NCBI

84 

Kolovou K, Laskari K, Roumelioti M, Tektonidou MG, Panayiotidis P, Boletis JN, Marinaki S and Sfikakis PP: B-cell oligoclonal expansions in renal tissue of patients with immune-mediated glomerular disease. Clin Immunol. 217:1084882020. View Article : Google Scholar : PubMed/NCBI

85 

Senaldi G, Stolina M, Guo J, Faggioni R, McCabe S, Kaufman SA, Van G, Xu W, Fletcher FA, Boone T, et al: Regulatory effects of novel neurotrophin-1/b cell-stimulating factor-3 (cardiotrophin-like cytokine) on B cell function. J Immunol. 168:5690–5698. 2002. View Article : Google Scholar : PubMed/NCBI

86 

Schmidt-Ott KM, Yang J, Chen X, Wang H, Paragas N, Mori K, Li JY, Lu B, Costantini F, Schiffer M, et al: Novel regulators of kidney development from the tips of the ureteric bud. J Am Soc Nephrol. 16:1993–2002. 2005. View Article : Google Scholar : PubMed/NCBI

87 

Savin VJ, Sharma M, Zhou J, Gennochi D, Fields T, Sharma R, McCarthy ET, Srivastava T, Domen J, Tormo A and Gauchat JF: Renal and Hematological Effects of CLCF-1, a B-Cell-Stimulating Cytokine of the IL-6 Family. J Immunol Res. 2015:7149642015. View Article : Google Scholar : PubMed/NCBI

88 

Dos Santos M, Poletti PT, Milhoransa P, Monticielo OA and Veronese FV: Unraveling the podocyte injury in lupus nephritis: Clinical and experimental approaches. Semin Arthritis Rheum. 46:632–641. 2017. View Article : Google Scholar : PubMed/NCBI

89 

Andrews BS, Eisenberg RA, Theofilopoulos AN, Izui S, Wilson CB, McConahey PJ, Murphy ED, Roths JB and Dixon FJ: Spontaneous murine lupus-like syndromes. Clinical and immunopathological manifestations in several strains. J Exp Med. 148:1198–1215. 1978. View Article : Google Scholar : PubMed/NCBI

90 

McGaha TL and Madaio MP: Lupus Nephritis: Animal modeling of a complex disease syndrome pathology. Drug Discov Today Dis Models. 11:13–18. 2014. View Article : Google Scholar : PubMed/NCBI

91 

Pawar RD, Castrezana-Lopez L, Allam R, Kulkarni OP, Segerer S, Radomska E, Meyer TN, Schwesinger CM, Akis N, Gröne HJ and Anders HJ: Bacterial lipopeptide triggers massive albuminuria in murine lupus nephritis by activating Toll-like receptor 2 at the glomerular filtration barrier. Immunology. 128 (1 Suppl):e206–e221. 2009. View Article : Google Scholar : PubMed/NCBI

92 

Maibaum MA, Haywood ME, Walport MJ and Morley BJ: Lupus susceptibility loci map within regions of BXSB derived from the SB/Le parental strain. Immunogenetics. 51:370–372. 2000. View Article : Google Scholar : PubMed/NCBI

93 

Pisitkun P, Deane JA, Difilippantonio MJ, Tarasenko T, Satterthwaite AB and Bolland S: Autoreactive B cell responses to RNA-related antigens due to TLR7 gene duplication. Science. 312:1669–1672. 2006. View Article : Google Scholar : PubMed/NCBI

94 

Jayne D, Rovin B, Mysler EF, Furie RA, Houssiau FA, Trasieva T, Knagenhjelm J, Schwetje E, Chia YL, Tummala R and Lindholm C: Phase II randomised trial of type I interferon inhibitor anifrolumab in patients with active lupus nephritis. Ann Rheum Dis. 81:496–506. 2022. View Article : Google Scholar : PubMed/NCBI

95 

Parodis I and Houssiau FA: From sequential to combination and personalised therapy in lupus nephritis: Moving towards a paradigm shift? Ann Rheum Dis. 81:15–19. 2022. View Article : Google Scholar : PubMed/NCBI

96 

Steiger S, Ehreiser L, Anders J and Anders HJ: Biological drugs for systemic lupus erythematosus or active lupus nephritis and rates of infectious complications. Evidence from large clinical trials. Front Immunol. 13:9997042022. View Article : Google Scholar : PubMed/NCBI

97 

Markowitz GS, Nasr SH, Stokes MB and D'Agati VD: Treatment with IFN-{alpha}, -{beta}, or -{gamma} is associated with collapsing focal segmental glomerulosclerosis. Clin J Am Soc Nephrol. 5:607–615. 2010. View Article : Google Scholar : PubMed/NCBI

98 

Liao R, Liu Q, Zheng Z, Fan J, Peng W, Kong Q, He H, Yang S, Chen W, Tang X and Yu X: Tacrolimus protects podocytes from injury in lupus nephritis partly by stabilizing the cytoskeleton and inhibiting podocyte apoptosis. PLoS One. 10:e1327242015. View Article : Google Scholar

99 

Yasuda H, Fukusumi Y, Ivanov V, Zhang Y and Kawachi H: Tacrolimus ameliorates podocyte injury by restoring FK506 binding protein 12 (FKBP12) at actin cytoskeleton. FASEB J. 35:e219832021. View Article : Google Scholar : PubMed/NCBI

100 

Lee J, Park Y, Jang SG, Hong SM, Song YS, Kim MJ, Baek S, Park SH and Kwok SK: Baricitinib attenuates autoimmune phenotype and podocyte injury in a murine model of systemic lupus erythematosus. Front Immunol. 12:7045262021. View Article : Google Scholar : PubMed/NCBI

101 

Rice WL, Van Hoek AN, Păunescu TG, Huynh C, Goetze B, Singh B, Scipioni L, Stern LA and Brown D: High resolution helium ion scanning microscopy of the rat kidney. PLoS One. 8:e570512013. View Article : Google Scholar : PubMed/NCBI

102 

Howie JB and Helyer BJ: The immunology and pathology of NZB mice. Adv Immunol. 9:215–266. 1968. View Article : Google Scholar : PubMed/NCBI

103 

Hall AM, Ward FJ, Shen CR, Rowe C, Bowie L, Devine A, Urbaniak SJ, Elson CJ and Barker RN: Deletion of the dominant autoantigen in NZB mice with autoimmune hemolytic anemia: Effects on autoantibody and T-helper responses. Blood. 110:4511–4517. 2007. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Liu R, Wen X, Peng X, Zhao M, Mi L, Lei J and Xu K: Immune podocytes in the immune microenvironment of lupus nephritis (Review). Mol Med Rep 28: 204, 2023.
APA
Liu, R., Wen, X., Peng, X., Zhao, M., Mi, L., Lei, J., & Xu, K. (2023). Immune podocytes in the immune microenvironment of lupus nephritis (Review). Molecular Medicine Reports, 28, 204. https://doi.org/10.3892/mmr.2023.13091
MLA
Liu, R., Wen, X., Peng, X., Zhao, M., Mi, L., Lei, J., Xu, K."Immune podocytes in the immune microenvironment of lupus nephritis (Review)". Molecular Medicine Reports 28.5 (2023): 204.
Chicago
Liu, R., Wen, X., Peng, X., Zhao, M., Mi, L., Lei, J., Xu, K."Immune podocytes in the immune microenvironment of lupus nephritis (Review)". Molecular Medicine Reports 28, no. 5 (2023): 204. https://doi.org/10.3892/mmr.2023.13091
Copy and paste a formatted citation
x
Spandidos Publications style
Liu R, Wen X, Peng X, Zhao M, Mi L, Lei J and Xu K: Immune podocytes in the immune microenvironment of lupus nephritis (Review). Mol Med Rep 28: 204, 2023.
APA
Liu, R., Wen, X., Peng, X., Zhao, M., Mi, L., Lei, J., & Xu, K. (2023). Immune podocytes in the immune microenvironment of lupus nephritis (Review). Molecular Medicine Reports, 28, 204. https://doi.org/10.3892/mmr.2023.13091
MLA
Liu, R., Wen, X., Peng, X., Zhao, M., Mi, L., Lei, J., Xu, K."Immune podocytes in the immune microenvironment of lupus nephritis (Review)". Molecular Medicine Reports 28.5 (2023): 204.
Chicago
Liu, R., Wen, X., Peng, X., Zhao, M., Mi, L., Lei, J., Xu, K."Immune podocytes in the immune microenvironment of lupus nephritis (Review)". Molecular Medicine Reports 28, no. 5 (2023): 204. https://doi.org/10.3892/mmr.2023.13091
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team