Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
February-2024 Volume 29 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
February-2024 Volume 29 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Macrophages polarization in renal inflammation and fibrosis animal models (Review)

  • Authors:
    • Ji Zeng
    • Yuan Zhang
    • Cheng Huang
  • View Affiliations / Copyright

    Affiliations: Department of Pharmacy, Ma'anshan City Hospital of Traditional Chinese Medicine, Ma'anshan, Anhui 243000, P.R. China, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, P.R. China
    Copyright: © Zeng et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 29
    |
    Published online on: December 20, 2023
       https://doi.org/10.3892/mmr.2023.13152
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Chronic kidney disease (CKD) is a significant public health concern. Renal fibrosis is the final common pathway in the progression of kidney diseases, irrespective of the initial injury. Substantial evidence underscores the pivotal role of renal inflammation in the genesis of renal fibrosis. The presence of macrophages within normal renal tissue is significantly increased within diseased renal tissue, indicative of their crucial regulatory function in inflammation and fibrosis. Macrophages manifest a high degree of heterogeneity, exhibiting distinct phenotypic and functional traits in response to diverse stimuli within the local microenvironment in various types of kidney diseases. Broadly, macrophages are categorized into two principal groups: Classically activated, designated as M1 macrophages and alternatively activated, designated as M2 macrophages. A number of experimental models are widely used to study the underlying mechanisms driving renal inflammation and fibrosis progression. The present review delineated the phenotypic and functional attributes of macrophages present in diverse induced models, analyzing their disposition in relation to M1 and M2 polarization states.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

View References

1 

Bommer J: Prevalence and socio-economic aspects of chronic kidney disease. Nephrol Dial Transpl. 11:8–12. 2002. View Article : Google Scholar

2 

Decleves AE and Sharma K: Novel targets of antifibrotic and anti-inflammatory treatment in CKD. Nat Rev Nephrol. 10:257–267. 2014. View Article : Google Scholar : PubMed/NCBI

3 

Lv W, Booz GW, Wang Y, Fan F and Roman RJ: Inflammation and renal fibrosis: Recent developments on key signaling molecules as potential therapeutic targets. Eur J Pharmacol. 820:65–76. 2018. View Article : Google Scholar : PubMed/NCBI

4 

Viehmann SF, Bohner AMC, Kurts C and Brahler S: The multifaceted role of the renal mononuclear phagocyte system. Cell Immunol. 330:97–104. 2018. View Article : Google Scholar : PubMed/NCBI

5 

Nelson PJ, Rees AJ, Griffin MD, Hughes J, Kurts C and Duffield J: The renal mononuclear phagocytic system. J Am Soc Nephrol. 23:194–203. 2012. View Article : Google Scholar : PubMed/NCBI

6 

Cao Q, Wang Y, Wang XM, Lu J, Lee VW, Ye Q, Nguyen H, Zheng G, Zhao Y, Alexander SI, et al: Renal F4/80+ CD11c+ mononuclear phagocytes display phenotypic and functional characteristics of macrophages in health and in adriamycin nephropathy. J Am Soc Nephrol. 26:349–363. 2015. View Article : Google Scholar : PubMed/NCBI

7 

Tang PM, Nikolic-Paterson DJ and Lan HY: Macrophages: Versatile players in renal inflammation and fibrosis. Nat Rev Nephrol. 15:144–158. 2019. View Article : Google Scholar : PubMed/NCBI

8 

Wang Y and Harris DC: Macrophages in renal disease. J Am Soc Nephrol. 22:21–27. 2011. View Article : Google Scholar : PubMed/NCBI

9 

Pan B, Liu G, Jiang Z and Zheng D: Regulation of renal fibrosis by macrophage polarization. Cell Physiol Biochem. 35:1062–1069. 2015. View Article : Google Scholar : PubMed/NCBI

10 

Locati M, Curtale G and Mantovani A: Diversity, mechanisms, and significance of macrophage plasticity. Annu Rev Pathol. 15:123–147. 2020. View Article : Google Scholar : PubMed/NCBI

11 

Viola A, Munari F, Sanchez-Rodriguez R, Scolaro T and Castegna A: The metabolic signature of macrophage responses. Front Immunol. 10:14622019. View Article : Google Scholar : PubMed/NCBI

12 

Kim Y, Nurakhayev S, Nurkesh A, Zharkinbekov Z and Saparov A: Macrophage polarization in cardiac tissue repair following myocardial infarction. Int J Mol Sci. 22:27152021. View Article : Google Scholar : PubMed/NCBI

13 

Qiu P, Liu Y and Zhang J: Review: The role and mechanisms of macrophage autophagy in sepsis. Inflammation. 42:6–19. 2018. View Article : Google Scholar

14 

Kadomoto S, Izumi K and Mizokami A: Macrophage polarity and disease control. Int J Mol Sci. 23:1442021. View Article : Google Scholar : PubMed/NCBI

15 

Li C, Xu MM, Wang K, Adler AJ, Vella AT and Zhou B: Macrophage polarization and meta-inflammation. Transl Res. 191:29–44. 2018. View Article : Google Scholar : PubMed/NCBI

16 

Bashir S, Sharma Y, Elahi A and Khan F: Macrophage polarization: The link between inflammation and related diseases. Inflamm Res. 65:1–11. 2016. View Article : Google Scholar : PubMed/NCBI

17 

Wu Q, Sun S, Wei L, Liu M, Liu H, Liu T, Zhou Y, Jia Q, Wang D, Yang Z, et al: Twist1 regulates macrophage plasticity to promote renal fibrosis through galectin-3. Cell Mol Life Sci. 79:1372022. View Article : Google Scholar : PubMed/NCBI

18 

Ko GJ, Boo CS, Jo SK, Cho WY and Kim HK: Macrophages contribute to the development of renal fibrosis following ischaemia/reperfusion-induced acute kidney injury. Nephrol Dial Transplant. 23:842–852. 2008. View Article : Google Scholar : PubMed/NCBI

19 

Fogo AB: Progression and potential regression of glomerulosclerosis. Kidney Int. 59:804–819. 2001. View Article : Google Scholar : PubMed/NCBI

20 

Rodrignez-Pena A, Prieto M, Duwel A, Rivas JV, Eleno N, Pérez-Barriocanal F, Arévalo M, Smith JD, Vary CP, Bernabeu C and López-Novoa JM: Up-regulation of endoglin, a TGF-beta-binding protein, in rats with experimental renal fibrosis induced by renal mass reduction. Nwphrol Dial Transplant. 16 (Suppl 1):34–39. 2001. View Article : Google Scholar

21 

Tan X, Li Y and Liu Y: Therapeutic role and potential mechanisms of active Vitamin D in renal interstitial fibrosis. J Steroid Biochem Mol Biol. 103:491–496. 2007. View Article : Google Scholar : PubMed/NCBI

22 

Lopez-Novoa JM, Martinez-Salgado C, Rodriguez-Pena AB and Lopez-Hernandez FJ: Common pathophysiological mechanisms of chronic kidney disease: Therapeutic perspectives. Pharmacol Ther. 128:61–81. 2010. View Article : Google Scholar : PubMed/NCBI

23 

Chevalier RL, Forbes MS and Thornhill BA: Ureteral obstruction as a model of renal interstitial fibrosis and obstructive nephropathy. Kidney Int. 75:1145–1152. 2009. View Article : Google Scholar : PubMed/NCBI

24 

Grande MT, Perez-Barriocanal F and Lopez-Novoa JM: Role of inflammation in tubulo-interstitial damage associated to obstructive nephropathy. J Inflamm (Lond). 7:192010. View Article : Google Scholar : PubMed/NCBI

25 

Wang PH, Cenedeze MA, Campanholle G, Malheiros DM, Torres HA, Pesquero JB, Pacheco-Silva A and Camara NO: Deletion of bradykinin B1 receptor reduces renal fibrosis. Int Immunopharmacol. 9:653–657. 2009. View Article : Google Scholar : PubMed/NCBI

26 

Nishida M and Hamaoka K: Macrophage phenotype and renal fibrosis in obstructive nephropathy. Nephron Exp Nephrol. 110:e31–e36. 2008. View Article : Google Scholar : PubMed/NCBI

27 

Duffield JS, Ware CF, Ryffel B and Savill J: Suppression by apoptotic cells defines tumor necrosis factor-mediated induction of glomerular mesangial cell apoptosis by activated macrophages. Am J Pathol. 159:1397–1404. 2001. View Article : Google Scholar : PubMed/NCBI

28 

Kipari T and Hughes J: Macrophage-mediated renal cell death. Kidney Int. 61:760–761. 2002. View Article : Google Scholar : PubMed/NCBI

29 

Lange-Sperandio B, Cachat F, Thornhill BA and Chevalier RL: Selectins mediate macrophage infiltration in obstructive nephropathy in newborn mice. Kidney Int. 61:516–524. 2002. View Article : Google Scholar : PubMed/NCBI

30 

Fadok VA, Bratton DL, Konowal A, Freed PW, Westcott JY and Henson PM: Macrophages that have ingested apoptotic cells in vitro inhibit proinflammatory cytokine production through autocrine/paracrine mechanisms involving TGF-beta, PGE2, and PAF. J Clin Investigation. 101:890–898. 1998. View Article : Google Scholar : PubMed/NCBI

31 

Song E, Ouyang N, Horbelt M, Antus B, Wang M and Exton MS: Influence of alternatively and classically activated macrophages on fibrogenic activities of human fibroblasts. Cell Immunol. 204:19–28. 2000. View Article : Google Scholar : PubMed/NCBI

32 

Wang D, Xiong M, Chen C, Du L, Liu Z, Shi Y, Zhang M, Gong J, Song X, Xiang R, et al: Legumain, an asparaginyl endopeptidase, mediates the effect of M2 macrophages on attenuating renal interstitial fibrosis in obstructive nephropathy. Kidney Int. 94:91–101. 2018. View Article : Google Scholar : PubMed/NCBI

33 

Nishida M, Okumura Y, Fujimoto S, Shiraishi I, Itoi T and Hamaoka K: Adoptive transfer of macrophages ameliorates renal fibrosis in mice. Biochem Biophys Res Commun. 332:11–16. 2005. View Article : Google Scholar : PubMed/NCBI

34 

Steiger S, Kumar SV, Honarpisheh M, Lorenz G, Gunthner R, Romoli S, Grobmayr R, Susanti HE, Potempa J, Koziel J, et al: Immunomodulatory molecule IRAK-M balances macrophage polarization and determines macrophage responses during renal fibrosis. J Immunol. 199:1440–1452. 2017. View Article : Google Scholar : PubMed/NCBI

35 

Figueiredo KA, Rossi G and Cox ME: Relaxin promotes clustering, migration, and activation states of mononuclear myelocytic cells. Ann N Y Acad Sci. 1160:353–360. 2009. View Article : Google Scholar : PubMed/NCBI

36 

Lan HY: Role of macrophage migration inhibition factor in kidney disease. Nephron Exp Nephrol. 109:e79–e83. 2008. View Article : Google Scholar : PubMed/NCBI

37 

Li MO and Flavell RA: Contextual regulation of inflammation: A duet by transforming growth factor-beta and interleukin-10. Immunity. 28:468–476. 2008. View Article : Google Scholar : PubMed/NCBI

38 

Tregear GW, Bathgate RA, Hossain MA, Lin F, Zhang S, Shabanpoor F, Scott DJ, Ma S, Gundlach AL, Samuel CS and Wade JD: Structure and activity in the relaxin family of peptides. Ann N Y Acad Sci. 1160:5–10. 2009. View Article : Google Scholar : PubMed/NCBI

39 

Samuel CS, Hewitson TD, Unemori EN and Tang ML: Drugs of the future: The hormone relaxin. Cell Mol Life Sci. 64:1539–1557. 2007. View Article : Google Scholar : PubMed/NCBI

40 

Samuel CS and Hewitson TD: Relaxin and the progression of kidney disease. Curr Opin Nephrol Hypertens. 18:9–14. 2009. View Article : Google Scholar : PubMed/NCBI

41 

Chen L, Sha ML, Li D, Zhu YP, Wang XJ, Jiang CY, Xia SJ and Shao Y: Relaxin abrogates renal interstitial fibrosis by regulating macrophage polarization via inhibition of Toll-like receptor 4 signaling. Oncotarget. 8:21044–21053. 2017. View Article : Google Scholar : PubMed/NCBI

42 

Anders HJ and Ryu M: Renal microenvironments and macrophage phenotypes determine progression or resolution of renal inflammation and fibrosis. Kidney Int. 80:915–925. 2011. View Article : Google Scholar : PubMed/NCBI

43 

Bohlson SS, O'Conner SD, Hulsebus HJ, Ho MM and Fraser DA: Complement, c1q, and c1q-related molecules regulate macrophage polarization. Front Immunol. 5:4022014. View Article : Google Scholar : PubMed/NCBI

44 

Cui J, Wu X, Song Y, Chen Y and Wan J: Complement C3 exacerbates renal interstitial fibrosis by facilitating the M1 macrophage phenotype in a mouse model of unilateral ureteral obstruction. Am J Physiol Renal Physiol. 317:F1171–F1182. 2019. View Article : Google Scholar : PubMed/NCBI

45 

Brown NJ: Contribution of aldosterone to cardiovascular and renal inflammation and fibrosis. Nat Rev Nephrol. 9:459–469. 2013. View Article : Google Scholar : PubMed/NCBI

46 

Blasi ER, Rocha R, Rudolph AE, Blomme EA, Polly ML and McMahon EG: Aldosterone/salt induces renal inflammation and fibrosis in hypertensive rats. Kidney Int. 63:1791–1800. 2003. View Article : Google Scholar : PubMed/NCBI

47 

Kang YS, Ko GJ, Lee MH, Song HK, Han SY, Han KH, Kim HK, Han JY and Cha DR: Effect of eplerenone, enalapril and their combination treatment on diabetic nephropathy in type II diabetic rats. Nephrology Dialysis Transplantation. 24:73–84. 2008. View Article : Google Scholar

48 

Yuan X, Wang X, Li Y, Li X, Zhang S and Hao L: Aldosterone promotes renal interstitial fibrosis via the AIF-1/AKT/mTOR signaling pathway. Mol Med Rep. 20:4033–4044. 2019.PubMed/NCBI

49 

Nakamura T, Girerd S, Jaisser F and Barrera-Chimal J: Nonepithelial mineralocorticoid receptor activation as a determinant of kidney disease. Kidney Int Suppl (2011). 12:12–18. 2022. View Article : Google Scholar : PubMed/NCBI

50 

Fiebeler A, Nussberger J, Shagdarsuren E, Rong S, Hilfenhaus G, Al-Saadi N, Dechend R, Wellner M, Meiners S, Maser-Gluth C, et al: Aldosterone synthase inhibitor ameliorates angiotensin II-induced organ damage. Circulation. 111:3087–3094. 2005. View Article : Google Scholar : PubMed/NCBI

51 

Lea WB, Kwak ES, Luther JM, Fowler SM, Wang Z, Ma J, Fogo AB and Brown NJ: Aldosterone antagonism or synthase inhibition reduces end-organ damage induced by treatment with angiotensin and high salt. Kidney Int. 75:936–944. 2009. View Article : Google Scholar : PubMed/NCBI

52 

Luther JM, Luo P, Wang Z, Cohen SE, Kim HS, Fogo AB and Brown NJ: Aldosterone deficiency and mineralocorticoid receptor antagonism prevent angiotensin II-induced cardiac, renal, and vascular injury. Kidney Int. 82:643–651. 2012. View Article : Google Scholar : PubMed/NCBI

53 

Ma J, Weisberg A, Griffin JP, Vaughan DE, Fogo AB and Brown NJ: Plasminogen activator inhibitor-1 deficiency protects against aldosterone-induced glomerular injury. Kidney Int. 69:1064–1072. 2006. View Article : Google Scholar : PubMed/NCBI

54 

Huang W, Xu C, Kahng KW, Noble NA, Border WA and Huang Y: Aldosterone and TGF-β1synergistically increase PAI-1 and decrease matrix degradation in rat renal mesangial and fibroblast cells. Am J Physiol Renal Physiol. 294:F1287–F1295. 2008. View Article : Google Scholar : PubMed/NCBI

55 

Sillen M and Declerck PJ: Targeting PAI-1 in cardiovascular disease: Structural insights Into PAI-1 functionality and inhibition. Front Cardiovasc Med. 7:6224732020. View Article : Google Scholar : PubMed/NCBI

56 

Leroy V, De Seigneux S, Agassiz V, Hasler U, Rafestin-Oblin ME, Vinciguerra M, Martin PY and Féraille E: Aldosterone activates NF-kappaB in the collecting duct. J Am Soc Nephrol. 20:131–144. 2009. View Article : Google Scholar : PubMed/NCBI

57 

Lee H, Fessler MB, Qu P, Heymann J and Kopp JB: Macrophage polarization in innate immune responses contributing to pathogenesis of chronic kidney disease. BMC Nephrol. 21:2702020. View Article : Google Scholar : PubMed/NCBI

58 

Patel V, Joharapurkar A and Jain M: Role of mineralocorticoid receptor antagonists in kidney diseases. Drug Dev Res. 82:341–363. 2021. View Article : Google Scholar : PubMed/NCBI

59 

Martin-Fernandez B, Rubio-Navarro A, Cortegano I, Ballesteros S, Alia M, Cannata-Ortiz P, Olivares-Alvaro E, Egido J, de Andres B, Gaspar ML, et al: Aldosterone induces renal fibrosis and inflammatory M1-macrophage subtype via mineralocorticoid receptor in rats. PLoS One. 11:e01459462016. View Article : Google Scholar : PubMed/NCBI

60 

Malik S, Suchal K, Gamad N, Dinda AK, Arya DS and Bhatia J: Telmisartan ameliorates cisplatin-induced nephrotoxicity by inhibiting MAPK mediated inflammation and apoptosis. Eur J Pharmacol. 748:54–60. 2015. View Article : Google Scholar : PubMed/NCBI

61 

Sindhu G, Nishanthi E and Sharmila R: Nephroprotective effect of vanillic acid against cisplatin induced nephrotoxicity in wistar rats: A biochemical and molecular study. Environ Toxicol Pharmacol. 39:392–404. 2015. View Article : Google Scholar : PubMed/NCBI

62 

Ozkok A and Edelstein CL: Pathophysiology of cisplatin-induced acute kidney injury. Biomed Res Int. 2014:9678262014. View Article : Google Scholar : PubMed/NCBI

63 

Jaiman S, Sharma AK, Singh K and Khanna D: Signalling mechanisms involved in renal pathological changes during cisplatin-induced nephropathy. Eur J Clin Pharmacol. 69:1863–1874. 2013. View Article : Google Scholar : PubMed/NCBI

64 

Huen SC and Cantley LG: Macrophages in renal injury and repair. Annu Rev Physiol. 79:449–469. 2017. View Article : Google Scholar : PubMed/NCBI

65 

Yuasa T, Juniantito V, Ichikawa C, Yano R, Izawa T, Kuwamura M and Yamate J: Thy-1 expression, a possible marker of early myofibroblast development, in renal tubulointerstitial fibrosis induced in rats by cisplatin. Exp Toxicol Pathol. 65:651–659. 2013. View Article : Google Scholar : PubMed/NCBI

66 

Terada N, Karim MR, Izawa T, Kuwamura M and Yamate J: Expression of beta-catenin in regenerating renal tubules of cisplatin-induced kidney failure in rats. Clin Exp Nephrol. 22:1240–1250. 2018. View Article : Google Scholar : PubMed/NCBI

67 

Lee S, Huen S, Nishio H, Nishio S, Lee HK, Choi BS, Ruhrberg C and Cantley LG: Distinct macrophage phenotypes contribute to kidney injury and repair. J Am Soc Nephrol. 22:317–326. 2011. View Article : Google Scholar : PubMed/NCBI

68 

Sears SM, Vega AA, Kurlawala Z, Oropilla GB, Krueger A, Shah PP, Doll MA, Miller R, Beverly LJ and Siskind LJ: F4/80hi resident macrophages contribute to cisplatin-induced renal fibrosis. Kidney. 360:3818–833. 2022.

69 

Yu CC, Chien CT and Chang TC: M2 macrophage polarization modulates epithelial-mesenchymal transition in cisplatin-induced tubulointerstitial fibrosis. Biomedicine (Taipei). 6:52016. View Article : Google Scholar : PubMed/NCBI

70 

Kim SH, Yu MA, Ryu ES, Jang YH and Kang DH: Indoxyl sulfate-induced epithelial-to-mesenchymal transition and apoptosis of renal tubular cells as novel mechanisms of progression of renal disease. Lab Invest. 92:488–498. 2012. View Article : Google Scholar : PubMed/NCBI

71 

Benedetti G, Fokkelman M, Yan K, Fredriksson L, Herpers B, Meerman J, van de Water B and de Graauw M: The nuclear factor κB family member RelB facilitates apoptosis of renal epithelial cells caused by cisplatin/tumor necrosis factor α synergy by suppressing an epithelial to mesenchymal transition-like phenotypic switch. Mol Pharmacol. 84:128–138. 2013. View Article : Google Scholar : PubMed/NCBI

72 

Yamamoto E, Izawa T, Juniantito V, Kuwamura M, Sugiura K, Takeuchi T and Yamate J: Involvement of endogenous prostaglandin E2 in tubular epithelial regeneration through inhibition of apoptosis and epithelial-mesenchymal transition in cisplatin-induced rat renal lesions. Histol Histopathol. 25:995–1007. 2010.PubMed/NCBI

73 

Meng XM, Nikolic-Paterson DJ and Lan HY: Inflammatory processes in renal fibrosis. Nat Rev Nephrol. 10:493–503. 2014. View Article : Google Scholar : PubMed/NCBI

74 

Lech M and Anders HJ: Macrophages and fibrosis: How resident and infiltrating mononuclear phagocytes orchestrate all phases of tissue injury and repair. Biochim Biophys Acta. 1832:989–997. 2013. View Article : Google Scholar : PubMed/NCBI

75 

Nikolic-Paterson DJ, Wang S and Lan HY: Macrophages promote renal fibrosis through direct and indirect mechanisms. Kidney Int Suppl (2011). 4:34–38. 2014. View Article : Google Scholar : PubMed/NCBI

76 

Sica A and Mantovani A: Macrophage plasticity and polarization: In vivo veritas. J Clin Invest. 122:787–795. 2012. View Article : Google Scholar : PubMed/NCBI

77 

Wijesundera KK, Izawa T, Murakami H, Tennakoon AH, Golbar HM, Kato-Ichikawa C, Tanaka M, Kuwamura M and Yamate J: M1- and M2-macrophage polarization in thioacetamide (TAA)-induced rat liver lesions; a possible analysis for hepato-pathology. Histol Histopathol. 29:497–511. 2014.PubMed/NCBI

78 

Nakagawa M, Karim MR, Izawa T, Kuwamura M and Yamate J: Immunophenotypical characterization of M1/M2 macrophages and lymphocytes in cisplatin-induced rat progressive renal fibrosis. Cells. 10:2572021. View Article : Google Scholar : PubMed/NCBI

79 

Lee VW and Harris DC: Adriamycin nephropathy: A model of focal segmental glomerulosclerosis. Nephrology (Carlton). 16:30–38. 2011. View Article : Google Scholar : PubMed/NCBI

80 

Nogueira A, Pires MJ and Oliveira PA: Pathophysiological mechanisms of renal fibrosis: A review of animal models and therapeutic strategies. In Vivo. 31:1–22. 2017. View Article : Google Scholar : PubMed/NCBI

81 

Pippin JW, Brinkkoetter PT, Cormack-Aboud FC, Durvasula RV, Hauser PV, Kowalewska J, Krofft RD, Logar CM, Marshall CB, Ohse T, et al: Inducible rodent models of acquired podocyte diseases. Am J Physiol Renal Physiol. 296:F213–F229. 2009. View Article : Google Scholar : PubMed/NCBI

82 

Wang Y, Wang YP, Zheng G, Lee VW, Ouyang L, Chang DH, Mahajan D, Coombs J, Wang YM, Alexander SI and Harris DC: Ex vivo programmed macrophages ameliorate experimental chronic inflammatory renal disease. Kidney Int. 72:290–299. 2007. View Article : Google Scholar : PubMed/NCBI

83 

Fujimura R, Watanabe H, Nishida K, Fujiwara Y, Koga T, Bi J, Imafuku T, Kobayashi K, Komori H, Miyahisa M, et al: α1-Acid glycoprotein attenuates adriamycin-induced nephropathy via CD163 expressing macrophage induction. Kidney. 360(1): 343–353. 2020. View Article : Google Scholar

84 

Lu J, Cao Q, Zheng D, Sun Y, Wang C, Yu X, Wang Y, Lee VW, Zheng G, Tan TK, et al: Discrete functions of M2a and M2c macrophage subsets determine their relative efficacy in treating chronic kidney disease. Kidney Int. 84:745–755. 2013. View Article : Google Scholar : PubMed/NCBI

85 

Cao Q, Wang Y, Zheng D, Sun Y, Wang Y, Lee VWS, Zheng G, Tan TK, Ince J, Alexander SI and Harris DC: IL-10/TGF-beta-modified macrophages induce regulatory T cells and protect against adriamycin nephrosis. J Am Soc Nephrol. 21:933–942. 2010. View Article : Google Scholar : PubMed/NCBI

86 

Cao Q, Wang Y, Zheng D, Sun Y, Wang C, Wang XM, Lee VWS, Wang Y, Zheng G, Tan TK, et al: Failed renoprotection by alternatively activated bone marrow macrophages is due to a proliferation-dependent phenotype switch in vivo. Kidney Int. 85:794–806. 2014. View Article : Google Scholar : PubMed/NCBI

87 

Wang JY and Wang WP: B7-H4, a promising target for immunotherapy. Cell Immunol. 347:1040082020. View Article : Google Scholar : PubMed/NCBI

88 

Umemura N, Saio M, Suwa T, Kitoh Y, Bai J, Nonaka K, Ouyang GF, Okada M, Balazs M, Adany R, et al: Tumor-infiltrating myeloid-derived suppressor cells are pleiotropic-inflamed monocytes/macrophages that bear M1- and M2-type characteristics. J Leukoc Biol. 83:1136–1144. 2008. View Article : Google Scholar : PubMed/NCBI

89 

Wang S, Meng XM, Ng YY, Ma FY, Zhou S, Zhang Y, Yang C, Huang XR, Xiao J, Wang YY, et al: TGF-β/Smad3 signalling regulates the transition of bone marrow-derived macrophages into myofibroblasts during tissue fibrosis. Oncotarget. 7:8809–8822. 2016. View Article : Google Scholar : PubMed/NCBI

90 

Tavakoli Dargani Z and Singla DK: Embryonic stem cell-derived exosomes inhibit doxorubicin-induced TLR4-NLRP3-mediated cell death-pyroptosis. Am J Physiol Heart Circ Physiol. 317:H460–H471. 2019. View Article : Google Scholar : PubMed/NCBI

91 

Johnson TA and Singla DK: PTEN inhibitor VO-OHpic attenuates inflammatory M1 macrophages and cardiac remodeling in doxorubicin-induced cardiomyopathy. Am J Physiol Heart Circ Physiol. 315:H1236–H1249. 2018. View Article : Google Scholar : PubMed/NCBI

92 

Zhang Y, Liu Y, Liu H and Tang WH: Exosomes: Biogenesis, biologic function and clinical potential. Cell Biosci. 9:192019. View Article : Google Scholar : PubMed/NCBI

93 

Jella KK, Nasti TH, Li Z, Malla SR, Buchwald ZS and Khan MK: Exosomes, their biogenesis and role in inter-cellular communication, tumor microenvironment and cancer immunotherapy. Vaccines (Basel). 6:E692018. View Article : Google Scholar

94 

Deng S, Zhou X, Ge Z, Song Y, Wang H, Liu X and Zhang D: Exosomes from adipose-derived mesenchymal stem cells ameliorate cardiac damage after myocardial infarction by activating S1P/SK1/S1PR1 signaling and promoting macrophage M2 polarization. Int J Biochem Cell Biol. 114:1055642019. View Article : Google Scholar : PubMed/NCBI

95 

Cai J, Qiao B, Gao N, Lin N and He W: Oral squamous cell carcinoma-derived exosomes promote M2 subtype macrophage polarization mediated by exosome-enclosed miR-29a-3p. Am J Physiol Cell Physiol. 316:C731–C740. 2019. View Article : Google Scholar : PubMed/NCBI

96 

Bardi GT, Smith MA and Hood JL: Melanoma exosomes promote mixed M1 and M2 macrophage polarization. Cytokine. 105:63–72. 2018. View Article : Google Scholar : PubMed/NCBI

97 

Singla D, Johnson T and Tavakoli Dargani Z: Exosome treatment enhances Anti-Inflammatory M2 macrophages and reduces inflammation-induced pyroptosis in doxorubicin-induced cardiomyopathy. Cells. 8:12242019. View Article : Google Scholar : PubMed/NCBI

98 

Alexander M, Hu R, Runtsch MC, Kagele DA, Mosbruger TL, Tolmachova T, Seabra MC, Round JL, Ward DM and O'Connell RM: Exosome-delivered microRNAs modulate the inflammatory response to endotoxin. Nat Commun. 6:73212015. View Article : Google Scholar : PubMed/NCBI

99 

Lorenzen JM, Kaucsar T, Schauerte C, Schmitt R, Rong S, Hübner A, Scherf K, Fiedler J, Martino F, Kumarswamy R, et al: MicroRNA-24 antagonism prevents renal ischemia reperfusion injury. J Am Soc Nephrol. 25:2717–2729. 2014. View Article : Google Scholar : PubMed/NCBI

100 

Trionfini P and Benigni A: MicroRNAs as master regulators of glomerular function in health and disease. J Am Soc Nephrol. 28:1686–1696. 2017. View Article : Google Scholar : PubMed/NCBI

101 

Lv LL, Feng Y, Wu M, Wang B, Li ZL, Zhong X, Wu WJ, Chen J, Ni HF, Tang TT, et al: Exosomal miRNA-19b-3p of tubular epithelial cells promotes M1 macrophage activation in kidney injury. Cell Death Differ. 27:210–226. 2020. View Article : Google Scholar : PubMed/NCBI

102 

Mulay SR, Linkermann A and Anders HJ: Necroinflammation in Kidney disease. J Am Soc Nephrol. 27:27–39. 2016. View Article : Google Scholar : PubMed/NCBI

103 

O'Neal JB, Shaw AD and Billings FT: Acute kidney injury following cardiac surgery: Current understanding and future directions. Crit Care. 20:1872016. View Article : Google Scholar : PubMed/NCBI

104 

Kim MG, Kim SC, Ko YS, Lee HY, Jo SK and Cho W: The role of M2 macrophages in the progression of chronic kidney disease following acute kidney injury. PLoS One. 10:e01439612015. View Article : Google Scholar : PubMed/NCBI

105 

Yang J, Lin SC, Chen G, He L, Hu Z, Chan L, Trial J, Entman ML and Wang Y: Adiponectin promotes monocyte-to-fibroblast transition in renal fibrosis. J Am Soc Nephrol. 24:1644–1659. 2013. View Article : Google Scholar : PubMed/NCBI

106 

Negishi H, Ohba Y, Yanai H, Takaoka A, Honma K, Yui K, Matsuyama T, Taniguchi T and Honda K: Negative regulation of Toll-like-receptor signaling by IRF-4. Proc Natl Acad Sci USA. 102:15989–15994. 2005. View Article : Google Scholar : PubMed/NCBI

107 

Lassen S, Lech M, Rommele C, Mittruecker HW, Mak TW and Anders HJ: Ischemia reperfusion induces IFN regulatory factor 4 in renal dendritic cells, which suppresses postischemic inflammation and prevents acute renal failure. J Immunol. 185:1976–1983. 2010. View Article : Google Scholar : PubMed/NCBI

108 

Lorenz G, Moschovaki-Filippidou F, Wurf V, Metzger P, Steiger S, Batz F, Carbajo-Lozoya J, Koziel J, Schnurr M, Cohen CD, et al: IFN regulatory Factor 4 controls post-ischemic inflammation and prevents chronic kidney disease. Front Immunol. 10:21622019. View Article : Google Scholar : PubMed/NCBI

109 

Liang H, Xu F, Zhang T, Huang J, Guan Q, Wang H and Huang Q: Inhibition of IL-18 reduces renal fibrosis after ischemia-reperfusion. Biomed Pharmacother. 106:879–889. 2018. View Article : Google Scholar : PubMed/NCBI

110 

Wang YY, Jiang H, Pan J, Huang XR, Wang YC, Huang HF, To KF, Nikolic-Paterson DJ, Lan HY and Chen JH: Macrophage-to-Myofibroblast transition contributes to interstitial fibrosis in chronic renal allograft injury. J Am Soc Nephrol. 28:2053–2067. 2017. View Article : Google Scholar : PubMed/NCBI

111 

Stephanou A, Brar BK, Scarabelli TM, Jonassen AK, Yellon DM, Marber MS, Knight RA and Latchman DS: Ischemia-induced STAT-1 expression and activation play a critical role in cardiomyocyte apoptosis. J Biol Chem. 275:10002–10008. 2000. View Article : Google Scholar : PubMed/NCBI

112 

McCormick J, Suleman N, Scarabelli TM, Knight RA, Latchman DS and Stephanou A: STAT1 deficiency in the heart protects against myocardial infarction by enhancing autophagy. J Cell Mol Med. 16:386–393. 2012. View Article : Google Scholar : PubMed/NCBI

113 

Braga TT, Correa-Costa M, Guise YF, Castoldi A, de Oliveira CD, Hyane MI, Cenedeze MA, Teixeira SA, Muscara MN, Perez KR, et al: MyD88 signaling pathway is involved in renal fibrosis by favoring a TH2 immune response and activating alternative M2 macrophages. Mol Med. 18:1231–1239. 2012. View Article : Google Scholar : PubMed/NCBI

114 

Buchacher T, Ohradanova-Repic A, Stockinger H, Fischer MB and Weber V: M2 polarization of human macrophages favors survival of the intracellular pathogen chlamydia pneumoniae. PLoS One. 10:e01435932015. View Article : Google Scholar : PubMed/NCBI

115 

Lech M, Gröbmayr R, Ryu M, Lorenz G, Hartter I, Mulay SR, Susanti HE, Kobayashi KS, Flavell RA and Anders HJ: Macrophage phenotype controls long-term AKI outcomes-kidney regeneration versus atrophy. J Am Soc Nephrol. 25:292–304. 2014. View Article : Google Scholar : PubMed/NCBI

116 

Kemmner S, Bachmann Q, Steiger S, Lorenz G, Honarpisheh M, Foresto-Neto O, Wang S, Carbajo-Lozoya J, Alt V, Schulte C, et al: STAT1 regulates macrophage number and phenotype and prevents renal fibrosis after ischemia-reperfusion injury. Am J Physiol Renal Physiol. 316:F277–F291. 2019. View Article : Google Scholar : PubMed/NCBI

117 

Dotor J, Lopez-Vazquez AB, Lasarte JJ, Sarobe P, Garcia-Granero M, Riezu-Boj JI, Martinez A, Feijoo E, Lopez-Sagaseta J, Hermida J, et al: Identification of peptide inhibitors of transforming growth factor beta 1 using a phage-displayed peptide library. Cytokine. 39:106–115. 2007. View Article : Google Scholar : PubMed/NCBI

118 

Diaz-Valdes N, Basagoiti M, Dotor J, Aranda F, Monreal I, Riezu-Boj JI, Borras-Cuesta F, Sarobe P and Feijoo E: Induction of monocyte chemoattractant protein-1 and interleukin-10 by TGFbeta1 in melanoma enhances tumor infiltration and immunosuppression. Cancer Res. 71:812–821. 2011. View Article : Google Scholar : PubMed/NCBI

119 

Qiu SS, Dotor J and Hontanilla B: Effect of P144® (Anti-TGF-β) in an ‘In Vivo’ human hypertrophic scar model in nude mice. PLoS One. 10:e01444892015. View Article : Google Scholar : PubMed/NCBI

120 

Baltanás A, Miguel-Carrasco JL, San José G, Cebrián C, Moreno MU, Dotor J, Borrás-Cuesta F, López B, González A, Díez J, et al: A synthetic peptide from transforming growth Factor-β1 type III receptor inhibits NADPH oxidase and prevents oxidative stress in the kidney of spontaneously hypertensive rats. Antioxid Redox Signal. 19:1607–1618. 2013. View Article : Google Scholar : PubMed/NCBI

121 

Li D, Zhang J, Yuan S, Wang C, Chang J, Tong Y, Liu R, Sang T, Li L, Li J, et al: TGF-β1 peptide-based inhibitor P144 ameliorates renal fibrosis after ischemia-reperfusion injury by modulating alternatively activated macrophages. Cell Prolif. 55:e132992022. View Article : Google Scholar : PubMed/NCBI

122 

Cao Q, Wang Y and Harris DCH: Macrophage heterogeneity, phenotypes, and roles in renal fibrosis. Kidney Int Suppl (2011). 4:16–19. 2014. View Article : Google Scholar : PubMed/NCBI

123 

Zhang F, Fan L, Zhang H, Huang WJ, Sun D, Pan BB, Wan X and Cao CC: Deficiency of IKK α in macrophages mitigates fibrosis progression in the kidney after renal ischemia-reperfusion injury. J Immunol Res. 2021:55210512021. View Article : Google Scholar : PubMed/NCBI

124 

Saito H, Tanaka T, Tanaka S, Higashijima Y, Yamaguchi J, Sugahara M, Ito M, Uchida L, Hasegawa S, Wakashima T, et al: Persistent expression of neutrophil gelatinase-associated lipocalin and M2 macrophage markers and chronic fibrosis after acute kidney injury. Physiol Rep. 6:e137072018. View Article : Google Scholar : PubMed/NCBI

125 

Sepe V, Libetta C, Gregorini M and Rampino T: The innate immune system in human kidney inflammaging. J Nephrol. 35:381–395. 2022. View Article : Google Scholar : PubMed/NCBI

126 

Wen Y, Yan HR, Wang B and Liu BC: Macrophage heterogeneity in kidney injury and fibrosis. Front Immunol. 12:6817482021. View Article : Google Scholar : PubMed/NCBI

127 

Muraille E, Leo O and Moser M: TH1/TH2 paradigm extended: Macrophage polarization as an unappreciated pathogen-driven escape mechanism? Front Immunol. 5:6032014. View Article : Google Scholar : PubMed/NCBI

128 

Henderson NC, Mackinnon AC, Farnworth SL, Kipari T, Haslett C, Iredale JP, Liu F-T, Hughes J and Sethi T: Galectin-3 expression and secretion links macrophages to the promotion of renal fibrosis. Am J Pathol. 172:288–298. 2008. View Article : Google Scholar : PubMed/NCBI

129 

Meng XM, Wang S, Huang XR, Yang C, Xiao J, Zhang Y, To KF, Nikolic-Paterson DJ and Lan HY: Inflammatory macrophages can transdifferentiate into myofibroblasts during renal fibrosis. Cell Death Dis. 7:e24952016. View Article : Google Scholar : PubMed/NCBI

130 

Weis N, Weigert A, von Knethen A and Brüne B: Heme oxygenase-1 contributes to an alternative macrophage activation profile induced by apoptotic cell supernatants. Mol Biol Cell. 20:1280–1288. 2009. View Article : Google Scholar : PubMed/NCBI

131 

Zhang M, Nakamura K, Kageyama S, Lawal AO, Gong KW, Bhetraratana M, Fujii T, Sulaiman D, Hirao H, Bolisetty S, et al: Myeloid HO-1 modulates macrophage polarization and protects against ischemia-reperfusion injury. JCI Insight. 3:1205962018. View Article : Google Scholar : PubMed/NCBI

132 

Naito Y, Takagi T and Higashimura Y: Heme oxygenase-1 and anti-inflammatory M2 macrophages. Arch Biochem Biophysics. 564:83–88. 2014. View Article : Google Scholar : PubMed/NCBI

133 

Ribeiro A, Dobosz E, Krill M, Kohler P, Wadowska M, Steiger S, Schmaderer C, Koziel J and Lech M: Macrophage-specific MCPIP1/Regnase-1 attenuates kidney ischemia-reperfusion injury by shaping the local inflammatory response and tissue regeneration. Cells. 11:3972022. View Article : Google Scholar : PubMed/NCBI

134 

Satoh T, Takeuchi O, Vandenbon A, Yasuda K, Tanaka Y, Kumagai Y, Miyake T, Matsushita K, Okazaki T, Saitoh T, et al: The Jmjd3-Irf4 axis regulates M2 macrophage polarization and host responses against helminth infection. Nat Immunol. 11:936–944. 2010. View Article : Google Scholar : PubMed/NCBI

135 

Fu Y, Xiang Y, Li H, Chen A and Dong Z: Inflammation in kidney repair: Mechanism and therapeutic potential. Pharmacol Ther. 237:1082402022. View Article : Google Scholar : PubMed/NCBI

136 

Bonventre JV and Zuk A: Ischemic acute renal failure: An inflammatory disease? Kidney Int. 66:480–485. 2004. View Article : Google Scholar : PubMed/NCBI

137 

Ferenbach DA and Bonventre JV: Mechanisms of maladaptive repair after AKI leading to accelerated kidney ageing and CKD. Nat Rev Nephrol. 11:264–276. 2015. View Article : Google Scholar : PubMed/NCBI

138 

Jiao B, An C, Tran M, Du H, Wang P, Zhou D and Wang Y: Pharmacological inhibition of STAT6 ameliorates myeloid fibroblast activation and alternative macrophage polarization in renal fibrosis. Front Immunol. 12:7350142021. View Article : Google Scholar : PubMed/NCBI

139 

Liang H, Zhang Z, Yan J and Wang Y, Hu Z, Mitch WE and Wang Y: The IL-4 receptor α has a critical role in bone marrow-derived fibroblast activation and renal fibrosis. Kidney Int. 92:1433–1443. 2017. View Article : Google Scholar : PubMed/NCBI

140 

Lehtonen A, Veckman V, Nikula T, Lahesmaa R, Kinnunen L, Matikainen S and Julkunen I: Differential expression of IFN regulatory factor 4 gene in human monocyte-derived dendritic cells and macrophages. J Immunol. 175:6570–6579. 2005. View Article : Google Scholar : PubMed/NCBI

141 

Hsu AT, Lupancu TJ, Lee M-C, Fleetwood AJ, Cook AD, Hamilton JA and Achuthan A: Epigenetic and transcriptional regulation of IL4-induced CCL17 production in human monocytes and murine macrophages. J Biol Chemistry. 293:11415–11423. 2018. View Article : Google Scholar : PubMed/NCBI

142 

Yamamoto M, Kato T, Hotta C, Nishiyama A, Kurotaki D, Yoshinari M, Takami M, Ichino M, Nakazawa M, Matsuyama T, et al: Shared and distinct functions of the transcription factors IRF4 and IRF8 in myeloid cell development. PLoS One. 6:e258122011. View Article : Google Scholar : PubMed/NCBI

143 

Sasaki K, Terker AS, Pan Y, Li Z, Cao S, Wang Y, Niu A, Wang S, Fan X, Zhang MZ, et al: Deletion of myeloid interferon regulatory factor 4 (Irf4) in mouse model protects against kidney fibrosis after ischemic injury by decreased macrophage recruitment and activation. J Am Soc Nephrol. 32:1037–1052. 2021. View Article : Google Scholar : PubMed/NCBI

144 

Chen M, Wen X, Gao Y, Liu B, Zhong C, Nie J and Liang H: IRF-4 deficiency reduces inflammation and kidney fibrosis after folic acid-induced acute kidney injury. Int Immunopharmacol. 100:1081422021. View Article : Google Scholar : PubMed/NCBI

145 

Nelson MC and O'Connell RM: MicroRNAs: At the interface of metabolic pathways and inflammatory responses by macrophages. Front Immunol. 11:17972020. View Article : Google Scholar : PubMed/NCBI

146 

Niu X and Schulert GS: Functional regulation of macrophage phenotypes by MicroRNAs in inflammatory arthritis. Front Immunol. 10:22172019. View Article : Google Scholar : PubMed/NCBI

147 

Luan J, Fu J, Wang D, Jiao C, Cui X, Chen C, Liu D, Zhang Y, Wang Y, Yuen PST, et al: miR-150-based RNA interference attenuates tubulointerstitial fibrosis through the SOCS1/JAK/STAT pathway in vivo and in vitro. Mol Ther Nucleic Acids. 22:871–884. 2020. View Article : Google Scholar : PubMed/NCBI

148 

Hao X, Luan J, Jiao C, Ma C, Feng Z, Zhu L, Zhang Y, Fu J, Lai E, Zhang B, et al: LNA-anti-miR-150 alleviates renal interstitial fibrosis by reducing pro-inflammatory M1/M2 macrophage polarization. Front Immunol. 13:9130072022. View Article : Google Scholar : PubMed/NCBI

149 

Li C, Ding XY, Xiang DM, Xu J, Huang XL, Hou FF and Zhou QG: Enhanced M1 and Impaired M2 macrophage polarization and reduced mitochondrial biogenesis via inhibition of AMP kinase in chronic kidney disease. Cell Physiol Biochem. 36:358–372. 2015. View Article : Google Scholar : PubMed/NCBI

150 

Wen Y, Lu X, Ren J, Privratsky JR, Yang B, Rudemiller NP, Zhang J, Griffiths R, Jain MK, Nedospasov SA, et al: KLF4 in macrophages attenuates TNF α-mediated kidney injury and fibrosis. J Am Soc Nephrol. 30:1925–1938. 2019. View Article : Google Scholar : PubMed/NCBI

151 

Liu B, Nie J, Liang H, Liang Z, Huang J, Yu W and Wen S: Pharmacological inhibition of SETD7 by PFI-2 attenuates renal fibrosis following folic acid and obstruction injury. Eur J Pharmacol. 901:1740972021. View Article : Google Scholar : PubMed/NCBI

152 

Debelle FD, Vanherweghem JL and Nortier JL: Aristolochic acid nephropathy: A worldwide problem. Kidney Int. 74:158–169. 2008. View Article : Google Scholar : PubMed/NCBI

153 

Baudoux T, Jadot I, Declèves A-E, Antoine M-H, Colet J-M, Botton O, De Prez E, Pozdzik A, Husson C, Caron N and Nortier JL: Experimental aristolochic acid nephropathy: A relevant model to study AKI-to-CKD transition. Front Med (Lausanne). 9:8228702022. View Article : Google Scholar : PubMed/NCBI

154 

Feng Y, Ren J, Gui Y, Wei W, Shu B, Lu Q, Xue X, Sun X, He W, Yang J and Dai C: Wnt/β-catenin-promoted macrophage alternative activation contributes to kidney fibrosis. J Am Soc Nephrol. 29:182–193. 2018. View Article : Google Scholar : PubMed/NCBI

155 

Wang X, Jia P, Ren T, Zou Z, Xu S, Zhang Y, Shi Y, Bao S, Li Y, Fang Y and Ding X: MicroRNA-382 promotes M2-like macrophage via the SIRP-α/STAT3 signaling pathway in aristolochic acid-induced renal fibrosis. Front Immunol. 13:8649842022. View Article : Google Scholar : PubMed/NCBI

156 

Martinez FO, Helming L, Milde R, Varin A, Melgert BN, Draijer C, Thomas B, Fabbri M, Crawshaw A, Ho LP, et al: Genetic programs expressed in resting and IL-4 alternatively activated mouse and human macrophages: Similarities and differences. Blood. 121:e57–69. 2013. View Article : Google Scholar : PubMed/NCBI

157 

Chalayer E, Gramont B, Zekre F, Goguyer-Deschaumes R, Waeckel L, Grange L, Paul S, Chung AW and Killian M: Fc receptors gone wrong: A comprehensive review of their roles in autoimmune and inflammatory diseases. Autoimmun Rev. 21:1030162022. View Article : Google Scholar : PubMed/NCBI

158 

Yadav N and Chandra H: Modulation of alveolar macrophage innate response in proinflammatory-, pro-oxidant-, and infection-models by mint extract and chemical constituents: Role of MAPKs. Immunobiology. 223:49–56. 2018. View Article : Google Scholar : PubMed/NCBI

159 

Formentini L, Santacatterina F, Nunez de Arenas C, Stamatakis K, Lopez-Martinez D, Logan A, Fresno M, Smits R, Murphy MP and Cuezva JM: Mitochondrial ROS production protects the intestine from inflammation through functional M2 macrophage polarization. Cell Rep. 19:1202–1213. 2017. View Article : Google Scholar : PubMed/NCBI

160 

Phaniendra A, Jestadi DB and Periyasamy L: Free radicals: Properties, sources, targets, and their implication in various diseases. Indian J Clin Biochem. 30:11–26. 2015. View Article : Google Scholar : PubMed/NCBI

161 

Zhang Y, Choksi S, Chen K, Pobezinskaya Y, Linnoila I and Liu ZG: ROS play a critical role in the differentiation of alternatively activated macrophages and the occurrence of tumor-associated macrophages. Cell Res. 23:898–914. 2013. View Article : Google Scholar : PubMed/NCBI

162 

Lebeau C, Debelle FD, Arlt VM, Pozdzik A, De Prez EG, Phillips DH, Deschodt-Lanckman MM, Vanherweghem JL and Nortier JL: Early proximal tubule injury in experimental aristolochic acid nephropathy: Functional and histological studies. Nephrol Dial Transplant. 20:2321–2332. 2005. View Article : Google Scholar : PubMed/NCBI

163 

Seok JK, Lee SH, Kim MJ and Lee YM: MicroRNA-382 induced by HIF-1α is an angiogenic miR targeting the tumor suppressor phosphatase and tensin homolog. Nucleic Acids Res. 42:8062–8072. 2014. View Article : Google Scholar : PubMed/NCBI

164 

Wang X, Xue N, Zhao S, Shi Y, Ding X and Fang Y: Upregulation of miR-382 contributes to renal fibrosis secondary to aristolochic acid-induced kidney injury via PTEN signaling pathway. Cell Death Dis. 11:6202020. View Article : Google Scholar : PubMed/NCBI

165 

Pan YF, Tan YX, Wang M, Zhang J, Zhang B, Yang C, Ding ZW, Dong LW and Wang HY: Signal regulatory protein alpha is associated with tumor-polarized macrophages phenotype switch and plays a pivotal role in tumor progression. Hepatology. 58:680–691. 2013. View Article : Google Scholar : PubMed/NCBI

166 

Sanz AB, Sanchez-Nino MD, Ramos AM, Moreno JA, Santamaria B, Ruiz-Ortega M, Egido J and Ortiz A: NF-kappaB in renal inflammation. J Am Soc Nephrol. 21:1254–1262. 2010. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Zeng J, Zhang Y and Huang C: Macrophages polarization in renal inflammation and fibrosis animal models (Review). Mol Med Rep 29: 29, 2024.
APA
Zeng, J., Zhang, Y., & Huang, C. (2024). Macrophages polarization in renal inflammation and fibrosis animal models (Review). Molecular Medicine Reports, 29, 29. https://doi.org/10.3892/mmr.2023.13152
MLA
Zeng, J., Zhang, Y., Huang, C."Macrophages polarization in renal inflammation and fibrosis animal models (Review)". Molecular Medicine Reports 29.2 (2024): 29.
Chicago
Zeng, J., Zhang, Y., Huang, C."Macrophages polarization in renal inflammation and fibrosis animal models (Review)". Molecular Medicine Reports 29, no. 2 (2024): 29. https://doi.org/10.3892/mmr.2023.13152
Copy and paste a formatted citation
x
Spandidos Publications style
Zeng J, Zhang Y and Huang C: Macrophages polarization in renal inflammation and fibrosis animal models (Review). Mol Med Rep 29: 29, 2024.
APA
Zeng, J., Zhang, Y., & Huang, C. (2024). Macrophages polarization in renal inflammation and fibrosis animal models (Review). Molecular Medicine Reports, 29, 29. https://doi.org/10.3892/mmr.2023.13152
MLA
Zeng, J., Zhang, Y., Huang, C."Macrophages polarization in renal inflammation and fibrosis animal models (Review)". Molecular Medicine Reports 29.2 (2024): 29.
Chicago
Zeng, J., Zhang, Y., Huang, C."Macrophages polarization in renal inflammation and fibrosis animal models (Review)". Molecular Medicine Reports 29, no. 2 (2024): 29. https://doi.org/10.3892/mmr.2023.13152
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team