Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
February-2024 Volume 29 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
February-2024 Volume 29 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Functional role of translocator protein and its ligands in ocular diseases (Review)

  • Authors:
    • Mingyi Yu
    • Shaozhen Zhao
  • View Affiliations / Copyright

    Affiliations: Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin 30384, P.R. China, Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin 30384, P.R. China
    Copyright: © Yu et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 33
    |
    Published online on: January 8, 2024
       https://doi.org/10.3892/mmr.2024.13157
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

The 18 kDa translocator protein (TSPO) is an essential outer mitochondrial membrane protein that is responsible for mitochondrial transport, maintenance of mitochondrial homeostasis and normal physiological cell function. The role of TSPO in the pathogenesis of ocular diseases is a growing area of interest. More notably, TSPO exerts positive effects in regulating various pathophysiological processes, such as the inflammatory response, oxidative stress, steroid synthesis and modulation of microglial function, in combination with a variety of specific ligands such as 1‑(2‑chlorophenyl‑N‑methylpropyl)‑3‑isoquinolinecarboxamide, 4'‑chlorodiazepam and XBD173. In the present review, the expression of TSPO in ocular tissues and the functional role of TSPO and its ligands in diverse ocular diseases was discussed.
View Figures

Figure 1

Figure 2

View References

1 

Shoshan-Barmatz V, Pittala S and Mizrachi D: VDAC1 and the TSPO: Expression, Interactions, and associated functions in health and disease states. Int J Mol Sci. 20:33482019. View Article : Google Scholar : PubMed/NCBI

2 

Braestrup C and Squires RF: Specific benzodiazepine receptors in rat brain characterized by high-affinity (3H)diazepam binding. Proc Natl Acad Sci USA. 74:3805–3809. 1977. View Article : Google Scholar : PubMed/NCBI

3 

Papadopoulos V, Baraldi M, Guilarte TR, Knudsen TB, Lacapère JJ, Lindemann P, Norenberg MD, Nutt D, Weizman A, Zhang MR and Gavish M: Translocator protein (18kDa): New nomenclature for the peripheral-type benzodiazepine receptor based on its structure and molecular function. Trends Pharmacol Sci. 27:402–409. 2006. View Article : Google Scholar : PubMed/NCBI

4 

Tu LN, Zhao AH, Hussein M, Stocco DM and Selvaraj V: Translocator Protein (TSPO) affects mitochondrial fatty acid oxidation in steroidogenic cells. Endocrinology. 157:1110–1121. 2016. View Article : Google Scholar : PubMed/NCBI

5 

Bonsack F and Sukumari-Ramesh S: TSPO: An evolutionarily conserved protein with elusive functions. Int J Mol Sci. 19:16942018. View Article : Google Scholar : PubMed/NCBI

6 

Fan J and Papadopoulos V: Mitochondrial TSPO deficiency triggers retrograde signaling in MA-10 mouse tumor leydig cells. Int J Mol Sci. 22:2522020. View Article : Google Scholar : PubMed/NCBI

7 

Vainshtein A, Veenman L, Shterenberg A, Singh S, Masarwa A, Dutta B, Island B, Tsoglin E, Levin E, Leschiner S, et al: Quinazoline-based tricyclic compounds that regulate programmed cell death, induce neuronal differentiation, and are curative in animal models for excitotoxicity and hereditary brain disease. Cell Death Discov. 1:150272015. View Article : Google Scholar : PubMed/NCBI

8 

Sileikyte J, Blachly-Dyson E, Sewell R, Carpi A, Menabò R, Di Lisa F, Ricchelli F, Bernardi P and Forte M: Regulation of the mitochondrial permeability transition pore by the outer membrane does not involve the peripheral benzodiazepine receptor (Translocator Protein of 18 kDa (TSPO)). J Biol Chem. 289:13769–13781. 2014. View Article : Google Scholar : PubMed/NCBI

9 

Ilkan Z and Akar FG: The mitochondrial translocator protein and the emerging link between oxidative stress and arrhythmias in the diabetic heart. Front Physiol. 9:15182018. View Article : Google Scholar : PubMed/NCBI

10 

Arbo BD, Ribeiro MF and Garcia-Segura LM: Development of new treatments for Alzheimer's disease based on the modulation of translocator protein (TSPO). Ageing Res Rev. 54:1009432019. View Article : Google Scholar : PubMed/NCBI

11 

Mitro N, Cermenati G, Giatti S, Abbiati F, Pesaresi M, Calabrese D, Garcia-Segura LM, Caruso D and Melcangi RC: LXR and TSPO as new therapeutic targets to increase the levels of neuroactive steroids in the central nervous system of diabetic animals. Neurochem Int. 60:616–621. 2012. View Article : Google Scholar : PubMed/NCBI

12 

Veenman L and Gavish M: The peripheral-type benzodiazepine receptor and the cardiovascular system. Implications for drug development. Pharmacol Ther. 110:503–524. 2006. View Article : Google Scholar : PubMed/NCBI

13 

Barron AM, Garcia-Segura LM, Caruso D, Jayaraman A, Lee JW, Melcangi RC and Pike CJ: Ligand for translocator protein reverses pathology in a mouse model of Alzheimer's disease. J Neurosci. 33:8891–8897. 2013. View Article : Google Scholar : PubMed/NCBI

14 

Daugherty DJ, Selvaraj V, Chechneva OV, Liu XB, Pleasure DE and Deng W: A TSPO ligand is protective in a mouse model of multiple sclerosis. EMBO Mol Med. 5:891–903. 2013. View Article : Google Scholar : PubMed/NCBI

15 

Wu LP, Gong ZF, Wang H, Zhou ZS, Zhang MM, Liu C, Ren HM, Yang J, Han Y and Zeng CY: TSPO ligands prevent the proliferation of vascular smooth muscle cells and attenuate neointima formation through AMPK activation. Acta Pharmacol Sin. 41:34–46. 2020. View Article : Google Scholar : PubMed/NCBI

16 

Wang M, Wang X, Zhao L, Ma W, Rodriguez IR, Fariss RN and Wong WT: Macroglia-microglia interactions via TSPO signaling regulates microglial activation in the mouse retina. J Neurosci. 34:3793–3806. 2014. View Article : Google Scholar : PubMed/NCBI

17 

Biswas L, Zhou X, Dhillon B, Graham A and Shu X: Retinal pigment epithelium cholesterol efflux mediated by the 18 kDa translocator protein, TSPO, a potential target for treating age-related macular degeneration. Hum Mol Genet. 26:4327–4339. 2017. View Article : Google Scholar : PubMed/NCBI

18 

Mages K, Grassmann F, Jagle H, Rupprecht R, Weber BHF, Hauck SM and Grosche A: The agonistic TSPO ligand XBD173 attenuates the glial response thereby protecting inner retinal neurons in a murine model of retinal ischemia. J Neuroinflammation. 16:432019. View Article : Google Scholar : PubMed/NCBI

19 

Guo Y, Sun Z, Wang L, Jiang R, Shu Q and Xu G: Increased expression of TSPO-VDAC complex is correlated with NLRP3 inflammasome activation in diabetic retinopathy. Mol Med Rep. 26:3532022. View Article : Google Scholar : PubMed/NCBI

20 

Zhou Y, Ou Y, Ju Z, Zhang X, Zheng L, Li J, Sun Y and Liu X: Visualization of translocator protein (18 kDa) (TSPO) in the retina of diabetic retinopathy rats using fluorine-18-DPA-714. Ann Nucl Med. 34:675–681. 2020. View Article : Google Scholar : PubMed/NCBI

21 

Lacapere JJ, Duma L, Finet S, Kassiou M and Papadopoulos V: Insight into the Structural Features of TSPO: Implications for drug development. Trends Pharmacol Sci. 41:110–122. 2020. View Article : Google Scholar : PubMed/NCBI

22 

Papadopoulos V, Aghazadeh Y, Fan J, Campioli E, Zirkin B and Midzak A: Translocator protein-mediated pharmacology of cholesterol transport and steroidogenesis. Mol Cell Endocrinol. 408:90–98. 2015. View Article : Google Scholar : PubMed/NCBI

23 

Jaremko M, Jaremko L, Jaipuria G, Becker S and Zweckstetter M: Structure of the mammalian TSPO/PBR protein. Biochem Soc Trans. 43:566–571. 2015. View Article : Google Scholar : PubMed/NCBI

24 

Rupprecht R, Papadopoulos V, Rammes G, Baghai TC, Fan J, Akula N, Groyer G, Adams D and Schumacher M: Translocator protein (18 kDa) (TSPO) as a therapeutic target for neurological and psychiatric disorders. Nat Rev Drug Discov. 9:971–988. 2010. View Article : Google Scholar : PubMed/NCBI

25 

Biswas L, Farhan F, Reilly J, Bartholomew C and Shu X: TSPO ligands promote cholesterol efflux and suppress oxidative stress and inflammation in choroidal endothelial cells. Int J Mol Sci. 19:37402018. View Article : Google Scholar : PubMed/NCBI

26 

Jaremko L, Jaremko M, Giller K, Becker S and Zweckstetter M: Structure of the mitochondrial translocator protein in complex with a diagnostic ligand. Science. 343:1363–1366. 2014. View Article : Google Scholar : PubMed/NCBI

27 

Morohaku K, Pelton SH, Daugherty DJ, Butler WR, Deng W and Selvaraj V: Translocator protein/peripheral benzodiazepine receptor is not required for steroid hormone biosynthesis. Endocrinology. 155:89–97. 2014. View Article : Google Scholar : PubMed/NCBI

28 

Tu LN, Morohaku K, Manna PR, Pelton SH, Butler WR, Stocco DM and Selvaraj V: Peripheral benzodiazepine receptor/translocator protein global knock-out mice are viable with no effects on steroid hormone biosynthesis. J Biol Chem. 289:27444–27454. 2014. View Article : Google Scholar : PubMed/NCBI

29 

Tu LN, Zhao AH, Stocco DM and Selvaraj V: PK11195 effect on steroidogenesis is not mediated through the translocator protein (TSPO). Endocrinology. 156:1033–1039. 2015. View Article : Google Scholar : PubMed/NCBI

30 

Zhao AH, Tu LN, Mukai C, Sirivelu MP, Pillai VV, Morohaku K, Cohen R and Selvaraj V: Mitochondrial translocator protein (TSPO) function is not essential for heme biosynthesis. J Biol Chem. 291:1591–1603. 2016. View Article : Google Scholar : PubMed/NCBI

31 

Casellas P, Galiegue S and Basile AS: Peripheral benzodiazepine receptors and mitochondrial function. Neurochem Int. 40:475–486. 2002. View Article : Google Scholar : PubMed/NCBI

32 

Corsi L, Geminiani E and Baraldi M: Peripheral benzodiazepine receptor (PBR) new insight in cell proliferation and cell differentiation review. Curr Clin Pharmacol. 3:38–45. 2008. View Article : Google Scholar : PubMed/NCBI

33 

Gatliff J, East D, Crosby J, Abeti R, Harvey R, Craigen W, Parker P and Campanella M: TSPO interacts with VDAC1 and triggers a ROS-mediated inhibition of mitochondrial quality control. Autophagy. 10:2279–2296. 2014. View Article : Google Scholar : PubMed/NCBI

34 

Varga B, Marko K, Hadinger N, Jelitai M, Demeter K, Tihanyi K, Vas A and Madarász E: Translocator protein (TSPO 18kDa) is expressed by neural stem and neuronal precursor cells. Neurosci Lett. 462:257–262. 2009. View Article : Google Scholar : PubMed/NCBI

35 

Veenman L and Gavish M: The role of 18 kDa mitochondrial translocator protein (TSPO) in programmed cell death, and effects of steroids on TSPO expression. Curr Mol Med. 12:398–412. 2012. View Article : Google Scholar : PubMed/NCBI

36 

Bernardi P, Carraro M and Lippe G: The mitochondrial permeability transition: Recent progress and open questions. FEBS J. 289:7051–7074. 2022. View Article : Google Scholar : PubMed/NCBI

37 

Loth MK, Guariglia SR, Re DB, Perez J, de Paiva VN, Dziedzic JL, Chambers JW, Azzam DJ and Guilarte TR: A novel interaction of translocator protein 18 kDa (TSPO) with NADPH oxidase in microglia. Mol Neurobiol. 57:4467–4487. 2020. View Article : Google Scholar : PubMed/NCBI

38 

Gatliff J, East DA, Singh A, Alvarez MS, Frison M, Matic I, Ferraina C, Sampson N, Turkheimer F and Campanella M: A role for TSPO in mitochondrial Ca2+ homeostasis and redox stress signaling. Cell Death Dis. 8:e28962017. View Article : Google Scholar : PubMed/NCBI

39 

Zeno S, Veenman L, Katz Y, Bode J, Gavish M and Zaaroor M: The 18 kDa mitochondrial translocator protein (TSPO) prevents accumulation of protoporphyrin IX. Involvement of reactive oxygen species (ROS). Curr Mol Med. 12:494–501. 2012. View Article : Google Scholar : PubMed/NCBI

40 

Wolf A, Herb M, Schramm M and Langmann T: The TSPO-NOX1 axis controls phagocyte-triggered pathological angiogenesis in the eye. Nat Commun. 11:27092020. View Article : Google Scholar : PubMed/NCBI

41 

Rupprecht R, Rammes G, Eser D, Baghai TC, Schüle C, Nothdurfter C, Troxler T, Gentsch C, Kalkman HO, Chaperon F, et al: Translocator protein (18 kD) as target for anxiolytics without benzodiazepine-like side effects. Science. 325:490–493. 2009. View Article : Google Scholar : PubMed/NCBI

42 

Barresi E, Robello M, Costa B, Da Pozzo E, Baglini E, Salerno S, Da Settimo F, Martini C and Taliani S: An update into the medicinal chemistry of translocator protein (TSPO) ligands. Eur J Med Chem. 209:1129242021. View Article : Google Scholar : PubMed/NCBI

43 

Gut P: Targeting mitochondrial energy metabolism with TSPO ligands. Biochem Soc Trans. 43:537–542. 2015. View Article : Google Scholar : PubMed/NCBI

44 

Taketani S, Kohno H, Furukawa T and Tokunaga R: Involvement of peripheral-type benzodiazepine receptors in the intracellular transport of heme and porphyrins. J Biochem. 117:875–880. 1995. View Article : Google Scholar : PubMed/NCBI

45 

Snyder SH, Verma A and Trifiletti RR: The peripheral-type benzodiazepine receptor: A protein of mitochondrial outer membranes utilizing porphyrins as endogenous ligands. FASEB J. 1:282–288. 1987. View Article : Google Scholar : PubMed/NCBI

46 

Veenman L, Vainshtein A, Yasin N, Azrad M and Gavish M: Tetrapyrroles as endogenous TSPO ligands in eukaryotes and prokaryotes: Comparisons with synthetic ligands. Int J Mol Sci. 17:8802016. View Article : Google Scholar : PubMed/NCBI

47 

Tonon MC, Vaudry H, Chuquet J, Guillebaud F, Fan J, Masmoudi-Kouki O, Vaudry D, Lanfray D, Morin F, Prevot V, et al: Endozepines and their receptors: Structure, functions and pathophysiological significance. Pharmacol Ther. 208:1073862020. View Article : Google Scholar : PubMed/NCBI

48 

Ma Z, An R, Chen M, Wang X and Zhu M: Random versus Block Glycopolymers bearing betulin and porphyrin for enhanced photodynamic therapy. Biomacromolecules. 23:5074–5083. 2022. View Article : Google Scholar : PubMed/NCBI

49 

Yamamoto M, Arimura H, Fukushige T, Minami K, Nishizawa Y, Tanimoto A, Kanekura T, Nakagawa M, Akiyama S and Furukawa T: Abcb10 role in heme biosynthesis in vivo: Abcb10 knockout in mice causes anemia with protoporphyrin IX and iron accumulation. Mol Cell Biol. 34:1077–1084. 2014. View Article : Google Scholar : PubMed/NCBI

50 

Batoko H, Veljanovski V and Jurkiewicz P: Enigmatic Translocator protein (TSPO) and cellular stress regulation. Trends Biochem Sci. 40:497–503. 2015. View Article : Google Scholar : PubMed/NCBI

51 

Korolnek T and Hamza I: Like iron in the blood of the people: The requirement for heme trafficking in iron metabolism. Front Pharmacol. 5:1262014. View Article : Google Scholar : PubMed/NCBI

52 

Chauveau F, Boutin H, Van Camp N, Dolle F and Tavitian B: Nuclear imaging of neuroinflammation: A comprehensive review of [11C]PK11195 challengers. Eur J Nucl Med Mol Imaging. 35:2304–2319. 2008. View Article : Google Scholar : PubMed/NCBI

53 

Dolle F, Luus C, Reynolds A and Kassiou M: Radiolabelled molecules for imaging the translocator protein (18 kDa) using positron emission tomography. Curr Med Chem. 16:2899–2923. 2009. View Article : Google Scholar : PubMed/NCBI

54 

Fan Z, Calsolaro V, Atkinson RA, Femminella GD, Waldman A, Buckley C, Trigg W, Brooks DJ, Hinz R and Edison P: Flutriciclamide (18F-GE180) PET: First-in-Human PET study of novel third-generation in vivo marker of human translocator protein. J Nucl Med. 57:1753–1759. 2016. View Article : Google Scholar : PubMed/NCBI

55 

Chiabrando D, Marro S, Mercurio S, Giorgi C, Petrillo S, Vinchi F, Fiorito V, Fagoonee S, Camporeale A, Turco E, et al: The mitochondrial heme exporter FLVCR1b mediates erythroid differentiation. J Clin Invest. 122:4569–4579. 2012. View Article : Google Scholar : PubMed/NCBI

56 

Ni R, Rojdner J, Voytenko L, Dyrks T, Thiele A, Marutle A and Nordberg A: In vitro characterization of the regional binding distribution of amyloid PET tracer florbetaben and the glia tracers deprenyl and PK11195 in Autopsy Alzheimer's brain tissue. J Alzheimers Dis. 80:1723–1737. 2021. View Article : Google Scholar : PubMed/NCBI

57 

Ishikawa M, Yoshitomi T, Covey DF, Zorumski CF and Izumi Y: TSPO activation modulates the effects of high pressure in a rat ex vivo glaucoma model. Neuropharmacology. 111:142–159. 2016. View Article : Google Scholar : PubMed/NCBI

58 

Papadopoulos V and Lecanu L: Translocator protein (18 kDa) TSPO: An emerging therapeutic target in neurotrauma. Exp Neurol. 219:53–57. 2009. View Article : Google Scholar : PubMed/NCBI

59 

Girard C, Liu S, Adams D, Lacroix C, Sinéus M, Boucher C, Papadopoulos V, Rupprecht R, Schumacher M and Groyer G: Axonal regeneration and neuroinflammation: Roles for the translocator protein 18 kDa. J Neuroendocrinol. 24:71–81. 2012. View Article : Google Scholar : PubMed/NCBI

60 

Ravikumar B, Crawford D, Dellovade T, Savinainen A, Graham D, Liere P, Oudinet JP, Webb M and Hering H: Differential efficacy of the TSPO ligands etifoxine and XBD-173 in two rodent models of Multiple Sclerosis. Neuropharmacology. 108:229–237. 2016. View Article : Google Scholar : PubMed/NCBI

61 

Choi HB, Khoo C, Ryu JK, van Breemen E, Kim SU and McLarnon JG: Inhibition of lipopolysaccharide-induced cyclooxygenase-2, tumor necrosis factor-alpha and [Ca2+]i responses in human microglia by the peripheral benzodiazepine receptor ligand PK11195. J Neurochem. 83:546–555. 2002. View Article : Google Scholar : PubMed/NCBI

62 

Lebedeva IV, Su ZZ, Sarkar D, Kitada S, Dent P, Waxman S, Reed JC and Fisher PB: Melanoma differentiation associated gene-7, mda-7/interleukin-24, induces apoptosis in prostate cancer cells by promoting mitochondrial dysfunction and inducing reactive oxygen species. Cancer Res. 63:8138–8144. 2003.PubMed/NCBI

63 

Seneviratne MS, Faccenda D, De Biase V and Campanella M: PK11195 inhibits mitophagy targeting the F1Fo-ATPsynthase in Bcl-2 knock-down cells. Curr Mol Med. 12:476–482. 2012. View Article : Google Scholar : PubMed/NCBI

64 

Bonora M, Giorgi C and Pinton P: Molecular mechanisms and consequences of mitochondrial permeability transition. Nat Rev Mol Cell Biol. 23:266–285. 2022. View Article : Google Scholar : PubMed/NCBI

65 

Gonzalez-Polo RA, Carvalho G, Braun T, Decaudin D, Fabre C, Larochette N, Perfettini JL, Djavaheri-Mergny M, Youlyouz-Marfak I, Codogno P, et al: PK11195 potently sensitizes to apoptosis induction independently from the peripheral benzodiazepin receptor. Oncogene. 24:7503–7513. 2005. View Article : Google Scholar : PubMed/NCBI

66 

Choi J, Ifuku M, Noda M and Guilarte TR: Translocator protein (18 kDa)/peripheral benzodiazepine receptor specific ligands induce microglia functions consistent with an activated state. Glia. 59:219–230. 2011. View Article : Google Scholar : PubMed/NCBI

67 

Awad M and Gavish M: Binding of [3H]Ro 5-4864 and [3H]PK 11195 to cerebral cortex and peripheral tissues of various species: Species differences and heterogeneity in peripheral benzodiazepine binding sites. J Neurochem. 49:1407–1414. 1987. View Article : Google Scholar : PubMed/NCBI

68 

Marangos PJ, Patel J, Boulenger JP and Clark-Rosenberg R: Characterization of peripheral-type benzodiazepine binding sites in brain using [3H]Ro 5-4864. Mol Pharmacol. 22:26–32. 1982.PubMed/NCBI

69 

Kreisl WC, Kim MJ, Coughlin JM, Henter ID, Owen DR and Innis RB: PET imaging of neuroinflammation in neurological disorders. Lancet Neurol. 19:940–950. 2020. View Article : Google Scholar : PubMed/NCBI

70 

Gut P, Baeza-Raja B, Andersson O, Hasenkamp L, Hsiao J, Hesselson D, Akassoglou K, Verdin E, Hirschey MD and Stainier DY: Whole-organism screening for gluconeogenesis identifies activators of fasting metabolism. Nat Chem Biol. 9:97–104. 2013. View Article : Google Scholar : PubMed/NCBI

71 

Da Pozzo E, Giacomelli C, Barresi E, Costa B, Taliani S, Passetti Fda S and Martini C: Targeting the 18-kDa translocator protein: recent perspectives for neuroprotection. Biochem Soc Trans. 43:559–565. 2015. View Article : Google Scholar : PubMed/NCBI

72 

Gavioli EC, Duarte FS, Bressan E, Ferrara P, Farges RC and De Lima TC: Antidepressant-like effect of Ro5-4864, a peripheral-type benzodiazepine receptor ligand, in forced swimming test. Eur J Pharmacol. 471:21–26. 2003. View Article : Google Scholar : PubMed/NCBI

73 

Kita A, Kohayakawa H, Kinoshita T, Ochi Y, Nakamichi K, Kurumiya S, Furukawa K and Oka M: Antianxiety and antidepressant-like effects of AC-5216, a novel mitochondrial benzodiazepine receptor ligand. Br J Pharmacol. 142:1059–1072. 2004. View Article : Google Scholar : PubMed/NCBI

74 

Baez E, Guio-Vega GP, Echeverria V, Sandoval-Rueda DA and Barreto GE: 4′-chlorodiazepam protects mitochondria in T98G astrocyte cell line from glucose deprivation. Neurotox Res. 32:163–171. 2017. View Article : Google Scholar : PubMed/NCBI

75 

Nothdurfter C, Rammes G, Baghai TC, Schüle C, Schumacher M, Papadopoulos V and Rupprecht R: Translocator protein (18 kDa) as a target for novel anxiolytics with a favourable side-effect profile. J Neuroendocrinol. 24:82–92. 2012. View Article : Google Scholar : PubMed/NCBI

76 

Kita A, Kinoshita T, Kohayakawa H, Furukawa K and Akaike A: Lack of tolerance to anxiolysis and withdrawal symptoms in mice repeatedly treated with AC-5216, a selective TSPO ligand. Prog Neuropsychopharmacol Biol Psychiatry. 33:1040–1045. 2009. View Article : Google Scholar : PubMed/NCBI

77 

Karlstetter M, Nothdurfter C, Aslanidis A, Moeller K, Horn F, Scholz R, Neumann H, Weber BH, Rupprecht R and Langmann T: Translocator protein (18 kDa) (TSPO) is expressed in reactive retinal microglia and modulates microglial inflammation and phagocytosis. J Neuroinflammation. 11:32014. View Article : Google Scholar : PubMed/NCBI

78 

Scholz R, Caramoy A, Bhuckory MB, Rashid K, Chen M, Xu H, Grimm C and Langmann T: Targeting translocator protein (18 kDa) (TSPO) dampens pro-inflammatory microglia reactivity in the retina and protects from degeneration. J Neuroinflammation. 12:2012015. View Article : Google Scholar : PubMed/NCBI

79 

Schlichter R, Rybalchenko V, Poisbeau P, Verleye M and Gillardin J: Modulation of GABAergic synaptic transmission by the non-benzodiazepine anxiolytic etifoxine. Neuropharmacology. 39:1523–1535. 2000. View Article : Google Scholar : PubMed/NCBI

80 

Choi YM and Kim KH: Etifoxine for pain patients with anxiety. Korean J Pain. 28:4–10. 2015. View Article : Google Scholar : PubMed/NCBI

81 

Girard C, Liu S, Cadepond F, Adams D, Lacroix C, Verleye M, Gillardin JM, Baulieu EE, Schumacher M and Schweizer-Groyer G: Etifoxine improves peripheral nerve regeneration and functional recovery. Proc Natl Acad Sci USA. 105:20505–20510. 2008. View Article : Google Scholar : PubMed/NCBI

82 

Olsen RW and Li GD: GABA(A) receptors as molecular targets of general anesthetics: Identification of binding sites provides clues to allosteric modulation. Can J Anaesth. 58:206–215. 2011. View Article : Google Scholar : PubMed/NCBI

83 

Gunn BG, Brown AR, Lambert JJ and Belelli D: Neurosteroids and GABA(A) Receptor Interactions: A focus on stress. Front Neurosci. 5:1312011. View Article : Google Scholar : PubMed/NCBI

84 

Biswas L, Ibrahim KS, Li X, Zhou X, Zeng Z, Craft J and Shu X: Effect of a TSPO ligand on retinal pigment epithelial cholesterol homeostasis in high-fat fed mice, implication for age-related macular degeneration. Exp Eye Res. 208:1086252021. View Article : Google Scholar : PubMed/NCBI

85 

Ibrahim KS, Craft JA, Biswas L, Spencer J and Shu X: Etifoxine reverses weight gain and alters the colonic bacterial community in a mouse model of obesity. Biochem Pharmacol. 180:1141512020. View Article : Google Scholar : PubMed/NCBI

86 

Costa B, Cavallini C, Da Pozzo E, Taliani S, Da Settimo F and Martini C: The anxiolytic etifoxine binds to TSPO Ro5-4864 binding site with long residence time showing a high neurosteroidogenic activity. ACS Chem Neurosci. 8:1448–1454. 2017. View Article : Google Scholar : PubMed/NCBI

87 

Kondo D, Saegusa H, Yabe R, Takasaki I, Kurihara T, Zong S and Tanabe T: Peripheral-type benzodiazepine receptor antagonist is effective in relieving neuropathic pain in mice. J Pharmacol Sci. 110:55–63. 2009. View Article : Google Scholar : PubMed/NCBI

88 

Tsukagoshi E, Kawaguchi M, Shinomiya T, Yoshikawa M, Kawano T, Okubo M and Sawaki K: Diazepam enhances production of diazepam-binding inhibitor (DBI), a negative saliva secretion regulator, localized in rat salivary gland. J Pharmacol Sci. 115:221–229. 2011. View Article : Google Scholar

89 

Morin D, Musman J, Pons S, Berdeaux A and Ghaleh B: Mitochondrial translocator protein (TSPO): From physiology to cardioprotection. Biochem Pharmacol. 105:1–13. 2016. View Article : Google Scholar : PubMed/NCBI

90 

Leducq N, Bono F, Sulpice T, Vin V, Janiak P, Fur GL, O'Connor SE and Herbert JM: Role of peripheral benzodiazepine receptors in mitochondrial, cellular, and cardiac damage induced by oxidative stress and ischemia-reperfusion. J Pharmacol Exp Ther. 306:828–837. 2003. View Article : Google Scholar : PubMed/NCBI

91 

Santoro A, Mattace Raso G, Taliani S, Da Pozzo E, Simorini F, Costa B, Martini C, Laneri S, Sacchi A, Cosimelli B, et al: TSPO-ligands prevent oxidative damage and inflammatory response in C6 glioma cells by neurosteroid synthesis. Eur J Pharm Sci. 88:124–131. 2016. View Article : Google Scholar : PubMed/NCBI

92 

Klee K, Storti F, Barben M, Samardzija M, Langmann T, Dunaief J and Grimm C: Systemic knockout of Tspo in mice does not affect retinal morphology, function and susceptibility to degeneration. Exp Eye Res. 188:1078162019. View Article : Google Scholar : PubMed/NCBI

93 

Storti F, Klee K, Todorova V, Steiner R, Othman A, van der Velde-Visser S, Samardzija M, Meneau I, Barben M, Karademir D, et al: Impaired ABCA1/ABCG1-mediated lipid efflux in the mouse retinal pigment epithelium (RPE) leads to retinal degeneration. Elife. 8:e451002019. View Article : Google Scholar : PubMed/NCBI

94 

Santos AM, Calvente R, Tassi M, Carrasco MC, Martín-Oliva D, Marín-Teva JL, Navascués J and Cuadros MA: Embryonic and postnatal development of microglial cells in the mouse retina. J Comp Neurol. 506:224–239. 2008. View Article : Google Scholar : PubMed/NCBI

95 

Lee MA, Sitko AA, Khalid S, Shirasu-Hiza M and Mason CA: Spatiotemporal distribution of glia in and around the developing mouse optic tract. J Comp Neurol. 527:508–521. 2019. View Article : Google Scholar : PubMed/NCBI

96 

Stevens B, Allen NJ, Vazquez LE, Howell GR, Christopherson KS, Nouri N, Micheva KD, Mehalow AK, Huberman AD, Stafford B, et al: The classical complement cascade mediates CNS synapse elimination. Cell. 131:1164–1178. 2007. View Article : Google Scholar : PubMed/NCBI

97 

Prinz M and Mildner A: Microglia in the CNS: Immigrants from another world. Glia. 59:177–187. 2011. View Article : Google Scholar : PubMed/NCBI

98 

Banati RB, Middleton RJ, Chan R, Hatty CR, Kam WW, Quin C, Graeber MB, Parmar A, Zahra D, Callaghan P, et al: Positron emission tomography and functional characterization of a complete PBR/TSPO knockout. Nat Commun. 5:54522014. View Article : Google Scholar : PubMed/NCBI

99 

Barron AM, Ji B, Kito S, Suhara T and Higuchi M: Steroidogenic abnormalities in translocator protein knockout mice and significance in the aging male. Biochem J. 475:75–85. 2018. View Article : Google Scholar : PubMed/NCBI

100 

Grassmann F, Fauser S and Weber BH: The genetics of age-related macular degeneration (AMD)-Novel targets for designing treatment options? Eur J Pharm Biopharm. 95:194–202. 2015. View Article : Google Scholar : PubMed/NCBI

101 

Csader S, Korhonen S, Kaarniranta K and Schwab U: The effect of dietary supplementations on delaying the progression of age-related macular degeneration: A systematic review and meta-analysis. Nutrients. 14:42732022. View Article : Google Scholar : PubMed/NCBI

102 

Fleckenstein M, Keenan TDL, Guymer RH, Chakravarthy U, Schmitz-Valckenberg S, Klaver CC, Wong WT and Chew EY: Age-related macular degeneration. Nat Rev Dis Primers. 7:312021. View Article : Google Scholar : PubMed/NCBI

103 

Pikuleva IA and Curcio CA: Cholesterol in the retina: The best is yet to come. Prog Retin Eye Res. 41:64–89. 2014. View Article : Google Scholar : PubMed/NCBI

104 

Curcio CA, Presley JB, Malek G, Medeiros NE, Avery DV and Kruth HS: Esterified and unesterified cholesterol in drusen and basal deposits of eyes with age-related maculopathy. Exp Eye Res. 81:731–741. 2005. View Article : Google Scholar : PubMed/NCBI

105 

Bhutto I and Lutty G: Understanding age-related macular degeneration (AMD): Relationships between the photoreceptor/retinal pigment epithelium/Bruch's membrane/choriocapillaris complex. Mol Aspects Med. 33:295–317. 2012. View Article : Google Scholar : PubMed/NCBI

106 

Biesemeier A, Taubitz T, Julien S, Yoeruek E and Schraermeyer U: Choriocapillaris breakdown precedes retinal degeneration in age-related macular degeneration. Neurobiol Aging. 35:2562–2573. 2014. View Article : Google Scholar : PubMed/NCBI

107 

Fritsche LG, Igl W, Bailey JN, Grassmann F, Sengupta S, Bragg-Gresham JL, Burdon KP, Hebbring SJ, Wen C, Gorski M, et al: A large genome-wide association study of age-related macular degeneration highlights contributions of rare and common variants. Nat Genet. 48:134–143. 2016. View Article : Google Scholar : PubMed/NCBI

108 

Toomey CB, Johnson LV and Bowes Rickman C: Complement factor H in AMD: Bridging genetic associations and pathobiology. Prog Retin Eye Res. 62:38–57. 2018. View Article : Google Scholar : PubMed/NCBI

109 

Malek G, Johnson LV, Mace BE, Saloupis P, Schmechel DE, Rickman DW, Toth CA, Sullivan PM and Bowes Rickman C: Apolipoprotein E allele-dependent pathogenesis: A model for age-related retinal degeneration. Proc Natl Acad Sci USA. 102:11900–11905. 2005. View Article : Google Scholar : PubMed/NCBI

110 

Toomey CB, Kelly U, Saban DR and Bowes Rickman C: Regulation of age-related macular degeneration-like pathology by complement factor H. Proc Natl Acad Sci USA. 112:E3040–E3049. 2015. View Article : Google Scholar : PubMed/NCBI

111 

Langmann T: Microglia activation in retinal degeneration. J Leukoc Biol. 81:1345–1351. 2007. View Article : Google Scholar : PubMed/NCBI

112 

Zeng H, Ding M, Chen XX and Lu Q: Microglial NADPH oxidase activation mediates rod cell death in the retinal degeneration in rd mice. Neuroscience. 275:54–61. 2014. View Article : Google Scholar : PubMed/NCBI

113 

Zhao L, Zabel MK, Wang X, Ma W, Shah P, Fariss RN, Qian H, Parkhurst CN, Gan WB and Wong WT: Microglial phagocytosis of living photoreceptors contributes to inherited retinal degeneration. EMBO Mol Med. 7:1179–1197. 2015. View Article : Google Scholar : PubMed/NCBI

114 

Farhan F, Almarhoun M, Wong A, Findlay AS, Bartholomew C, Williams MTS, Hurd TW and Shu X: Deletion of TSPO causes dysregulation of cholesterol metabolism in mouse retina. Cells. 10:30662021. View Article : Google Scholar : PubMed/NCBI

115 

Luckoff A, Scholz R, Sennlaub F, Xu H and Langmann T: Comprehensive analysis of mouse retinal mononuclear phagocytes. Nat Protoc. 12:1136–1150. 2017. View Article : Google Scholar : PubMed/NCBI

116 

Nagineni CN, Kommineni VK, William A, Detrick B and Hooks JJ: Regulation of VEGF expression in human retinal cells by cytokines: implications for the role of inflammation in age-related macular degeneration. J Cell Physiol. 227:116–126. 2012. View Article : Google Scholar : PubMed/NCBI

117 

Osborne NN, Casson RJ, Wood JP, Chidlow G, Graham M and Melena J: Retinal ischemia: Mechanisms of damage and potential therapeutic strategies. Prog Retin Eye Res. 23:91–147. 2004. View Article : Google Scholar : PubMed/NCBI

118 

Osborne NN, Ugarte M, Chao M, Chidlow G, Bae JH, Wood JP and Nash MS: Neuroprotection in relation to retinal ischemia and relevance to glaucoma. Surv Ophthalmol. 43 (Suppl 1):S102–S128. 1999. View Article : Google Scholar : PubMed/NCBI

119 

Youngblood H, Robinson R, Sharma A and Sharma S: Proteomic biomarkers of retinal inflammation in diabetic retinopathy. Int J Mol Sci. 20:47552019. View Article : Google Scholar : PubMed/NCBI

120 

Khayat M, Williams M and Lois N: Ischemic retinal vein occlusion: Characterizing the more severe spectrum of retinal vein occlusion. Surv Ophthalmol. 63:816–850. 2018. View Article : Google Scholar : PubMed/NCBI

121 

Heyck M, Bonsack B, Zhang H, Sadanandan N, Cozene B, Kingsbury C, Lee JY and Borlongan CV: The brain and eye: Treating cerebral and retinal ischemia through mitochondrial transfer. Exp Biol Med (Maywood). 244:1485–1492. 2019. View Article : Google Scholar : PubMed/NCBI

122 

Liu GJ, Middleton RJ, Kam WW, Chin DY, Hatty CR, Chan RH and Banati RB: Functional gains in energy and cell metabolism after TSPO gene insertion. Cell Cycle. 16:436–447. 2017. View Article : Google Scholar : PubMed/NCBI

123 

Lieth E, Barber AJ, Xu B, Dice C, Ratz MJ, Tanase D and Strother JM: Glial reactivity and impaired glutamate metabolism in short-term experimental diabetic retinopathy. Penn State Retina Research Group. Diabetes. 47:815–820. 1998. View Article : Google Scholar : PubMed/NCBI

124 

Wagner L, Pannicke T, Rupprecht V, Frommherz I, Volz C, Illes P, Hirrlinger J, Jägle H, Egger V, Haydon PG, et al: Suppression of SNARE-dependent exocytosis in retinal glial cells and its effect on ischemia-induced neurodegeneration. Glia. 65:1059–1071. 2017. View Article : Google Scholar : PubMed/NCBI

125 

Dkhissi O, Chanut E, Wasowicz M, Savoldelli M, Nguyen-Legros J, Minvielle F and Versaux-Botteri C: Retinal TUNEL-positive cells and high glutamate levels in vitreous humor of mutant quail with a glaucoma-like disorder. Invest Ophthalmol Vis Sci. 40:990–995. 1999.PubMed/NCBI

126 

Delyfer MN, Forster V, Neveux N, Picaud S, Leveillard T and Sahel JA: Evidence for glutamate-mediated excitotoxic mechanisms during photoreceptor degeneration in the rd1 mouse retina. Mol Vis. 11:688–696. 2005.PubMed/NCBI

127 

Vujosevic S, Aldington SJ, Silva P, Hernández C, Scanlon P, Peto T and Simó R: Screening for diabetic retinopathy: New perspectives and challenges. Lancet Diabetes Endocrinol. 8:337–347. 2020. View Article : Google Scholar : PubMed/NCBI

128 

Wang W and Lo ACY: Diabetic retinopathy: Pathophysiology and treatments. Int J Mol Sci. 19:18162018. View Article : Google Scholar : PubMed/NCBI

129 

Fung TH, Patel B, Wilmot EG and Amoaku WM: Diabetic retinopathy for the non-ophthalmologist. Clin Med (Lond). 22:112–116. 2022. View Article : Google Scholar : PubMed/NCBI

130 

Brownlee M: The pathobiology of diabetic complications: A unifying mechanism. Diabetes. 54:1615–1625. 2005. View Article : Google Scholar : PubMed/NCBI

131 

Naruse K, Nakamura J, Hamada Y, Nakayama M, Chaya S, Komori T, Kato K, Kasuya Y, Miwa K and Hotta N: Aldose reductase inhibition prevents glucose-induced apoptosis in cultured bovine retinal microvascular pericytes. Exp Eye Res. 71:309–315. 2000. View Article : Google Scholar : PubMed/NCBI

132 

Romeo G, Liu WH, Asnaghi V, Kern TS and Lorenzi M: Activation of nuclear factor-kappaB induced by diabetes and high glucose regulates a proapoptotic program in retinal pericytes. Diabetes. 51:2241–2248. 2002. View Article : Google Scholar : PubMed/NCBI

133 

Abcouwer SF: Muller cell-microglia cross talk drives neuroinflammation in diabetic retinopathy. Diabetes. 66:261–263. 2017. View Article : Google Scholar : PubMed/NCBI

134 

Sorrentino FS, Allkabes M, Salsini G, Bonifazzi C and Perri P: The importance of glial cells in the homeostasis of the retinal microenvironment and their pivotal role in the course of diabetic retinopathy. Life Sci. 162:54–59. 2016. View Article : Google Scholar : PubMed/NCBI

135 

Podesta F, Romeo G, Liu WH, Krajewski S, Reed JC, Gerhardinger C and Lorenzi M: Bax is increased in the retina of diabetic subjects and is associated with pericyte apoptosis in vivo and in vitro. Am J Pathol. 156:1025–1032. 2000. View Article : Google Scholar : PubMed/NCBI

136 

Tien T, Zhang J, Muto T, Kim D, Sarthy VP and Roy S: High glucose induces mitochondrial dysfunction in retinal muller cells: Implications for diabetic retinopathy. Invest Ophthalmol Vis Sci. 58:2915–2921. 2017. View Article : Google Scholar : PubMed/NCBI

137 

Sasaki M, Ozawa Y, Kurihara T, Kubota S, Yuki K, Noda K, Kobayashi S, Ishida S and Tsubota K: Neurodegenerative influence of oxidative stress in the retina of a murine model of diabetes. Diabetologia. 53:971–979. 2010. View Article : Google Scholar : PubMed/NCBI

138 

Li J and Papadopoulos V: Translocator protein (18 kDa) as a pharmacological target in adipocytes to regulate glucose homeostasis. Biochem Pharmacol. 97:99–110. 2015. View Article : Google Scholar : PubMed/NCBI

139 

Musman J, Paradis S, Panel M, Pons S, Barau C, Caccia C, Leoni V, Ghaleh B and Morin D: A TSPO ligand prevents mitochondrial sterol accumulation and dysfunction during myocardial ischemia-reperfusion in hypercholesterolemic rats. Biochem Pharmacol. 142:87–95. 2017. View Article : Google Scholar : PubMed/NCBI

140 

Ciudin A, Simo-Servat O, Hernandez C, Arcos G, Diego S, Sanabria Á, Sotolongo Ó, Hernández I, Boada M and Simó R: Retinal Microperimetry: A new tool for identifying patients with type 2 diabetes at risk for developing Alzheimer disease. Diabetes. 66:3098–3104. 2017. View Article : Google Scholar : PubMed/NCBI

141 

Kinuthia UM, Wolf A and Langmann T: Microglia and inflammatory responses in diabetic retinopathy. Front Immunol. 11:5640772020. View Article : Google Scholar : PubMed/NCBI

142 

Flaxman SR, Bourne RRA, Resnikoff S, Ackland P, Braithwaite T, Cicinelli MV, Das A, Jonas JB, Keeffe J, Kempen JH, et al: Global causes of blindness and distance vision impairment 1990–2020: A systematic review and meta-analysis. Lancet Glob Health. 5:e1221–e1234. 2017. View Article : Google Scholar : PubMed/NCBI

143 

Tham YC, Li X, Wong TY, Quigley HA, Aung T and Cheng CY: Global prevalence of glaucoma and projections of glaucoma burden through 2040: A systematic review and meta-analysis. Ophthalmology. 121:2081–2090. 2014. View Article : Google Scholar : PubMed/NCBI

144 

Zukerman R, Harris A, Oddone F, Siesky B, Verticchio Vercellin A and Ciulla TA: Glaucoma heritability: Molecular mechanisms of disease. Genes (Basel). 12:11352021. View Article : Google Scholar : PubMed/NCBI

145 

Quigley HA: Glaucoma. Lancet. 377:1367–1377. 2011. View Article : Google Scholar : PubMed/NCBI

146 

Ishikawa M, Yoshitomi T, Zorumski CF and Izumi Y: Neurosteroids are endogenous neuroprotectants in an ex vivo glaucoma model. Invest Ophthalmol Vis Sci. 55:8531–8541. 2014. View Article : Google Scholar : PubMed/NCBI

147 

Belelli D and Lambert JJ: Neurosteroids: endogenous regulators of the GABA(A) receptor. Nat Rev Neurosci. 6:565–575. 2005. View Article : Google Scholar : PubMed/NCBI

148 

Weir CJ, Ling AT, Belelli D, Wildsmith JA, Peters JA and Lambert JJ: The interaction of anaesthetic steroids with recombinant glycine and GABAA receptors. Br J Anaesth. 92:704–711. 2004. View Article : Google Scholar : PubMed/NCBI

149 

Midzak A, Akula N, Lecanu L and Papadopoulos V: Novel androstenetriol interacts with the mitochondrial translocator protein and controls steroidogenesis. J Biol Chem. 286:9875–9887. 2011. View Article : Google Scholar : PubMed/NCBI

150 

Izumi Y, Benz AM, Kurby CO, Labruyere J, Zorumski CF, Price MT and Olney JW: An ex vivo rat retinal preparation for excitotoxicity studies. J Neurosci Methods. 60:219–225. 1995. View Article : Google Scholar : PubMed/NCBI

151 

Izumi Y, Kirby CO, Benz AM, Olney JW and Zorumski CF: Muller cell swelling, glutamate uptake, and excitotoxic neurodegeneration in the isolated rat retina. Glia. 25:379–389. 1999. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Yu M and Zhao S: Functional role of translocator protein and its ligands in ocular diseases (Review). Mol Med Rep 29: 33, 2024.
APA
Yu, M., & Zhao, S. (2024). Functional role of translocator protein and its ligands in ocular diseases (Review). Molecular Medicine Reports, 29, 33. https://doi.org/10.3892/mmr.2024.13157
MLA
Yu, M., Zhao, S."Functional role of translocator protein and its ligands in ocular diseases (Review)". Molecular Medicine Reports 29.2 (2024): 33.
Chicago
Yu, M., Zhao, S."Functional role of translocator protein and its ligands in ocular diseases (Review)". Molecular Medicine Reports 29, no. 2 (2024): 33. https://doi.org/10.3892/mmr.2024.13157
Copy and paste a formatted citation
x
Spandidos Publications style
Yu M and Zhao S: Functional role of translocator protein and its ligands in ocular diseases (Review). Mol Med Rep 29: 33, 2024.
APA
Yu, M., & Zhao, S. (2024). Functional role of translocator protein and its ligands in ocular diseases (Review). Molecular Medicine Reports, 29, 33. https://doi.org/10.3892/mmr.2024.13157
MLA
Yu, M., Zhao, S."Functional role of translocator protein and its ligands in ocular diseases (Review)". Molecular Medicine Reports 29.2 (2024): 33.
Chicago
Yu, M., Zhao, S."Functional role of translocator protein and its ligands in ocular diseases (Review)". Molecular Medicine Reports 29, no. 2 (2024): 33. https://doi.org/10.3892/mmr.2024.13157
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team