Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
March-2024 Volume 29 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
March-2024 Volume 29 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML

  • Supplementary Files
    • Supplementary_Data.pdf
Article Open Access

Mettl3‑mediated m6A RNA methylation regulates osteolysis induced by titanium particles

  • Authors:
    • Xiaoxuan Lin
    • Yang Yang
    • Yaohong Huang
    • E Li
    • Xiumei Zhuang
    • Zhengchuan Zhang
    • Ruogu Xu
    • Xiaolin Yu
    • Feilong Deng
  • View Affiliations / Copyright

    Affiliations: Department of Oral Implantology, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat‑sen University, Guangzhou, Guangdong 510055, P.R. China, Department of Stomatology, Zhuhai Center for Maternal and Child Healthcare, Zhuhai Women and Children's Hospital, Zhuhai, Guangdong 519000, P.R. China, Department of Stomatology, Sun Yat‑sen Memorial Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510000, P.R. China
    Copyright: © Lin et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 36
    |
    Published online on: January 9, 2024
       https://doi.org/10.3892/mmr.2024.13160
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Peri‑prosthetic osteolysis (PPO) induced by wear particles is considered the primary cause of titanium prosthesis failure and revision surgery. The specific molecular mechanisms involve titanium particles inducing multiple intracellular pathways, which impact disease prevention and the targeted therapy of PPO. Notably, N6‑methyladenosine (m6A) serves critical roles in epigenetic regulation, particularly in bone metabolism and inflammatory responses. Thus, the present study aimed to determine the role of RNA methylation in titanium particle‑induced osteolysis. Results of reverse transcription‑quantitative PCR (RT‑qPCR), western blotting, ELISA and RNA dot blot assays revealed that titanium particles induced osteogenic inhibition and proinflammatory responses, accompanied by the reduced expression of methyltransferase‑like (Mettl) 3, a key component of m6A methyltransferase. Specific lentiviruses vectors were employed for Mettl3 knockdown and overexpression experiments. RT‑qPCR, western blotting and ELISA revealed that the knockdown of Mettl3 induced osteogenic inhibition and proinflammatory responses comparable with that induced by titanium particle, while Mettl3 overexpression attenuated titanium particle‑induced cellular reactions. Methylated RNA immunoprecipitation‑qPCR results revealed that titanium particles mediated the methylation of two inhibitory molecules, namely Smad7 and SMAD specific E3 ubiquitin protein ligase 1, via Mettl3 in bone morphogenetic protein signaling, leading to osteogenic inhibition. Furthermore, titanium particles induced activation of the nucleotide binding oligomerization domain 1 signaling pathway through methylation regulation, and the subsequent activation of the MAPK and NF‑κB pathways. Collectively, the results of the present study indicated that titanium particles utilized Mettl3 as an upstream regulatory molecule to induce osteogenic inhibition and inflammatory responses. Thus, the present study may provide novel insights into potential therapeutic targets for aseptic loosening in titanium prostheses.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

Figure 8

View References

1 

Ollivere B, Wimhurst JA, Clark IM and Donell ST: Current concepts in osteolysis. J Bone Joint Surg Br. 94:10–15. 2012. View Article : Google Scholar : PubMed/NCBI

2 

Hodges NA, Sussman EM and Stegemann JP: Aseptic and septic prosthetic joint loosening: Impact of biomaterial wear on immune cell function, inflammation, and infection. Biomaterials. 278:1211272021. View Article : Google Scholar : PubMed/NCBI

3 

Tay ML, Matthews BG, Monk AP and Young SW: Disease progression, aseptic loosening and bearing dislocations are the main revision indications after lateral unicompartmental knee arthroplasty: A systematic review. J ISAKOS. 7:132–141. 2022. View Article : Google Scholar : PubMed/NCBI

4 

Eger M, Sterer N, Liron T, Kohavi D and Gabet Y: Scaling of titanium implants entrains inflammation-induced osteolysis. Sci Rep. 7:396122017. View Article : Google Scholar : PubMed/NCBI

5 

McArthur BA, Scully R, Patrick Ross F, Bostrom MPG and Falghren A: Mechanically induced periprosthetic osteolysis: A systematic review. HSS J. 15:286–296. 2019. View Article : Google Scholar : PubMed/NCBI

6 

Eliaz N: Corrosion of metallic biomaterials: A review. Materials (Basel). 12:4072019. View Article : Google Scholar : PubMed/NCBI

7 

Prestat M and Thierry D: Corrosion of titanium under simulated inflammation conditions: Clinical context and in vitro investigations. Acta Biomater. 136:72–87. 2021. View Article : Google Scholar : PubMed/NCBI

8 

Delanois RE, Mistry JB, Gwam CU, Mohamed NS, Choksi US and Mont MA: Current epidemiology of revision total knee arthroplasty in the United States. J Arthroplasty. 32:2663–2668. 2017. View Article : Google Scholar : PubMed/NCBI

9 

Goodman SB: Wear particles, periprosthetic osteolysis and the immune system. Biomaterials. 28:5044–5048. 2007. View Article : Google Scholar : PubMed/NCBI

10 

Zheng K, Bai J, Li N, Li M, Sun H, Zhang W, Ge G, Liang X, Tao H, Xue Y, et al: Protective effects of sirtuin 3 on titanium particle-induced osteogenic inhibition by regulating the NLRP3 inflammasome via the GSK-3β/β-catenin signalling pathway. Bioact Mater. 6:3343–3357. 2021.PubMed/NCBI

11 

Agarwal S: Osteolysis-basic science, incidence and diagnosis. Curr Orthop. 18:220–231. 2004. View Article : Google Scholar

12 

Dattani R: Femoral osteolysis following total hip replacement. Postgrad Med J. 83:312–316. 2007. View Article : Google Scholar : PubMed/NCBI

13 

Mouhyi J, Dohan Ehrenfest DM and Albrektsson T: The peri-implantitis: Implant surfaces, microstructure, and physicochemical aspects. Clin Implant Dent Relat Res. 14:170–183. 2012. View Article : Google Scholar : PubMed/NCBI

14 

Derks J and Tomasi C: Peri-implant health and disease. A systematic review of current epidemiology. J Clin Periodontol. 42 (Suppl 16):S158–S171. 2015. View Article : Google Scholar : PubMed/NCBI

15 

Bauer TW: Particles and periimplant bone resorption. Clin Orthop Relat Res. 138–143. 2002. View Article : Google Scholar : PubMed/NCBI

16 

Voggenreiter G, Leiting S, Brauer H, Leiting P, Majetschak M, Bardenheuer M and Obertacke U: Immuno-inflammatory tissue reaction to stainless-steel and titanium plates used for internal fixation of long bones. Biomaterials. 24:247–254. 2003. View Article : Google Scholar : PubMed/NCBI

17 

Kotsakis GA and Olmedo DG: Peri-implantitis is not periodontitis: Scientific discoveries shed light on microbiome-biomaterial interactions that may determine disease phenotype. Periodontol. 2000.86:231–240. 2021. View Article : Google Scholar : PubMed/NCBI

18 

Magone K, Luckenbill D and Goswami T: Metal ions as inflammatory initiators of osteolysis. Arch Orthop Trauma Surg. 135:683–695. 2015. View Article : Google Scholar : PubMed/NCBI

19 

Man K, Jiang LH, Foster R and Yang XB: Immunological responses to total hip arthroplasty. J Funct Biomater. 8:332017. View Article : Google Scholar : PubMed/NCBI

20 

Guglielmotti MB, Olmedo DG and Cabrini RL: Research on implants and osseointegration. Periodontol. 2000.79:178–189. 2019. View Article : Google Scholar : PubMed/NCBI

21 

Mombelli A, Hashim D and Cionca N: What is the impact of titanium particles and biocorrosion on implant survival and complications? A critical review. Clin Oral Implants Res. 29 (Suppl 18):S37–S53. 2018. View Article : Google Scholar : PubMed/NCBI

22 

Xiong L, Liu Y, Zhu F, Lin J, Wen D, Wang Z, Bai J, Ge G, Xu C, Gu Y, et al: Acetyl-11-keto-β-boswellic acid attenuates titanium particle-induced osteogenic inhibition via activation of the GSK-3β/β-catenin signaling pathway. Theranostics. 9:7140–7155. 2019. View Article : Google Scholar : PubMed/NCBI

23 

Shah R, Penmetsa DSL, Thomas R and Mehta DS: Titanium corrosion: Implications for dental implants. Eur J Prosthodont Restor Dent. 24:171–180. 2016.PubMed/NCBI

24 

Urban RM, Jacobs JJ, Tomlinson MJ, Gavrilovic J, Black J and Peoc'h M: Dissemination of wear particles to the liver, spleen, and abdominal lymph nodes of patients with hip or knee replacement. J Bone Joint Surg Am. 82:457–476. 2000. View Article : Google Scholar : PubMed/NCBI

25 

Choi MG, Koh HS, Kluess D, O'Connor D, Mathur A, Truskey GA, Rubin J, Zhou DX and Sung KL: Effects of titanium particle size on osteoblast functions in vitro and in vivo. Proc Natl Acad Sci USA. 102:4578–4583. 2005. View Article : Google Scholar : PubMed/NCBI

26 

Fritz EA, Jacobs JJ, Glant TT and Roebuck KA: Chemokine IL-8 induction by particulate wear debris in osteoblasts is mediated by NF-kappaB. J Orthop Res. 23:1249–1257. 2005. View Article : Google Scholar : PubMed/NCBI

27 

Chen D, Li Y, Guo F, Lu Z, Hei C, Li P and Jin Q: Protective effect of p38 MAPK inhibitor on wear debris-induced inflammatory osteolysis through downregulating RANK/RANKL in a mouse model. Genet Mol Res. 14:40–52. 2015. View Article : Google Scholar : PubMed/NCBI

28 

Geng D, Wu J, Shao H, Zhu S, Wang Y, Zhang W, Ping Z, Hu X, Zhu X, Xu Y and Yang H: Pharmaceutical inhibition of glycogen synthetase kinase 3 beta suppresses wear debris-induced osteolysis. Biomaterials. 69:12–21. 2015. View Article : Google Scholar : PubMed/NCBI

29 

Gu Y, Wang Z, Shi J, Wang L, Hou Z, Guo X, Tao Y, Wu X, Zhou W, Liu Y, et al: Titanium particle-induced osteogenic inhibition and bone destruction are mediated by the GSK-3β/β-catenin signal pathway. Cell Death Dis. 8:e28782017. View Article : Google Scholar : PubMed/NCBI

30 

Wang L, Bai J, Wang Q, Ge G, Lin J, Xu N, Xu C, Xu Y, Wang Y and Geng D: Inhibition of protein phosphatase 2A attenuates titanium-particle induced suppression of bone formation. Int J Biol Macromol. 142:142–151. 2020. View Article : Google Scholar : PubMed/NCBI

31 

Zhu Z, Xie Q, Huang Y, Zhang S and Chen Y: Aucubin suppresses titanium particles-mediated apoptosis of MC3T3-E1 cells and facilitates osteogenesis by affecting the BMP2/Smads/RunX2 signaling pathway. Mol Med Rep. 18:2561–2570. 2018.PubMed/NCBI

32 

Wang J, Tao Y, Ping Z, Zhang W, Hu X, Wang Y, Wang L, Shi J, Wu X, Yang H, et al: Icariin attenuates titanium-particle inhibition of bone formation by activating the Wnt/β-catenin signaling pathway in vivo and in vitro. Sci Rep. 6:238272016. View Article : Google Scholar : PubMed/NCBI

33 

Geng T, Sun S, Chen X, Wang B, Guo H, Zhang S and Jin Q: Strontium ranelate reduces the progression of titanium particle-induced osteolysis by increasing the ratio of osteoprotegerin to receptor activator of nuclear factor-κB ligand in vivo. Mol Med Rep. 17:3829–3836. 2018.PubMed/NCBI

34 

Batista PJ: The RNA modification N6-methyladenosine and its implications in human disease. Genomics Proteomics Bioinformatics. 15:154–163. 2017. View Article : Google Scholar : PubMed/NCBI

35 

Wang X, Zhao BS, Roundtree IA, Lu Z, Han D, Ma H, Weng X, Chen K, Shi H and He C: N(6)-methyladenosine modulates messenger RNA translation efficiency. Cell. 161:1388–1399. 2015. View Article : Google Scholar : PubMed/NCBI

36 

Wang X, Lu Z, Gomez A, Hon GC, Yue Y, Han D, Fu Y, Parisien M, Dai Q, Jia G, et al: N6-methyladenosine-dependent regulation of messenger RNA stability. Nature. 505:117–120. 2014. View Article : Google Scholar : PubMed/NCBI

37 

Schwartz S, Mumbach MR, Jovanovic M, Wang T, Maciag K, Bushkin GG, Mertins P, Ter-Ovanesyan D, Habib N, Cacchiarelli D, et al: Perturbation of m6A writers reveals two distinct classes of mRNA methylation at internal and 5′ sites. Cell Rep. 8:284–296. 2014. View Article : Google Scholar : PubMed/NCBI

38 

Wang P, Doxtader KA and Nam Y: Structural basis for cooperative function of Mettl3 and Mettl14 methyltransferases. Mol Cell. 63:306–317. 2016. View Article : Google Scholar : PubMed/NCBI

39 

Jia G, Fu Y, Zhao X, Dai Q, Zheng G, Yang Y, Yi C, Lindahl T, Pan T, Yang YG and He C: N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nat Chem Biol. 7:885–887. 2011. View Article : Google Scholar : PubMed/NCBI

40 

Zheng G, Dahl JA, Niu Y, Fedorcsak P, Huang CM, Li CJ, Vågbø CB, Shi Y, Wang WL, Song SH, et al: ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility. Mol Cell. 49:18–29. 2013. View Article : Google Scholar : PubMed/NCBI

41 

Shi H, Wei J and He C: Where, when, and how: Context-dependent functions of RNA methylation writers, readers, and erasers. Mol Cell. 74:640–650. 2019. View Article : Google Scholar : PubMed/NCBI

42 

Xu K, Yang Y, Feng GH, Sun BF, Chen JQ, Li YF, Chen YS, Zhang XX, Wang CX, Jiang LY, et al: Mettl3-mediated m6A regulates spermatogonial differentiation and meiosis initiation. Cell Res. 27:1100–1114. 2017. View Article : Google Scholar : PubMed/NCBI

43 

Lin Z, Hsu PJ, Xing X, Fang J, Lu Z, Zou Q, Zhang KJ, Zhang X, Zhou Y, Zhang T, et al: Mettl3-/Mettl14-mediated mRNA N6-methyladenosine modulates murine spermatogenesis. Cell Res. 27:1216–1230. 2017. View Article : Google Scholar : PubMed/NCBI

44 

Wu Y, Xie L, Wang M, Xiong Q, Guo Y, Liang Y, Li J, Sheng R, Deng P, Wang Y, et al: Mettl3-mediated m6A RNA methylation regulates the fate of bone marrow mesenchymal stem cells and osteoporosis. Nat Commun. 9:47722018. View Article : Google Scholar : PubMed/NCBI

45 

Tian C, Huang Y, Li Q, Feng Z and Xu Q: Mettl3 regulates osteogenic differentiation and alternative splicing of vegfa in bone marrow mesenchymal stem cells. Int J Mol Sci. 20:5512019. View Article : Google Scholar : PubMed/NCBI

46 

Zhang Y, Gu X, Li D, Cai L and Xu Q: METTL3 regulates osteoblast differentiation and inflammatory response via smad signaling and MAPK signaling. Int J Mol Sci. 21:1992019. View Article : Google Scholar : PubMed/NCBI

47 

Song H, Song J, Cheng M, Zheng M, Wang T, Tian S, Flavell RA, Zhu S, Li HB, Ding C, et al: METTL3-mediated m6A RNA methylation promotes the anti-tumour immunity of natural killer cells. Nat Commun. 12:55222021. View Article : Google Scholar : PubMed/NCBI

48 

Huang M, Xu S, Liu L, Zhang M, Guo J, Yuan Y, Xu J, Chen X and Zou J: m6A methylation regulates osteoblastic differentiation and bone remodeling. Front Cell Dev Biol. 9:7833222021. View Article : Google Scholar : PubMed/NCBI

49 

Nachbur U, Stafford CA, Bankovacki A, Zhan Y, Lindqvist LM, Fiil BK, Khakham Y, Ko HJ, Sandow JJ, Falk H, et al: A RIPK2 inhibitor delays NOD signalling events yet prevents inflammatory cytokine production. Nat Commun. 6:64422015. View Article : Google Scholar : PubMed/NCBI

50 

Tan X, Wei LJ, Fan GJ, Jiang YN and Yu XP: Effector responses of bovine blood neutrophils against Escherichia coli: Role of NOD1/NF-κB signalling pathway. Vet Immunol Immunopathol. 168:68–76. 2015. View Article : Google Scholar : PubMed/NCBI

51 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods. 25:402–408. 2001. View Article : Google Scholar : PubMed/NCBI

52 

Nguyen TTT, Shang E, Shu C, Kim S, Mela A, Humala N, Mahajan A, Yang HW, Akman HO, Quinzii CM, et al: Aurora kinase A inhibition reverses the Warburg effect and elicits unique metabolic vulnerabilities in glioblastoma. Nat Commun. 12:52032021. View Article : Google Scholar : PubMed/NCBI

53 

Li D, Yang J, Malik V, Huang Y, Huang X, Zhou H and Wang J: An RNAi screen of RNA helicases identifies eIF4A3 as a regulator of embryonic stem cell identity. Nucleic Acids Res. 50:12462–12479. 2022. View Article : Google Scholar : PubMed/NCBI

54 

Ratnadiwakara M and Änkö ML: mRNA Stability assay using transcription inhibition by actinomycin D in mouse pluripotent stem cells. Bio Protoc. 8:e30722018. View Article : Google Scholar : PubMed/NCBI

55 

Zhou Z, Cao Y, Yang Y, Wang S and Chen F: METTL3-mediated m6A modification of lnc KCNQ1OT1 promotes doxorubicin resistance in breast cancer by regulating miR-103a-3p/MDR1 axis. Epigenetics. 18:22170332023. View Article : Google Scholar : PubMed/NCBI

56 

Luo S, Liao C, Zhang L, Ling C, Zhang X, Xie P, Su G, Chen Z, Zhang L, Lai T and Tang J: METTL3-mediated m6A mRNA methylation regulates neutrophil activation through targeting TLR4 signaling. Cell Rep. 42:1122592023. View Article : Google Scholar : PubMed/NCBI

57 

Kim JM, Lin C, Stavre Z, Greenblatt MB and Shim JH: Osteoblast-osteoclast communication and bone homeostasis. Cells. 9:20732020. View Article : Google Scholar : PubMed/NCBI

58 

Redlich K and Smolen JS: Inflammatory bone loss: Pathogenesis and therapeutic intervention. Nat Rev Drug Discov. 11:234–250. 2012. View Article : Google Scholar : PubMed/NCBI

59 

Li Y, Ling J and Jiang Q: Inflammasomes in alveolar bone loss. Front Immunol. 12:6910132021. View Article : Google Scholar : PubMed/NCBI

60 

Jiang Y, Jia T, Gong W, Wooley PH and Yang SY: Titanium particle-challenged osteoblasts promote osteoclastogenesis and osteolysis in a murine model of periprosthestic osteolysis. Acta Biomater. 9:7564–7572. 2013. View Article : Google Scholar : PubMed/NCBI

61 

Luo J, Xu T and Sun K: N6-methyladenosine RNA modification in inflammation: Roles, mechanisms, and applications. Front Cell Dev Biol. 9:6707112021. View Article : Google Scholar : PubMed/NCBI

62 

Wu M, Chen G and Li YP: TGF-β and BMP signaling in osteoblast, skeletal development, and bone formation, homeostasis and disease. Bone Res. 4:160092016. View Article : Google Scholar : PubMed/NCBI

63 

Afzal F, Pratap J, Ito K, Ito Y, Stein JL, van Wijnen AJ, Stein GS, Lian JB and Javed A: Smad function and intranuclear targeting share a Runx2 motif required for osteogenic lineage induction and BMP2 responsive transcription. J Cell Physiol. 204:63–72. 2005. View Article : Google Scholar : PubMed/NCBI

64 

Yan X, Liu Z and Chen Y: Regulation of TGF-beta signaling by Smad7. Acta Biochim Biophys Sin (Shanghai). 41:263–272. 2009. View Article : Google Scholar : PubMed/NCBI

65 

Deng Z, Zhang R, Li M, Wang S, Fu G, Jin J, Wang Z, Ma Y and Zheng Q: STAT3/IL-6 dependent induction of inflammatory response in osteoblast and osteoclast formation in nanoscale wear particle-induced aseptic prosthesis loosening. Biomater Sci. 9:1291–1300. 2021. View Article : Google Scholar : PubMed/NCBI

66 

Cai Y, Yu R, Kong Y, Feng Z and Xu Q: METTL3 regulates LPS-induced inflammatory response via the NOD1 signaling pathway. Cell Signal. 93:1102832022. View Article : Google Scholar : PubMed/NCBI

67 

Caruso R, Warner N, Inohara N and Núñez G: NOD1 and NOD2: Signaling, host defense, and inflammatory disease. Immunity. 41:898–908. 2014. View Article : Google Scholar : PubMed/NCBI

68 

Pei G and Dorhoi A: NOD-like receptors: Guards of cellular homeostasis perturbation during infection. Int J Mol Sci. 22:67142021. View Article : Google Scholar : PubMed/NCBI

69 

Kersse K, Bertrand MJ, Lamkanfi M and Vandenabeele P: NOD-like receptors and the innate immune system: Coping with danger, damage and death. Cytokine Growth Factor Rev. 22:257–276. 2011. View Article : Google Scholar : PubMed/NCBI

70 

Yang Y, Hsu PJ, Chen YS and Yang YG: Dynamic transcriptomic m6A decoration: Writers, erasers, readers and functions in RNA metabolism. Cell Res. 28:616–624. 2018. View Article : Google Scholar : PubMed/NCBI

71 

Jiang X, Liu B, Nie Z, Duan L, Xiong Q, Jin Z, Yang C and Chen Y: The role of m6A modification in the biological functions and diseases. Signal Transduct Target Ther. 6:742021. View Article : Google Scholar : PubMed/NCBI

72 

Du H, Zhao Y, He J, Zhang Y, Xi H, Liu M, Ma J and Wu L: YTHDF2 destabilizes m(6)A-containing RNA through direct recruitment of the CCR4-NOT deadenylase complex. Nat Commun. 7:126262016. View Article : Google Scholar : PubMed/NCBI

73 

Zhou J, Wan J, Gao X, Zhang X, Jaffrey SR and Qian SB: Dynamic m(6)A mRNA methylation directs translational control of heat shock response. Nature. 526:591–594. 2015. View Article : Google Scholar : PubMed/NCBI

74 

Winkler R, Gillis E, Lasman L, Safra M, Geula S, Soyris C, Nachshon A, Tai-Schmiedel J, Friedman N, Le-Trilling VTK, et al: m6A modification controls the innate immune response to infection by targeting type I interferons. Nat Immunol. 20:173–182. 2019. View Article : Google Scholar : PubMed/NCBI

75 

Mapperley C, van de Lagemaat LN, Lawson H, Tavosanis A, Paris J, Campos J, Wotherspoon D, Durko J, Sarapuu A, Choe J, et al: The mRNA m6A reader YTHDF2 suppresses proinflammatory pathways and sustains hematopoietic stem cell function. J Exp Med. 218:e202008292021. View Article : Google Scholar : PubMed/NCBI

76 

Fang C, He M, Li D and Xu Q: YTHDF2 mediates LPS-induced osteoclastogenesis and inflammatory response via the NF-κB and MAPK signaling pathways. Cell Signal. 85:1100602021. View Article : Google Scholar : PubMed/NCBI

77 

Tsuchiya K, Yoshimura K, Inoue Y, Iwashita Y, Yamada H, Kawase A, Watanabe T, Tanahashi M, Ogawa H, Funai K, et al: YTHDF1 and YTHDF2 are associated with better patient survival and an inflamed tumor-immune microenvironment in non-small-cell lung cancer. Oncoimmunology. 10:19626562021. View Article : Google Scholar : PubMed/NCBI

78 

Wu R, Liu Y, Zhao Y, Bi Z, Yao Y, Liu Q, Wang F, Wang Y and Wang X: m6A methylation controls pluripotency of porcine induced pluripotent stem cells by targeting SOCS3/JAK2/STAT3 pathway in a YTHDF1/YTHDF2-orchestrated manner. Cell Death Dis. 10:1712019. View Article : Google Scholar : PubMed/NCBI

79 

Hsu PJ, Zhu Y, Ma H, Guo Y, Shi X, Liu Y, Qi M, Lu Z, Shi H, Wang J, et al: Ythdc2 is an N6-methyladenosine binding protein that regulates mammalian spermatogenesis. Cell Res. 27:1115–1127. 2017. View Article : Google Scholar : PubMed/NCBI

80 

Keegan GM, Learmonth ID and Case CP: Orthopaedic metals and their potential toxicity in the arthroplasty patient: A review of current knowledge and future strategies. J Bone Joint Surg Br. 89:567–573. 2007. View Article : Google Scholar : PubMed/NCBI

81 

Gornet MF, Singh V, Schranck FW, Skipor AK and Jacobs JJ: Serum metal concentrations in patients with titanium ceramic composite cervical disc replacements. Spine (Phila Pa 1976). 42:366–371. 2017. View Article : Google Scholar : PubMed/NCBI

82 

Day JS, Baxter RM, Ramsey ML, Morrey BF, Connor PM, Kurtz SM and Steinbeck MJ: Characterization of wear debris in total elbow arthroplasty. J Shoulder Elbow Surg. 22:924–931. 2013. View Article : Google Scholar : PubMed/NCBI

83 

Chassot E, Irigaray JL, Terver S and Vanneuville G: Contamination by metallic elements released from joint prostheses. Med Eng Phys. 26:193–199. 2004. View Article : Google Scholar : PubMed/NCBI

84 

Lukina E, Laka A, Kollerov M, Sampiev M, Mason P, Wagstaff P, Noordeen H, Yoon WW and Blunn G: Metal concentrations in the blood and tissues after implantation of titanium growth guidance sliding instrumentation. Spine J. 16:380–388. 2016. View Article : Google Scholar : PubMed/NCBI

85 

Safioti LM, Kotsakis GA, Pozhitkov AE, Chung WO and Daubert DM: Increased levels of dissolved titanium are associated with peri-implantitis-a cross-sectional study. J Periodontol. 88:436–442. 2017. View Article : Google Scholar : PubMed/NCBI

86 

Zeng C, Huang W, Li Y and Weng H: Roles of METTL3 in cancer: Mechanisms and therapeutic targeting. J Hematol Oncol. 13:1172020. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Lin X, Yang Y, Huang Y, Li E, Zhuang X, Zhang Z, Xu R, Yu X and Deng F: Mettl3‑mediated m<sup>6</sup>A RNA methylation regulates osteolysis induced by titanium particles. Mol Med Rep 29: 36, 2024.
APA
Lin, X., Yang, Y., Huang, Y., Li, E., Zhuang, X., Zhang, Z. ... Deng, F. (2024). Mettl3‑mediated m<sup>6</sup>A RNA methylation regulates osteolysis induced by titanium particles. Molecular Medicine Reports, 29, 36. https://doi.org/10.3892/mmr.2024.13160
MLA
Lin, X., Yang, Y., Huang, Y., Li, E., Zhuang, X., Zhang, Z., Xu, R., Yu, X., Deng, F."Mettl3‑mediated m<sup>6</sup>A RNA methylation regulates osteolysis induced by titanium particles". Molecular Medicine Reports 29.3 (2024): 36.
Chicago
Lin, X., Yang, Y., Huang, Y., Li, E., Zhuang, X., Zhang, Z., Xu, R., Yu, X., Deng, F."Mettl3‑mediated m<sup>6</sup>A RNA methylation regulates osteolysis induced by titanium particles". Molecular Medicine Reports 29, no. 3 (2024): 36. https://doi.org/10.3892/mmr.2024.13160
Copy and paste a formatted citation
x
Spandidos Publications style
Lin X, Yang Y, Huang Y, Li E, Zhuang X, Zhang Z, Xu R, Yu X and Deng F: Mettl3‑mediated m<sup>6</sup>A RNA methylation regulates osteolysis induced by titanium particles. Mol Med Rep 29: 36, 2024.
APA
Lin, X., Yang, Y., Huang, Y., Li, E., Zhuang, X., Zhang, Z. ... Deng, F. (2024). Mettl3‑mediated m<sup>6</sup>A RNA methylation regulates osteolysis induced by titanium particles. Molecular Medicine Reports, 29, 36. https://doi.org/10.3892/mmr.2024.13160
MLA
Lin, X., Yang, Y., Huang, Y., Li, E., Zhuang, X., Zhang, Z., Xu, R., Yu, X., Deng, F."Mettl3‑mediated m<sup>6</sup>A RNA methylation regulates osteolysis induced by titanium particles". Molecular Medicine Reports 29.3 (2024): 36.
Chicago
Lin, X., Yang, Y., Huang, Y., Li, E., Zhuang, X., Zhang, Z., Xu, R., Yu, X., Deng, F."Mettl3‑mediated m<sup>6</sup>A RNA methylation regulates osteolysis induced by titanium particles". Molecular Medicine Reports 29, no. 3 (2024): 36. https://doi.org/10.3892/mmr.2024.13160
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team