|
1
|
Surh YJ and Lee SS: Capsaicin, a
double-edged sword: Toxicity, metabolism, and chemopreventive
potential. Life Sci. 56:1845–1855. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Higashiguchi F, Nakamura H, Hayashi H and
Kometani T: Purification and structure determination of glucosides
of capsaicin and dihydrocapsaicin from various Capsicum
fruits. J Agric Food Chem. 54:5948–5953. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Cunha MR, Tavares MT, Fernandes TB and
Parise-Filho R: Peppers: A ‘hot’ natural source for antitumor
compounds. Molecules. 26:15212021. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Zhang S, Wang D, Huang J, Hu Y and Xu Y:
Application of capsaicin as a potential new therapeutic drug in
human cancers. J Clin Pharm Ther. 45:16–28. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Popescu GDA, Scheau C, Badarau IA,
Dumitrache MD, Caruntu A, Scheau AE, Costache DO, Costache RS,
Constantin C, Neagu M and Caruntu C: The effects of capsaicin on
gastrointestinal cancers. Molecules. 26:942020. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Nanok K and Sansenya S: α-Glucosidase,
α-amylase, and tyrosinase inhibitory potential of capsaicin and
dihydrocapsaicin. J Food Biochem. 44:e130992020. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Katritzky AR, Xu YJ, Vakulenko AV, Wilcox
AL and Bley KR: Model compounds of caged capsaicin: Design,
synthesis, and photoreactivity. J Org Chem. 68:9100–9104. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Basith S, Cui M, Hong S and Choi S:
Harnessing the therapeutic potential of capsaicin and its analogues
in pain and other diseases. Molecules. 21:9662016. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Walpole CS, Bevan S, Bloomfield G,
Breckenridge R, James IF, Ritchie T, Szallasi A, Winter J and
Wrigglesworth R: Similarities and differences in the
structure-activity relationships of capsaicin and resiniferatoxin
analogues. J Med Chem. 39:2939–2952. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Srinivasan K: Antioxidant potential of
spices and their active constituents. Crit Rev Food Sci Nutr.
54:352–372. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Naidu KA and Thippeswamy NB: Inhibition of
human low density lipoprotein oxidation by active principles from
spices. Mol Cell Biochem. 229:19–23. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Kursunluoglu G, Taskiran D and Kayali HA:
The investigation of the antitumor agent toxicity and capsaicin
effect on the electron transport chain enzymes, catalase activities
and lipid peroxidation levels in lung, heart and brain tissues of
rats. Molecules. 23:32672018. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Kogure K, Goto S, Nishimura M, Yasumoto M,
Abe K, Ohiwa C, Sassa H, Kusumi T and Terada H: Mechanism of potent
antiperoxidative effect of capsaicin. Biochim Biophys Acta.
1573:84–92. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Ochi T, Takaishi Y, Kogure K and Yamauti
I: Antioxidant activity of a new capsaicin derivative from
Capsicum annuum. J Nat Prod. 66:1094–1096. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Kempaiah RK and Srinivasan K: Influence of
dietary curcumin, capsaicin and garlic on the antioxidant status of
red blood cells and the liver in high-fat-fed rats. Ann Nutr Metab.
48:314–320. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Kempaiah RK and Srinivasan K: Antioxidant
status of red blood cells and liver in hypercholesterolemic rats
fed hypolipidemic spices. Int J Vitam Nutr Res. 74:199–208. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Qin Y, Ran L, Wang J, Yu L, Lang HD, Wang
XL, Mi MT and Zhu JD: Capsaicin supplementation improved risk
factors of coronary heart disease in individuals with low HDL-C
levels. Nutrients. 9:10372017. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Nakagawa H and Hiura A: Capsaicin,
transient receptor potential (TRP) protein subfamilies and the
particular relationship between capsaicin receptors and small
primary sensory neurons. Anat Sci Int. 81:135–155. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Ramsey IS, Delling M and Clapham DE: An
introduction to TRP channels. Annu Rev Physiol. 68:619–647. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Knotkova H, Pappagallo M and Szallasi A:
Capsaicin (TRPV1 Agonist) therapy for pain relief: Farewell or
revival? Clin J Pain. 24:142–154. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Aiello F, Badolato M, Pessina F, Sticozzi
C, Maestrini V, Aldinucci C, Luongo L, Guida F, Ligresti A, Artese
A, et al: Design and synthesis of new transient receptor potential
vanilloid type-1 (TRPV1) channel modulators: Identification,
molecular modeling analysis, and pharmacological characterization
of the N-(4-Hydroxy-3-methoxybenzyl)-4-(thiophen-2-yl)butanamide, a
small molecule endowed with agonist TRPV1 Activity and protective
effects against oxidative stress. ACS Chem Neurosci. 7:737–748.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Sharma SK, Vij AS and Sharma M: Mechanisms
and clinical uses of capsaicin. Eur J Pharmacol. 720:55–62. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Lo Vecchio S, Andersen HH, Elberling J and
Arendt-Nielsen L: Sensory defunctionalization induced by 8% topical
capsaicin treatment in a model of ultraviolet-B-induced cutaneous
hyperalgesia. Exp Brain Res. 239:2873–2886. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Gašparini D, Ljubičić R and Mršić-Pelčić
J: Capsaicin-potential solution for chronic pain treatment.
Psychiatr Danub. 32 (Suppl 4):S420–S428. 2020.PubMed/NCBI
|
|
25
|
Brown S, Simpson DM, Moyle G, Brew BJ,
Schifitto G, Larbalestier N, Orkin C, Fisher M, Vanhove GF and
Tobias JK: NGX-4010, a capsaicin 8% patch, for the treatment of
painful HIV-associated distal sensory polyneuropathy: Integrated
analysis of two phase III, randomized, controlled trials. AIDS Res
Ther. 10:52013. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Anand P and Bley K: Topical capsaicin for
pain management: Therapeutic potential and mechanisms of action of
the new high-concentration capsaicin 8% patch. Br J Anaesth.
107:490–502. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Luongo L, Costa B, D'Agostino B, Guida F,
Comelli F, Gatta L, Matteis M, Sullo N, De Petrocellis L, de
Novellis V, et al: Palvanil, a non-pungent capsaicin analogue,
inhibits inflammatory and neuropathic pain with little effects on
bronchopulmonary function and body temperature. Pharmacol Res.
66:243–250. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Chapa-Oliver AM and Mejía-Teniente L:
Capsaicin: From plants to a cancer-suppressing agent. Molecules.
21:9312016. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Merritt JC, Richbart SD, Moles EG, Cox AJ,
Brown KC, Miles SL, Finch PT, Hess JA, Tirona MT, Valentovic MA and
Dasgupta P: Anti-cancer activity of sustained release capsaicin
formulations. Pharmacol Ther. 238:1081772022. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Akabori H, Yamamoto H, Tsuchihashi H, Mori
T, Fujino K, Shimizu T, Endo Y and Tani T: Transient receptor
potential vanilloid 1 antagonist, capsazepine, improves survival in
a rat hemorrhagic shock model. Ann Surg. 245:964–970. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Yoshioka M, St-Pierre S, Suzuki M and
Tremblay A: Effects of red pepper added to high-fat and
high-carbohydrate meals on energy metabolism and substrate
utilization in Japanese women. Br J Nutr. 80:503–510. 1998.
View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Kang JH, Tsuyoshi G, Le Ngoc H, Kim HM, Tu
TH, Noh HJ, Kim CS, Choe SY, Kawada T, Yoo H and Yu R: Dietary
capsaicin attenuates metabolic dysregulation in genetically obese
diabetic mice. J Med Food. 14:310–315. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Josse AR, Sherriffs SS, Holwerda AM,
Andrews R, Staples AW and Phillips SM: Effects of capsinoid
ingestion on energy expenditure and lipid oxidation at rest and
during exercise. Nutr Metab (Lond). 7:652010. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Lejeune MPGM, Kovacs EMR and
Westerterp-Plantenga MS: Effect of capsaicin on substrate oxidation
and weight maintenance after modest body-weight loss in human
subjects. Br J Nutr. 90:651–659. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Lee GR, Shin MK, Yoon DJ, Kim AR, Yu R,
Park NH and Han IS: Topical application of capsaicin reduces
visceral adipose fat by affecting adipokine levels in high-fat
diet-induced obese mice. Obesity (Silver Spring). 21:115–122. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Okumura T, Tsukui T, Hosokawa M and
Miyashita K: Effect of caffeine and capsaicin on the blood glucose
levels of obese/diabetic KK-A(y) mice. J Oleo Sci. 61:515–523.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Wang Y, Zhou Y and Fu J: Advances in
antiobesity mechanisms of capsaicin. Curr Opin Pharmacol. 61:1–5.
2021. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Ward SM, Bayguinov J, Won KJ, Grundy D and
Berthoud HR: Distribution of the vanilloid receptor (VR1) in the
gastrointestinal tract. J Comp Neurol. 465:121–135. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Ericson A, Nur EM, Petersson F and
Kechagias S: The effects of capsaicin on gastrin secretion in
isolated human antral glands: Before and after ingestion of red
chilli. Dig Dis Sci. 54:491–498. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Ohno T, Hattori Y, Komine R, Ae T,
Mizuguchi S, Arai K, Saeki T, Suzuki T, Hosono K, Hayashi I, et al:
Roles of calcitonin gene-related peptide in maintenance of gastric
mucosal integrity and in enhancement of ulcer healing and
angiogenesis. Gastroenterology. 134:215–225. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Prakash UNS and Srinivasan K: Beneficial
influence of dietary spices on the ultrastructure and fluidity of
the intestinal brush border in rats. Br J Nutr. 104:31–39. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Prakash UNS and Srinivasan K: Enhanced
intestinal uptake of iron, zinc and calcium in rats fed pungent
spice principles-piperine, capsaicin and ginger (Zingiber
officinale). J Trace Elem Med Biol. 27:184–190. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Li Q, Li L, Wang F, Chen J, Zhao Y, Wang
P, Nilius B, Liu D and Zhu Z: Dietary capsaicin prevents
nonalcoholic fatty liver disease through transient receptor
potential vanilloid 1-mediated peroxisome proliferator-activated
receptor δ activation. Pflugers Arch. 465:1303–1316. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Wang L, Hu CP, Deng PY, Shen SS, Zhu HQ,
Ding JS, Tan GS and Li YJ: The protective effects of rutaecarpine
on gastric mucosa injury in rats. Planta Med. 71:416–419. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Akbar A, Yiangou Y, Facer P, Walters JR,
Anand P and Ghosh S: Increased capsaicin receptor TRPV1-expressing
sensory fibres in irritable bowel syndrome and their correlation
with abdominal pain. Gut. 57:923–929. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Hardy J and Selkoe DJ: The amyloid
hypothesis of Alzheimer's disease: Progress and problems on the
road to therapeutics. Science. 297:353–356. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Postina R, Schroeder A, Dewachter I, Bohl
J, Schmitt U, Kojro E, Prinzen C, Endres K, Hiemke C, Blessing M,
et al: A disintegrin-metalloproteinase prevents amyloid plaque
formation and hippocampal defects in an Alzheimer disease mouse
model. J Clin Invest. 113:1456–1464. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Wang J, Sun BL, Xiang Y, Tian DY, Zhu C,
Li WW, Liu YH, Bu XL, Shen LL, Jin WS, et al: Capsaicin consumption
reduces brain amyloid-beta generation and attenuates Alzheimer's
disease-type pathology and cognitive deficits in APP/PS1 mice.
Transl Psychiatry. 10:2302020. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Shi Z, El-Obeid T, Riley M, Li M, Page A
and Liu J: High chili intake and cognitive function among 4582
adults: An open cohort study over 15 years. Nutrients. 11:11832019.
View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Tyagi S, Shekhar N and Thakur AK:
Protective role of capsaicin in neurological disorders: An
overview. Neurochem Res. 47:1513–1531. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Li WH, Lee YM, Kim JY, Kang S, Kim S, Kim
KH, Park CH and Chung JH: Transient receptor potential vanilloid-1
mediates heat-shock-induced matrix metalloproteinase-1 expression
in human epidermal keratinocytes. J Invest Dermatol. 127:2328–2335.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Yu CS: Study on HIF-1α gene translation in
psoriatic epidermis with the topical treatment of capsaicin
ointment. ISRN Pharm. 2011:8218742011.PubMed/NCBI
|
|
53
|
Sekine R, Satoh T, Takaoka A, Saeki K and
Yokozeki H: Anti pruritic effects of topical crotamiton, capsaicin,
and a corticosteroid on pruritogen-induced scratching behavior. Exp
Dermatol. 21:201–204. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Gooding SM, Canter PH, Coelho HF, Boddy K
and Ernst E: Systematic review of topical capsaicin in the
treatment of pruritus. Int J Dermatol. 49:858–865. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Back SK, Jeong KY, Li C, Lee J, Lee SB and
Na HS: Chronically relapsing pruritic dermatitis in the rats
treated as neonate with capsaicin; a potential rat model of human
atopic dermatitis. J Dermatol Sci. 67:111–119. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Zahner MR, Li DP, Chen SR and Pan HL:
Cardiac vanilloid receptor 1-expressing afferent nerves and their
role in the cardiogenic sympathetic reflex in rats. J Physiol.
551:515–523. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Poblete IM, Orliac ML, Briones R,
Adler-Graschinsky E and Huidobro-Toro JP: Anandamide elicits an
acute release of nitric oxide through endothelial TRPV1 receptor
activation in the rat arterial mesenteric bed. J Physiol.
568:539–551. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Huang HS, Pan HL, Stahl GL and Longhurst
JC: Ischemia- and reperfusion-sensitive cardiac sympathetic
afferents: Influence of H2O2 and hydroxyl radicals. Am J Physiol.
269:H888–H901. 1995.PubMed/NCBI
|
|
59
|
Schultz HD and Ustinova EE: Capsaicin
receptors mediate free radical-induced activation of cardiac
afferent endings. Cardiovasc Res. 38:348–355. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Pan HL and Chen SR: Sensing tissue
ischemia: Another new function for capsaicin receptors?
Circulation. 110:1826–1831. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Steagall RJ, Sipe AL, Williams CA, Joyner
WL and Singh K: Substance P release in response to cardiac ischemia
from rat thoracic spinal dorsal horn is mediated by TRPV1.
Neuroscience. 214:106–119. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Ide R, Saiki C, Makino M and Matsumoto S:
TRPV1 receptor expression in cardiac vagal afferent neurons of
infant rats. Neurosci Lett. 507:67–71. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Jones WK, Fan GC, Liao S, Zhang JM, Wang
Y, Weintraub NL, Kranias EG, Schultz JE, Lorenz J and Ren X:
Peripheral nociception associated with surgical incision elicits
remote nonischemic cardioprotection via neurogenic activation of
protein kinase C signaling. Circulation. 120 (11 Suppl):S1–S9.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Wang L and Wang DH: TRPV1 gene knockout
impairs postischemic recovery in isolated perfused heart in mice.
Circulation. 112:3617–3623. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Sexton A, McDonald M, Cayla C, Thiemermann
C and Ahluwalia A: 12-Lipoxygenase-derived eicosanoids protect
against myocardial ischemia/reperfusion injury via activation of
neuronal TRPV1. FASEB J. 21:2695–2703. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Yang D, Luo Z, Ma S, Wong WT, Ma L, Zhong
J, He H, Zhao Z, Cao T, Yan Z, et al: Activation of TRPV1 by
dietary capsaicin improves endothelium-dependent vasorelaxation and
prevents hypertension. Cell Metab. 12:130–141. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Chen Q, Zhu H, Zhang Y, Zhang Y, Wang L
and Zheng L: Vasodilating effect of capsaicin on rat mesenteric
artery and its mechanism. Zhejiang Da Xue Xue Bao Yi Xue Ban.
42:177–183. 2013.(In Chinese). PubMed/NCBI
|
|
68
|
Adams MJ, Ahuja KD and Geraghty DP: Effect
of capsaicin and dihydrocapsaicin on in vitro blood coagulation and
platelet aggregation. Thromb Res. 124:721–723. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Mittelstadt SW, Nelson RA, Daanen JF, King
AJ, Kort ME, Kym PR, Lubbers NL, Cox BF and Lynch JJ III:
Capsaicin-induced inhibition of platelet aggregation is not
mediated by transient receptor potential vanilloid type 1. Blood
Coagul Fibrinolysis. 23:94–97. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Raghavendra RH and Naidu KA: Spice active
principles as the inhibitors of human platelet aggregation and
thromboxane biosynthesis. Prostaglandins Leukot Essent Fatty Acids.
81:73–78. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Sylvester DM and LaHann TR: Effects of
capsaicinoids on platelet aggregation. Proc West Pharmacol Soc.
32:95–100. 1989.PubMed/NCBI
|
|
72
|
Meddings JB, Hogaboam CM, Tran K, Reynolds
JD and Wallace JL: Capsaicin effects on non-neuronal plasma
membranes. Biochim Biophys Acta. 1070:43–50. 1991. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Aranda FJ, Villalaín J and Gómez-Fernández
JC: Capsaicin affects the structure and phase organization of
phospholipid membranes. Biochim Biophys Acta. 1234:225–234. 1995.
View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Harper AG, Brownlow SL and Sage SO: A role
for TRPV1 in agonist-evoked activation of human platelets. J Thromb
Haemost. 7:330–338. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Batiha GE, Alqahtani A, Ojo OA, Shaheen
HM, Wasef L, Elzeiny M, Ismail M, Shalaby M, Murata T,
Zaragoza-Bastida A, et al: Biological properties, bioactive
constituents, and pharmacokinetics of some Capsicum spp. and
capsaicinoids. Int J Mol Sci. 21:51792020. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Jung SH, Kim HJ, Oh GS, Shen A, Lee S,
Choe SK, Park R and So HS: Capsaicin ameliorates cisplatin-induced
renal injury through induction of heme oxygenase-1. Mol Cells.
37:234–240. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Valentovic MA, Ball JG, Brown JM, Terneus
MV, McQuade E, Van Meter S, Hedrick HM, Roy AA and Williams T:
Resveratrol attenuates cisplatin renal cortical cytotoxicity by
modifying oxidative stress. Toxicol In Vitro. 28:248–257. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Ito K, Nakazato T, Yamato K, Miyakawa Y,
Yamada T, Hozumi N, Segawa K, Ikeda Y and Kizaki M: Induction of
apoptosis in leukemic cells by homovanillic acid derivative,
capsaicin, through oxidative stress: Implication of phosphorylation
of p53 at Ser-15 residue by reactive oxygen species. Cancer Res.
64:1071–1078. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Mózsik G, Past T, Abdel Salam OM, Kuzma M
and Perjési P: Interdisciplinary review for correlation between the
plant origin capsaicinoids, non-steroidal antiinflammatory drugs,
gastrointestinal mucosal damage and prevention in animals and human
beings. Inflammopharmacology. 17:113–150. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Luo XJ, Peng J and Li YJ: Recent advances
in the study on capsaicinoids and capsinoids. Eur J Pharmacol.
650:1–7. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Kang JY, Yeoh KG, Chia HP, Lee HP, Chia
YW, Guan R and Yap I: Chili-protective factor against peptic ulcer?
Dig Dis Sci. 40:576–579. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Chanda S, Bashir M, Babbar S, Koganti A
and Bley K: In vitro hepatic and skin metabolism of capsaicin. Drug
Metab Dispos. 36:670–675. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Reilly CA, Ehlhardt WJ, Jackson DA,
Kulanthaivel P, Mutlib AE, Espina RJ, Moody DE, Crouch DJ and Yost
GS: Metabolism of capsaicin by cytochrome P450 produces novel
dehydrogenated metabolites and decreases cytotoxicity to lung and
liver cells. Chem Res Toxicol. 16:336–349. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Kawada T, Suzuki T, Takahashi M and Iwai
K: Gastrointestinal absorption and metabolism of capsaicin and
dihydrocapsaicin in rats. Toxicol Appl Pharmacol. 72:449–456. 1984.
View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Wang YY, Hong CT, Chiu WT and Fang JY: In
vitro and in vivo evaluations of topically applied capsaicin and
nonivamide from hydrogels. Int J Pharm. 224:89–104. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
86
|
O'Neill J, Brock C, Olesen AE, Andresen T,
Nilsson M and Dickenson AH: Unravelling the mystery of capsaicin: A
tool to understand and treat pain. Pharmacol Rev. 64:939–971. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Suresh D and Srinivasan K: Tissue
distribution & elimination of capsaicin, piperine &
curcumin following oral intake in rats. Indian J Med Res.
131:682–691. 2010.PubMed/NCBI
|
|
88
|
Rollyson WD, Stover CA, Brown KC, Perry
HE, Stevenson CD, McNees CA, Ball JG, Valentovic MA and Dasgupta P:
Bioavailability of capsaicin and its implications for drug
delivery. J Control Release. 196:96–105. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Thornton T, Mills D and Bliss E:
Capsaicin: A potential treatment to improve cerebrovascular
function and cognition in obesity and ageing. Nutrients.
15:15372023. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Petroianu GA, Aloum L and Adem A:
Neuropathic pain: Mechanisms and therapeutic strategies. Front Cell
Dev Biol. 11:10726292023. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Erin N and Szallasi A: Carcinogenesis and
metastasis: Focus on TRPV1-positive neurons and immune cells.
Biomolecules. 13:9832023. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Fernández-Carvajal A, Fernández-Ballester
G and Ferrer-Montiel A: TRPV1 in chronic pruritus and pain: Soft
modulation as a therapeutic strategy. Front Mol Neurosci.
15:9309642022. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Zhang L, Angst E, Park JL, Moro A, Dawson
DW, Reber HA, Eibl G, Hines OJ, Go VL and Lu QY: Quercetin aglycone
is bioavailable in murine pancreas and pancreatic xenografts. J
Agric Food Chem. 58:7252–7257. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Santos VAM, Bressiani PA, Zanotto AW,
Almeida IV, Berti AP, Lunkes AM, Vicentini VEP and Düsman E:
Cytotoxicity of capsaicin and its analogs in vitro. Braz J Biol.
83:e2689412023. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Chaiyasit K, Khovidhunkit W and
Wittayalertpanya S: Pharmacokinetic and the effect of capsaicin in
Capsicum frutescens on decreasing plasma glucose level. J
Med Assoc Thai. 92:108–113. 2009.PubMed/NCBI
|
|
96
|
Braga Ferreira LG, Faria JV, Dos Santos
JPS and Faria RX: Capsaicin: TRPV1-independent mechanisms and novel
therapeutic possibilities. Eur J Pharmacol. 887:1733562020.
View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Liu T, Wan Y, Meng Y, Zhou Q, Li B, Chen Y
and Wang L: Capsaicin: A novel approach to the treatment of
functional dyspepsia. Mol Nutr Food Res. 10:e22007932023.
View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Szallasi A: Capsaicin for weight control:
‘Exercise in a pill’ (or just another fad)? Pharmaceuticals
(Basel). 15:8512022. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Huang Z, Sharma M, Dave A, Yang Y, Chen ZS
and Radhakrishnan R: The antifibrotic and the anticarcinogenic
activity of capsaicin in hot chili pepper in relation to oral
submucous fibrosis. Front Pharmacol. 13:8882802022. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Malewicz NM, Rattray Z, Oeck S, Jung S,
Escamilla-Rivera V, Chen Z, Tang X, Zhou J and LaMotte RH: Topical
capsaicin in Poly(lactic-co-glycolic)acid (PLGA) nanoparticles
decreases acute itch and heat pain. Int J Mol Sci. 23:52752022.
View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Yue WWS, Yuan L, Braz JM, Basbaum AI and
Julius D: TRPV1 drugs alter core body temperature via central
projections of primary afferent sensory neurons. Elife.
11:e801392022. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Abbas MA: Modulation of TRPV1 channel
function by natural products in the treatment of pain. Chem Biol
Interact. 330:1091782020. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Yeon KY, Kim SA, Kim YH, Lee MK, Ahn DK,
Kim HJ, Kim JS, Jung SJ and Oh SB: Curcumin produces an
antihyperalgesic effect via antagonism of TRPV1. J Dent Res.
89:170–174. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Sui F, Zhang CB, Yang N, Li LF, Guo SY,
Huo HR and Jiang TL: Anti-nociceptive mechanism of baicalin
involved in intervention of TRPV1 in DRG neurons in vitro. J
Ethnopharmacol. 129:361–366. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Dludla PV, Nkambule BB, Cirilli I,
Marcheggiani F, Mabhida SE, Ziqubu K, Ntamo Y, Jack B, Nyambuya TM,
Hanser S and Mazibuko-Mbeje SE: Capsaicin, its clinical
significance in patients with painful diabetic neuropathy. Biomed
Pharmacother. 153:1134392022. View Article : Google Scholar : PubMed/NCBI
|