|
1
|
Malemud CJ: The role of the JAK/STAT
signal pathway in rheumatoid arthritis. Ther Adv Musculoskelet Dis.
10:117–127. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Ihle JN: The STAT family in cytokine
signaling. Curr Opin Cell Biol. 13:211–217. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Levy DE and Darnell JE Jr: Stats:
Transcriptional control and biological impact. Nat Rev Mol Cell
Biol. 3:651–662. 2002. View
Article : Google Scholar : PubMed/NCBI
|
|
4
|
Darnell JE Jr: STATs and gene regulation.
Science. 277:1630–1635. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Simoncic PD, Lee-Loy A, Barber DL,
Tremblay ML and McGlade CJ: The T cell protein tyrosine phosphatase
is a negative regulator of Janus family kinases 1 and 3. Curr Biol.
12:446–453. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Zhang Y, Gao Z, Jiang F, Yan H, Yang B, He
Q, Luo P, Xu Z and Yang X: JAK-STAT signaling as an ARDS
therapeutic target: Status and future trends. Biochem Pharmacol.
208:1153822023. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Chen CW, Chang YH, Tsi CJ and Lin WW:
Inhibition of IFN-gamma-mediated inducible nitric oxide synthase
induction by the peroxisome proliferator-activated receptor gamma
agonist, 15-deoxy-delta 12,14-prostaglandin J2, involves inhibition
of the upstream Janus kinase/STAT1 signaling pathway. J Immunol.
171:979–988. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Wiede F, Shields BJ, Chew SH,
Kyparissoudis K, van Vliet C, Galic S, Tremblay ML, Russell SM,
Godfrey DI and Tiganis T: T cell protein tyrosine phosphatase
attenuates T cell signaling to maintain tolerance in mice. J Clin
Invest. 121:4758–4774. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
ten Hoeve J, de Jesus Ibarra-Sanchez M, Fu
Y, Zhu W, Tremblay M, David M and Shuai K: Identification of a
nuclear Stat1 protein tyrosine phosphatase. Mol Cell Biol.
22:5662–5668. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Shuai K and Liu B: Regulation of JAK-STAT
signalling in the immune system. Nat Rev Immunol. 3:900–911. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Shuai K: Modulation of STAT signaling by
STAT-interacting proteins. Oncogene. 19:2638–2644. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Yan Z, Gibson SA, Buckley JA, Qin H and
Benveniste EN: Role of the JAK/STAT signaling pathway in regulation
of innate immunity in neuroinflammatory diseases. Clin Immunol.
189:4–13. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Yu H, Pardoll D and Jove R: STATs in
cancer inflammation and immunity: A leading role for STAT3. Nat Rev
Cancer. 9:798–809. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Koebel CM, Vermi W, Swann JB, Zerafa N,
Rodig SJ, Old LJ, Smyth MJ and Schreiber RD: Adaptive immunity
maintains occult cancer in an equilibrium state. Nature.
450:903–907. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Galon J, Costes A, Sanchez-Cabo F,
Kirilovsky A, Mlecnik B, Lagorce-Pagès C, Tosolini M, Camus M,
Berger A, Wind P, et al: Type, density, and location of immune
cells within human colorectal tumors predict clinical outcome.
Science. 313:1960–1964. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Dunn GP, Koebel CM and Schreiber RD:
Interferons, immunity and cancer immunoediting. Nat Rev Immunol.
6:836–848. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Chen H, Lee JM, Zong Y, Borowitz M, Ng MH,
Ambinder RF and Hayward SD: Linkage between STAT regulation and
Epstein-Barr virus gene expression in tumors. J Virol.
75:2929–2937. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Zhang K, Lv DW and Li R: Cell receptor
activation and chemical induction trigger caspase-mediated cleavage
of PIAS1 to facilitate epstein-barr virus reactivation. Cell Rep.
21:3445–3457. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Wang JT, Doong SL, Teng SC, Lee CP, Tsai
CH and Chen MR: Epstein-Barr virus BGLF4 kinase suppresses the
interferon regulatory factor 3 signaling pathway. J Virol.
83:1856–1869. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Wang J, Guo W, Long C, Zhou H, Wang H and
Sun X: The split Renilla luciferase complementation assay is useful
for identifying the interaction of Epstein-Barr virus protein
kinase BGLF4 and a heat shock protein Hsp90. Acta Virol. 60:62–70.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Li R, Wang L, Liao G, Guzzo CM, Matunis
MJ, Zhu H and Hayward SD: SUMO binding by the Epstein-Barr virus
protein kinase BGLF4 is crucial for BGLF4 function. J Virol.
86:5412–5421. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Fuld S, Cunningham C, Klucher K, Davison
AJ and Blackbourn DJ: Inhibition of interferon signaling by the
Kaposi's sarcoma-associated herpesvirus full-length viral
interferon regulatory factor 2 protein. J Virol. 80:3092–3097.
2006. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Aurer I, Butturini A and Gale RP: BCR-ABL
rearrangements in children with Philadelphia chromosome-positive
chronic myelogenous leukemia. Blood. 78:2407–2410. 1991. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Dan S, Naito M and Tsuruo T: Selective
induction of apoptosis in Philadelphia chromosome-positive chronic
myelogenous leukemia cells by an inhibitor of BCR-ABL tyrosine
kinase, CGP 57148. Cell Death Differ. 5:710–715. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Miller G, El-Guindy A, Countryman J, Ye J
and Gradoville L: Lytic cycle switches of oncogenic human
gammaherpesviruses. Adv Cancer Res. 97:81–109. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Chen N, Zhou M, Dong X, Qu J, Gong F, Han
Y, Qiu Y, Wang J, Liu Y, Wei Y, et al: Epidemiological and clinical
characteristics of 99 cases of 2019 novel coronavirus pneumonia in
Wuhan, China: A descriptive study. Lancet. 395:507–513. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Luo W, Li YX, Jiang LJ, Chen Q, Wang T and
Ye DW: Targeting JAK-STAT signaling to control cytokine release
Syndrome in COVID-19. Trends Pharmacol Sci. 41:531–543. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Xia H, Cao Z, Xie X, Zhang X, Chen JY,
Wang H, Menachery VD, Rajsbaum R and Shi PY: Evasion of type I
interferon by SARS-CoV-2. Cell Rep. 33:1082342020. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Yuen CK, Lam JY, Wong WM, Mak LF, Wan X,
Chu H, Cai JP, Jin DY, To KK, Chan JF, et al: SARS-CoV-2 nsp13,
nsp14, nsp15 and orf6 function as potent interferon antagonists.
Emerg Microbes Infect. 9:1418–1428. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Miorin L, Kehrer T, Sanchez-Aparicio MT,
Zhang K, Cohen P, Patel RS, Cupic A, Makio T, Mei M, Moreno E, et
al: SARS-CoV-2 Orf6 hijacks Nup98 to block STAT nuclear import and
antagonize interferon signaling. Proc Natl Acad Sci USA.
117:28344–28354. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Chen DY, Khan N, Close BJ, Goel RK, Blum
B, Tavares AH, Kenney D, Conway HL, Ewoldt JK, Chitalia VC, et al:
SARS-CoV-2 disrupts proximal elements in the JAK-STAT pathway. J
Virol. 95:e00862212021. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Montero P, Milara J, Roger I and Cortijo
J: Role of JAK/STAT in interstitial lung diseases; molecular and
cellular mechanisms. Int J Mol Sci. 22:62112021. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Simpson JA, Al-Attar A, Watson NF,
Scholefield JH, Ilyas M and Durrant LG: Intratumoral T cell
infiltration, MHC class I and STAT1 as biomarkers of good prognosis
in colorectal cancer. Gut. 59:926–933. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Jia H, Song L, Cong Q, Wang J, Xu H, Chu
Y, Li Q, Zhang Y, Zou X, Zhang C, et al: The LIM protein AJUBA
promotes colorectal cancer cell survival through suppression of
JAK1/STAT1/IFIT2 network. Oncogene. 36:2655–2666. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Zhang X, Li X, Tan F, Yu N and Pei H:
STAT1 Inhibits MiR-181a expression to suppress colorectal cancer
cell proliferation through PTEN/Akt. J Cell Biochem. 118:3435–3443.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Schroder K, Hertzog PJ, Ravasi T and Hume
DA: Interferon-gamma: An overview of signals, mechanisms and
functions. J Leukoc Biol. 75:163–189. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Stark GR and Darnell JE Jr: The JAK-STAT
pathway at twenty. Immunity. 36:503–514. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Varinou L, Ramsauer K, Karaghiosoff M,
Kolbe T, Pfeffer K, Müller M and Decker T: Phosphorylation of the
STAT1 transactivation domain is required for full-fledged
IFN-gamma-dependent innate immunity. Immunity. 19:793–802. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Garda-Diaz A, Shin DS, Moreno BH, Saco J,
Escuin-Ordinas H, Rodriguez GA, Zaretsky JM, Sun L, Hugo W, Wang X,
et al: Interferon receptor signaling pathways regulating PD-L1 and
PD-L2 expression. Cell Rep. 19:1189–1201. 2017. View Article : Google Scholar
|
|
40
|
Ivashkiv LB: IFNγ: Signalling, epigenetics
and roles in immunity, metabolism, disease and cancer
immunotherapy. Nat Rev Immunol. 18:545–558. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Abiko K, Mandai M, Hamanishi J, Yoshioka
Y, Matsumura N, Baba T, Yamaguchi K, Murakami R, Yamamoto A, Kharma
B, et al: PD-L1 on tumor cells is induced in asdtes and promotes
peritoneal dissemination of ovarian cancer through CTL dysfunction,
din. Cancer Res. 19:1363–1374. 2013.PubMed/NCBI
|
|
42
|
Tian X, Guan W, Zhang L, Sun W, Zhou D,
Lin Q, Ren W, Nadeem L and Xu G: Physical interaction of STAT1
isoforms with TGF-β receptors leads to functional crosstalk between
two signaling pathways in epithelial ovarian cancer. J Exp Clin
Cancer Res. 37:1032018. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Padmanabhan S, Gaire B, Zou Y, Uddin MM
and Vancurova I: IFNγ-induced PD-L1 expression in ovarian cancer
cells is regulated by JAK1, STAT1 and IRF1 signaling. Cell Signal.
97:1104002022. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Yu H, Kortylewski M and Pardoll D:
Crosstalk between cancer and immune cells: Role of STAT3 in the
tumour microenvironment. Nat Rev Immunol. 7:41–51. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Priceman SJ, Kujawski M, Shen S,
Cherryholmes GA, Lee H, Zhang C, Kruper L, Mortimer J, Jove R,
Riggs AD and Yu H: Regulation of adipose tissue T cell subsets by
Stat3 is crucial for diet-induced obesity and insulin resistance.
Proc Natl Acad Sci USA. 110:13079–13084. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Deng J, Liu Y, Lee H, Herrmann A, Zhang W,
Zhang C, Shen S, Priceman SJ, Kujawski M, Pal SK, et al:
S1PR1-STAT3 signaling is crucial for myeloid cell colonization at
future metastatic sites. Cancer Cell. 21:642–654. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Park EJ, Lee JH, Yu GY, He G, Ali SR,
Holzer RG, Osterreicher CH, Takahashi H and Karin M: Dietary and
genetic obesity promote liver inflammation and tumorigenesis by
enhancing IL-6 and TNF expression. Cell. 140:197–208. 2012.
View Article : Google Scholar
|
|
48
|
Carro MS, Lim WK, Alvarez MJ, Bollo RJ,
Zhao X, Snyder EY, Sulman EP, Anne SL, Doetsch F, Colman H, et al:
The transcriptional network for mesenchymal transformation of brain
tumours. Nature. 463:318–325. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Marotta LL, Almendro V, Marusyk A,
Shipitsin M, Schemme J, Walker SR, Bloushtain-Qimron N, Kim JJ,
Choudhury SA, Maruyama R, et al: The JAK2/STAT3 signaling pathway
is required for growth of CD44+CD24-stem cell-like breast cancer
cells in human tumors. J Clin Invest. 121:2723–2735. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Schroeder A, Herrmann A, Cherryholmes G,
Kowolik C, Buettner R, Pal S, Yu H, Müller-Newen G and Jove R: Loss
of androgen receptor expression promotes a stem-like cell phenotype
in prostate cancer through STAT3 signaling. Cancer Res.
74:1227–1237. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Bollrath J, Phesse TJ, von Burstin VA,
Putoczki T, Bennecke M, Bateman T, Nebelsiek T, Lundgren-May T,
Canli O, Schwitalla S, et al: gp130-mediated Stat3 activation in
enterocytes regulates cell survival and cell-cycle progression
during colitis-associated tumorigenesis. Cancer Cell. 15:91–102.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Grivennikov S, Karin E, Terzic J, Mucida
D, Yu GY, Vallabhapurapu S, Scheller J, Rose-John S, Cheroutre H,
Eckmann L and Karin M: IL-6 and Stat3 are required for survival of
intestinal epithelial cells and development of colitis-associated
cancer. Cancer Cell. 15:103–113. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Yu H and Jove R: The STATs of cancer-new
molecular targets come of age. Nat Rev Cancer. 4:97–105. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Lin TS, Mahajan S and Frank DA: STAT
signaling in the pathogenesis and treatment of leukemias. Oncogene.
19:2496–2504. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Battle TE and Frank DA: The role of STATs
in apoptosis. Curr Mol Med. 2:381–392. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Bruns HA and Kaplan MH: The role of
constitutively active Stat6 in leukemia and lymphoma. Crit Rev
Oncol Hematol. 57:245–253. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Sorger H, Dey S, Vieyra-Garcia PA, Pölöske
D, Teufelberger AR, de Araujo ED, Sedighi A, Graf R, Spiegl B,
Lazzeri I, et al: Blocking STAT3/5 through direct or upstream
kinase targeting in leukemic cutaneous T-cell lymphoma. EMBO Mol
Med. 14:e152002022. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Zhao R, Xing S, Li Z, Fu X, Li Q, Krantz
SB and Zhao ZJ: Identification of an acquired JAK2 mutation in
polycythemia vera. J Biol Chem. 280:22788–22792. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Zhao L, Ma Y, Seemann J and Huang LJ: A
regulating role of the JAK2 FERM domain in hyperactivation of
JAK2(V617F). Biochem J. 426:91–98. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Kralovics R, Passamonti F, Buser AS, Teo
SS, Tiedt R, Passweg JR, Tichelli A, Cazzola M and Skoda RC: A
gain-of-function mutation of JAK2 in myeloproliferative disorders.
N Engl J Med. 352:1779–1790. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Levine RL, Wadleigh M, Cools J, Ebert BL,
Wernig G, Huntly BJ, Boggon TJ, Wlodarska I, Clark JJ, Moore S, et
al: Activating mutation in the tyrosine kinase JAK2 in polycythemia
vera, essential thrombocythemia, and myeloid metaplasia with
myelofibrosis. Cancer Cell. 7:387–397. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Walz C, Crowley BJ, Hudon HE, Gramlich JL,
Neuberg DS, Podar K, Griffin JD and Sattler M: Activated Jak2 with
the V617F point mutation promotes G1/S phase transition. J Biol
Chem. 281:18177–18183. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Wernig G, Gonneville JR, Crowley BJ,
Rodrigues MS, Reddy MM, Hudon HE, Walz C, Reiter A, Podar K, Royer
Y, et al: The Jak2V617F oncogene associated with myeloproliferative
diseases requires a functional FERM domain for transformation and
for expression of the Myc and Pim protooncogenes. Blood.
111:3751–3759. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Furuhata A, Kimura A, Shide K, Shimoda K,
Murakami M, Ito H, Gao S, Yoshida K, Tagawa Y, Hagiwara K, et al:
p27 deregulation by Skp2 overexpression induced by the JAK2V617
mutation. Biochem Biophys Res Commun. 383:411–416. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Hanahan D and Weinberg RA: Hallmarks of
cancer: The next generation. Cell. 144:646–674. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Jäkel H, Weinl C and Hengst L:
Phosphorylation of p27Kip1 by JAK2 directly links cytokine receptor
signaling to cell cycle control. Oncogene. 30:3502–3512. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Mohrherr J, Uras IZ, Moll HP and Casanova
E: STAT3: Versatile functions in non-small cell lung cancer.
Cancers (Basel). 12:11072020. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Bromberg J: Stat proteins and oncogenesis.
J Clin Investig. 109:1139–1142. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Huynh J, Etemadi N, Hollande F, Ernst M
and Buchert M: The JAK/STAT3 axis: A comprehensive drug target for
solid malignancies. Semin Cancer Biol. 45:13–22. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Lee HJ, Zhuang G, Cao Y, Du P, Kim HJ and
Settleman J: Drug resistance via feedback activation of Stat3
oncogene-addicted cancer cells. Cancer Cell. 26:207–221. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Gao SP, Mark KG, Leslie K, Pao W, Motoi N,
Gerald WL, Travis WD, Bornmann W, Veach D, Clarkson B and Bromberg
JF: Mutations in the EGFR kinase domain mediate STAT3 activation
via IL-6 production in human lung adenocarcinomas. J Clin Investig.
117:3846–3856. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Zhu Z, Aref AR, Cohoon TJ, Barbie TU,
Imamura Y, Yang S, Moody SE, Shen RR, Schinzel AC, Thai TC, et al:
Inhibition of KRAS-driven tumorigenicity by interruption of an
autocrine cytokine circuit. Cancer Discov. 4:452–465. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Liu D, Huang Y, Zeng J, Chen B, Huang N,
Guo N, Liu L, Xu H, Mo X and Li W: Down-regulation of JAK1 by RNA
interference inhibits growth of the lung cancer cell line A549 and
interferes with the PI3K/mTOR pathway. J Cancer Res Clin Oncol.
137:1629–1640. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Xu Y, Jin J, Xu J, Shao YW and Fan Y: JAK2
variations and functions in lung adenocarcinoma. Tumour Biol.
39:10104283177111402017. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Lee JH, Kim C, Baek SH, Ko JH, Lee SG,
Yang WM, Um JY, Sethi G and Ahn KS: Capsazepine inhibits JAK/STAT3
signaling, tumor growth, and cell survival in prostate cancer.
Oncotarget. 8:17700–17711. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Lee JH, Kim JE, Kim BG, Han HH, Kang S and
Cho NH: STAT3-induced WDR1 overexpression promotes breast cancer
cell migration. Cell Signal. 28:1753–1760. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Subramaniam A, Shanmugam MK, Ong TH, Li F,
Perumal E, Chen L, Vali S, Abbasi T, Kapoor S, Ahn KS, et al:
Emodin inhibits growth and induces apoptosis in an orthotopic
hepatocellular carcinoma model by blocking activation of STAT3. Br
J Pharmacol. 170:807–821. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Paul A, Das S, Das J, Samadder A, Bishayee
K, Sadhukhan R and Khuda-Bukhsh AR: Diarylheptanoid-myricanone
isolated from ethanolic extract of Myrica cerifera shows anticancer
effects on HeLa and PC3 cell lines: Signalling pathway and drug-DNA
interaction. J Integr Med. 11:405–415. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
He G and Karin M: NF-kappaB and STAT3-key
players in liver inflammation and cancer. Cell Res. 21:159–168.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Liu Z, Chen T, Lu X, Xie H, Zhou L and
Zheng S: Overexpression of variant PNPLA3 gene at I148M position
causes malignant transformation of hepatocytes via IL-6-JAK2/STAT3
pathway in low dose free fatty acid exposure: A laboratory
investigation in vitro and in vivo. Am J Transl Res. 8:1319–1338.
2016.PubMed/NCBI
|
|
81
|
Miller AM, Wang H, Bertola A, Park O,
Horiguchi N, Ki SH, Yin S, Lafdil F and Gao B:
Inflammation-associated interleukin-6/signal transducer and
activator of transcription 3 activation ameliorates alcoholic and
nonalcoholic fatty liver diseases in interleukin-10-deficient mice.
Hepatol. 54:846–856. 2011. View Article : Google Scholar
|
|
82
|
Kim E, Kim M, Woo DH, Shin Y, Shin J,
Chang N, Oh YT, Kim H, Rheey J, Nakano I, et al: Phosphorylation of
EZH2 activates STAT3 signaling via STAT3 methylation and promotes
tumorigenicity of glioblastoma stem-like cells. Cancer Cell.
23:839–852. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Cao R, Wang L, Wang H, Xia L,
Erdjument-Bromage H, Tempst P, Jones RS and Zhang Y: Role of
histone H3 lysine 27 methylation in Polycomb-group silencing.
Science. 298:1039–1043. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Kim KH and Roberts CW: Targeting EZH2 in
cancer. Nat Med. 22:128–134. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Kleer CG, Cao Q, Varambally S, Shen R, Ota
I, Tomlins SA, Ghosh D, Sewalt RG, Otte AP, Hayes DF, et al: EZH2
is a marker of aggressive breast cancer and promotes neoplastic
transformation of breast epithelial cells. Proc Natl Acad Sci USA.
100:11606–11611. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Cebria F, Kobayashi C, Umesono Y, Nakazawa
M, Mineta K, Ikeo K, Gojobori T, Itoh M, Taira M, Sánchez Alvarado
A and Agata K: The polycomb group protein EZH2 is involved in
progression of prostate cancer. Nature. 419:620–624.
2002.PubMed/NCBI
|
|
87
|
Cao W, Ribeiro Rde O, Liu D, Saintigny P,
Xia R, Xue Y, Lin R, Mao L and Ren H: EZH2 promotes malignant
behaviors via cell cycle dysregulation and its mRNA level
associates with prognosis of patient with non-small cell lung
cancer. PLoS One. 7:e529842012. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Wu LJ, Zhang X, Wang J, Kong X, Zheng BY
and Yu H: HeZ: ZMYND10 downregulates cyclins B1 and D1 to arrest
cell cycle by trimethylating lysine 9 on histone 3. Life Res.
4:17–24. 2021. View Article : Google Scholar
|
|
89
|
Zhang Y and Tong T: FOXA1 antagonizes
EZH2-mediated CDKN2A repression in carcinogenesis. Biochem Biophys
Res Commun. 453:172–178. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Ganem D: KSHV infection and the
pathogenesis of Kaposi's sarcoma. Annu Rev Pathol. 1:273–296. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Farrell PJ, Rowe DT, Rooney CM and
Kouzarides T: Epstein-Barr virus BZLF1 trans-activator specifically
binds to a consensus AP-1 site and is related to c-fos. EMBO J.
8:127–132. 1989. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Feederle R, Kost M, Baumann M, Janz A,
Drouet E, Hammerschmidt W and Delecluse HJ: The Epstein-Barr virus
lytic program is controlled by the co-operative functions of two
transactivators. EMBO J. 19:3080–3089. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Kenney SC and Mertz JE: Regulation of the
latent-lytic switch in Epstein-Barr virus. Semin Cancer Biol.
26:60–68. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Zhang Y, Ma R, Wang Y, Sun W, Yang Z, Han
M, Han T, Wu XA and Liu R: Viruses run: the evasion mechanisms of
the antiviral innate immunity by Hantavirus. Front Microbiol.
12:7591982021. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Mesev EV, LeDesma RA and Ploss A: Decoding
type I and III interferon signaling during viral infection. Nat.
Microbiol. 4:914–924. 2019.
|
|
96
|
Boneschi V, Brambilla L, Berti E, Ferrucci
S, Corbellino M, Parravicini C and Fossati S: Human herpesvirus 8
DNA in the skin and blood of patients with Mediterranean Kaposi's
sarcoma: Clinical correlations. Dermatology. 203:19–23. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Campbell TB, Borok M, Gwanzura L,
MaWhinney S, White IE, Ndemera B, Gudza I, Fitzpatrick L and
Schooley RT: Relationship of human herpesvirus 8 peripheral blood
virus load and Kaposi's sarcoma clinical stage. AIDS. 14:2109–2116.
2000. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Murray PG and Young LS: The Role of the
Epstein-Barr virus in human disease. Front Biosci. 7:d519–d540.
2002. View
Article : Google Scholar : PubMed/NCBI
|
|
99
|
Chen J, Ueda K, Sakakibara S, Okuno T,
Parravicini C, Corbellino M and Yamanishi K: Activation of latent
Kaposi's sarcoma-associated herpesvirus by demethylation of the
promoter of the lytic transactivator. Proc Natl Acad Sci USA.
98:4119–4124. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Fardet L, Blum L, Kerob D, Agbalika F,
Galicier L, Dupuy A, Lafaurie M, Meignin V, Morel P and Lebbé C:
Human herpesvirus 8-associated hemophagocytic lymphohistiocytosis
in human immunodeficiency virus-infected patients. Clin Infect Dis.
37:285–291. 2003. View
Article : Google Scholar : PubMed/NCBI
|
|
101
|
Grandadam M, Dupin N, Calvez V, Gorin I,
Blum L, Kernbaum S, Sicard D, Buisson Y, Agut H, Escande JP and
Huraux JM: Exacerbations of clinical symptoms in human
immunodeficiency virus type 1-infected patients with multicentric
Castleman's disease are associated with a high increase in Kaposi's
sarcoma herpesvirus DNA load in peripheral blood mononuclear cells.
J Infect Dis. 175:1198–1201. 1997. View
Article : Google Scholar : PubMed/NCBI
|
|
102
|
Oksenhendler E, Carcelain G, Aoki Y,
Boulanger E, Maillard A, Clauvel JP and Agbalika F: High levels of
human herpesvirus 8 viral load, human interleukin-6,
interleukin-10, and C reactive protein correlate with exacerbation
of multicentric Castleman disease in HIV-infected patients. Blood.
96:2069–2073. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Robles R, Lugo D, Gee L and Jacobson MA:
Effect of antiviral drugs used to treat cytomegalovirus end-organ
disease on subsequent course of previously diagnosed Kaposi's
sarcoma in patients with AIDS. J Acquir Immune Defic Syndr Hum
Retrovirol. 20:34–38. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
King CA, Li X, Barbachano-Guerrero A and
Bhaduri-McIntosh S: STAT3 regulates lytic activation of Kaposi's
sarcoma-associated herpesvirus. J Virol. 89:11347–11355. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Mousavizadeh L and Ghasemi S: Genotype and
phenotype of COVID-19: Their roles in pathogenesis. J Microbiol
Immunol Infect. 54:159–163. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Robson F, Khan KS, Le TK, Paris C,
Demirbag S, Barfuss P, Rocchi P and Ng WL: Coronavirus RNA
proofreading: molecular basis and therapeutic targeting. Mol Cell.
79:710–727. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Chou JM, Tsai JL, Hung JN, Chen IH, Chen
ST and Tsai MH: The ORF8 protein of SARS-CoV-2 modulates the spike
protein and its implications in viral transmission. Front
Microbiol. 13:8835972022. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Kim D, Lee JY, Yang JS, Kim JW, Kim VN and
Chang H: The architecture of SARS-CoV-2 transcriptome. Cell.
181:914–921. e102020. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Liu DX, Fung TS, Chong KK, Shukla A and
Hilgenfeld R: Accessory proteins of SARS-CoV and other
coronaviruses. Antiviral Res. 109:97–109. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Hoffmann M, Kleine-Weber H, Schroeder S,
Krüger N, Herrler T, Erichsen S, Schiergens TS, Herrler G, Wu NH,
Nitsche A, et al: SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2
and is blocked by a clinically proven protease inhibitor. Cell.
181:271–280. e82020. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Valcarcel A, Bensussen A, Álvarez-Buylla
ER and Díaz J: Structural analysis of SARS-CoV-2 ORF8 protein:
Pathogenic and therapeutic implications. Front Genet.
12:6932272021. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Leifert JA, Holler PD, Harkins S, Kranz DM
and Whitton JL: The cationic region from HIV tat enhances the
cell-surface expression of epitope/MHC class I complexes. Gene
Ther. 10:2067–2073. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Haque M, Ueda K, Nakano K, Hirata Y,
Parravicini C, Corbellino M and Yamanishi K: Major
histocompatibility complex class I molecules are down-regulated at
the cell surface by the K5 protein encoded by Kaposi's
sarcoma-associated herpesvirus/human herpesvirus-8. J Gen Virol.
82:1175–1180. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Selvaraj C, Dinesh DC, Pedone EM, Alothaim
AS, Vijayakumar R, Rudhra O and Singh SK: SARS-CoV-2 ORF8
dimerization and binding mode analysis with class I MHC:
computational approaches to identify COVID-19 inhibitors. Brief
Funct Genomics. 22:227–240. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Cai H, Chen Y, Feng Y, Asadi M, Kaufman L,
Lee K, Kehrer T, Miorin L, Garcia-Sastre A, Gusella GL, et al:
SARS-CoV-2 viral protein ORF3A injures renal tubules by interacting
with TRIM59 to induce STAT3 activation. Mol Ther. 31:774–787. 2023.
View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Ackermann M, Verleden SE, Kuehnel M,
Haverich A, Welte T, Laenger F, Vanstapel A, Werlein C, Stark H,
Tzankov A, et al: Pulmonary vascular endothelialitis, thrombosis,
and angiogenesis in Covid-19. N Engl J Med. 383:120–128. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Klok FA, Kruip MJHA, van der Meer NJM,
Arbous MS, Gommers DAMPJ, Kant KM, Kaptein FHJ, van Paassen J,
Stals MAM, Huisman MV and Endeman H: Incidence of thrombotic
complications in critically ill ICU patients with COVID-19. Thromb
Res. 191:145–147. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Matsuyama T, Kubli SP, Yoshinaga SK,
Pfeffer K and Mak TW: An aberrant STAT pathway is central to
COVID-19. Cell Death Differ. 27:3209–3225. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Martineau AR, Jolliffe DA, Hooper RL,
Greenberg L, Aloia JF, Bergman P, Dubnov-Raz G, Esposito S, Ganmaa
D, Ginde AA, et al: Vitamin D supplementation to prevent acute
respiratory tract infections: Systematic review and meta-analysis
of individual participant data. BMJ. 356:i65832017. View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Mehta P, McAuley DF, Brown M, Sanchez E,
Tattersall RS and Manson JJ; HLH Across Speciality Collaboration, :
UK: COVID-19: Consider cytokine storm syndromes and
immunosuppression. Lancet. 395:1033–1034. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Jamilloux Y, Henry T, Belot A, Viel S,
Fauter M, El Jammal T, Walzer T, Francois B and Seve P: Should we
stimulate or suppress immune responses in COVID-19? Cytokine and
anti-cytokine interventions. Autoimmun Rev. 19:1025672020.
View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Richardson P, Griffin I, Tucker C, Smith
D, Oechsle O, Phelan A, Rawling M, Savory E and Stebbing J:
Baricitinib as potential treatment for 2019-nCoV acute respiratory
disease. Lancet. 395:e30–e31. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Vannucchi AM, Mortara A, D'Alessio A,
Morelli M, Tedeschi A, Festuccia MB, Monforte AD, Capochiani E,
Selleri C, Simonetti F, et al: JAK Inhibition with Ruxolitinib in
Patients with COVID-19 and severe pneumonia: multicenter clinical
experience from a compassionate use program in Italy. J Clin Med.
10:37522021. View Article : Google Scholar : PubMed/NCBI
|
|
124
|
Dobosh B, Zandi K, Giraldo DM, Goh SL,
Musall K, Aldeco M, LeCher J, Giacalone VD, Yang J, Eddins DJ, et
al: Baricitinib attenuates the proinflammatory phase of COVID-19
driven by lung-infiltrating monocytes. Cell Rep. 39:1109452022.
View Article : Google Scholar : PubMed/NCBI
|
|
125
|
Ucciferri C, Auricchio A, Marinari S,
Vecchiet J and Falasca K: COVID-19 in a patient with SISTEMIC
sclerosis: The role of ruxolitinib. Eur J Inflammation. 19:1–4.
2021. View Article : Google Scholar
|
|
126
|
Ucciferri C, Vecchiet J and Falasca K:
Role of monoclonal antibody drugs in the treatment of COVID-19.
World J Clin Cases. 8:4280–4285. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
127
|
Hashemi R, Morshedi M, Asghari Jafarabadi
M, Altafi D, Saeed Hosseini-Asl S and Rafie-Arefhosseini S:
Anti-inflammatory effects of dietary vitamin D. Neurol Genet.
4:e2782018. View Article : Google Scholar : PubMed/NCBI
|
|
128
|
Hashemi R, Hosseini-Asl SS, Arefhosseini
SR and Morshedi M: The impact of vitamin D3 intake on inflammatory
markers in multiple sclerosis patients and their first-degree
relatives. PLoS One. 15:e02311452020. View Article : Google Scholar : PubMed/NCBI
|
|
129
|
Grant WB, Lahore H, McDonnell SL, Baggerly
CA, French CB, Aliano JL and Bhattoa HP: Evidence that Vitamin D
Supplementation Could Reduce Risk of Influenza and COVID-19
Infections and Deaths. Nutrients. 12:9882020. View Article : Google Scholar : PubMed/NCBI
|
|
130
|
Hii CS and Ferrante A: The Non-Genomic
Actions of Vitamin D. Nutrients. 8:1352016. View Article : Google Scholar : PubMed/NCBI
|
|
131
|
Hafezi S, Saheb Sharif-Askari F, Saheb
Sharif-Askari N, Ali Hussain Alsayed H, Alsafar H, Al Anouti F,
Hamid Q and Halwani R: Vitamin D enhances type I IFN signaling in
COVID-19 patients. Sci Rep. 12:177782022. View Article : Google Scholar : PubMed/NCBI
|