Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
March-2024 Volume 29 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
March-2024 Volume 29 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Essential contribution of the JAK/STAT pathway to carcinogenesis, lytic infection of herpesviruses and pathogenesis of COVID‑19 (Review)

  • Authors:
    • Wenkai Li
    • Yunjing Zhuang
    • Song-Jun Shao
    • Pankaj Trivedi
    • Biying Zheng
    • Guo-Liang Huang
    • Zhiwei He
    • Xiangning Zhang
  • View Affiliations / Copyright

    Affiliations: Department of Pathophysiology, School of Basic Medical Science, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China, Department of Clinical Microbiology, School of Medical Technology, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China, Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China, Department of Experimental Medicine, La Sapienza University of Rome, Rome I‑00158, Italy, Chinese‑American Tumor Institute, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
    Copyright: © Li et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 39
    |
    Published online on: January 15, 2024
       https://doi.org/10.3892/mmr.2024.13163
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

The intracellular pathway of Janus kinase/signal transducer and activator of transcription (JAK/STAT) and modification of nucleosome histone marks regulate the expression of proinflammatory mediators, playing an essential role in carcinogenesis, antiviral immunity and the interaction of host proteins with Herpesviral particles. The pathway has also been suggested to play a vital role in the clinical course of the acute infection caused by severe acute respiratory syndrome coronavirus type 2 (SARS‑CoV‑2; known as coronavirus infection‑2019), a novel human coronavirus initially identified in the central Chinese city Wuhan towards the end of 2019, which evolved into a pandemic affecting nearly two million people worldwide. The infection mainly manifests as fever, cough, myalgia and pulmonary involvement, while it also attacks multiple viscera, such as the liver. The pathogenesis is characterized by a cytokine storm, with an overproduction of proinflammatory mediators. Innate and adaptive host immunity against the viral pathogen is exerted by various effectors and is regulated by different signaling pathways notably the JAK/STAT. The elucidation of the underlying mechanism of the regulation of mediating factors expressed in the viral infection would assist diagnosis and antiviral targeting therapy, which will help overcome the infection caused by SARS‑CoV‑2.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

View References

1 

Malemud CJ: The role of the JAK/STAT signal pathway in rheumatoid arthritis. Ther Adv Musculoskelet Dis. 10:117–127. 2018. View Article : Google Scholar : PubMed/NCBI

2 

Ihle JN: The STAT family in cytokine signaling. Curr Opin Cell Biol. 13:211–217. 2001. View Article : Google Scholar : PubMed/NCBI

3 

Levy DE and Darnell JE Jr: Stats: Transcriptional control and biological impact. Nat Rev Mol Cell Biol. 3:651–662. 2002. View Article : Google Scholar : PubMed/NCBI

4 

Darnell JE Jr: STATs and gene regulation. Science. 277:1630–1635. 1997. View Article : Google Scholar : PubMed/NCBI

5 

Simoncic PD, Lee-Loy A, Barber DL, Tremblay ML and McGlade CJ: The T cell protein tyrosine phosphatase is a negative regulator of Janus family kinases 1 and 3. Curr Biol. 12:446–453. 2002. View Article : Google Scholar : PubMed/NCBI

6 

Zhang Y, Gao Z, Jiang F, Yan H, Yang B, He Q, Luo P, Xu Z and Yang X: JAK-STAT signaling as an ARDS therapeutic target: Status and future trends. Biochem Pharmacol. 208:1153822023. View Article : Google Scholar : PubMed/NCBI

7 

Chen CW, Chang YH, Tsi CJ and Lin WW: Inhibition of IFN-gamma-mediated inducible nitric oxide synthase induction by the peroxisome proliferator-activated receptor gamma agonist, 15-deoxy-delta 12,14-prostaglandin J2, involves inhibition of the upstream Janus kinase/STAT1 signaling pathway. J Immunol. 171:979–988. 2003. View Article : Google Scholar : PubMed/NCBI

8 

Wiede F, Shields BJ, Chew SH, Kyparissoudis K, van Vliet C, Galic S, Tremblay ML, Russell SM, Godfrey DI and Tiganis T: T cell protein tyrosine phosphatase attenuates T cell signaling to maintain tolerance in mice. J Clin Invest. 121:4758–4774. 2011. View Article : Google Scholar : PubMed/NCBI

9 

ten Hoeve J, de Jesus Ibarra-Sanchez M, Fu Y, Zhu W, Tremblay M, David M and Shuai K: Identification of a nuclear Stat1 protein tyrosine phosphatase. Mol Cell Biol. 22:5662–5668. 2002. View Article : Google Scholar : PubMed/NCBI

10 

Shuai K and Liu B: Regulation of JAK-STAT signalling in the immune system. Nat Rev Immunol. 3:900–911. 2003. View Article : Google Scholar : PubMed/NCBI

11 

Shuai K: Modulation of STAT signaling by STAT-interacting proteins. Oncogene. 19:2638–2644. 2000. View Article : Google Scholar : PubMed/NCBI

12 

Yan Z, Gibson SA, Buckley JA, Qin H and Benveniste EN: Role of the JAK/STAT signaling pathway in regulation of innate immunity in neuroinflammatory diseases. Clin Immunol. 189:4–13. 2018. View Article : Google Scholar : PubMed/NCBI

13 

Yu H, Pardoll D and Jove R: STATs in cancer inflammation and immunity: A leading role for STAT3. Nat Rev Cancer. 9:798–809. 2009. View Article : Google Scholar : PubMed/NCBI

14 

Koebel CM, Vermi W, Swann JB, Zerafa N, Rodig SJ, Old LJ, Smyth MJ and Schreiber RD: Adaptive immunity maintains occult cancer in an equilibrium state. Nature. 450:903–907. 2007. View Article : Google Scholar : PubMed/NCBI

15 

Galon J, Costes A, Sanchez-Cabo F, Kirilovsky A, Mlecnik B, Lagorce-Pagès C, Tosolini M, Camus M, Berger A, Wind P, et al: Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science. 313:1960–1964. 2006. View Article : Google Scholar : PubMed/NCBI

16 

Dunn GP, Koebel CM and Schreiber RD: Interferons, immunity and cancer immunoediting. Nat Rev Immunol. 6:836–848. 2006. View Article : Google Scholar : PubMed/NCBI

17 

Chen H, Lee JM, Zong Y, Borowitz M, Ng MH, Ambinder RF and Hayward SD: Linkage between STAT regulation and Epstein-Barr virus gene expression in tumors. J Virol. 75:2929–2937. 2001. View Article : Google Scholar : PubMed/NCBI

18 

Zhang K, Lv DW and Li R: Cell receptor activation and chemical induction trigger caspase-mediated cleavage of PIAS1 to facilitate epstein-barr virus reactivation. Cell Rep. 21:3445–3457. 2017. View Article : Google Scholar : PubMed/NCBI

19 

Wang JT, Doong SL, Teng SC, Lee CP, Tsai CH and Chen MR: Epstein-Barr virus BGLF4 kinase suppresses the interferon regulatory factor 3 signaling pathway. J Virol. 83:1856–1869. 2009. View Article : Google Scholar : PubMed/NCBI

20 

Wang J, Guo W, Long C, Zhou H, Wang H and Sun X: The split Renilla luciferase complementation assay is useful for identifying the interaction of Epstein-Barr virus protein kinase BGLF4 and a heat shock protein Hsp90. Acta Virol. 60:62–70. 2016. View Article : Google Scholar : PubMed/NCBI

21 

Li R, Wang L, Liao G, Guzzo CM, Matunis MJ, Zhu H and Hayward SD: SUMO binding by the Epstein-Barr virus protein kinase BGLF4 is crucial for BGLF4 function. J Virol. 86:5412–5421. 2012. View Article : Google Scholar : PubMed/NCBI

22 

Fuld S, Cunningham C, Klucher K, Davison AJ and Blackbourn DJ: Inhibition of interferon signaling by the Kaposi's sarcoma-associated herpesvirus full-length viral interferon regulatory factor 2 protein. J Virol. 80:3092–3097. 2006. View Article : Google Scholar : PubMed/NCBI

23 

Aurer I, Butturini A and Gale RP: BCR-ABL rearrangements in children with Philadelphia chromosome-positive chronic myelogenous leukemia. Blood. 78:2407–2410. 1991. View Article : Google Scholar : PubMed/NCBI

24 

Dan S, Naito M and Tsuruo T: Selective induction of apoptosis in Philadelphia chromosome-positive chronic myelogenous leukemia cells by an inhibitor of BCR-ABL tyrosine kinase, CGP 57148. Cell Death Differ. 5:710–715. 1998. View Article : Google Scholar : PubMed/NCBI

25 

Miller G, El-Guindy A, Countryman J, Ye J and Gradoville L: Lytic cycle switches of oncogenic human gammaherpesviruses. Adv Cancer Res. 97:81–109. 2007. View Article : Google Scholar : PubMed/NCBI

26 

Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, Qiu Y, Wang J, Liu Y, Wei Y, et al: Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: A descriptive study. Lancet. 395:507–513. 2020. View Article : Google Scholar : PubMed/NCBI

27 

Luo W, Li YX, Jiang LJ, Chen Q, Wang T and Ye DW: Targeting JAK-STAT signaling to control cytokine release Syndrome in COVID-19. Trends Pharmacol Sci. 41:531–543. 2020. View Article : Google Scholar : PubMed/NCBI

28 

Xia H, Cao Z, Xie X, Zhang X, Chen JY, Wang H, Menachery VD, Rajsbaum R and Shi PY: Evasion of type I interferon by SARS-CoV-2. Cell Rep. 33:1082342020. View Article : Google Scholar : PubMed/NCBI

29 

Yuen CK, Lam JY, Wong WM, Mak LF, Wan X, Chu H, Cai JP, Jin DY, To KK, Chan JF, et al: SARS-CoV-2 nsp13, nsp14, nsp15 and orf6 function as potent interferon antagonists. Emerg Microbes Infect. 9:1418–1428. 2020. View Article : Google Scholar : PubMed/NCBI

30 

Miorin L, Kehrer T, Sanchez-Aparicio MT, Zhang K, Cohen P, Patel RS, Cupic A, Makio T, Mei M, Moreno E, et al: SARS-CoV-2 Orf6 hijacks Nup98 to block STAT nuclear import and antagonize interferon signaling. Proc Natl Acad Sci USA. 117:28344–28354. 2020. View Article : Google Scholar : PubMed/NCBI

31 

Chen DY, Khan N, Close BJ, Goel RK, Blum B, Tavares AH, Kenney D, Conway HL, Ewoldt JK, Chitalia VC, et al: SARS-CoV-2 disrupts proximal elements in the JAK-STAT pathway. J Virol. 95:e00862212021. View Article : Google Scholar : PubMed/NCBI

32 

Montero P, Milara J, Roger I and Cortijo J: Role of JAK/STAT in interstitial lung diseases; molecular and cellular mechanisms. Int J Mol Sci. 22:62112021. View Article : Google Scholar : PubMed/NCBI

33 

Simpson JA, Al-Attar A, Watson NF, Scholefield JH, Ilyas M and Durrant LG: Intratumoral T cell infiltration, MHC class I and STAT1 as biomarkers of good prognosis in colorectal cancer. Gut. 59:926–933. 2010. View Article : Google Scholar : PubMed/NCBI

34 

Jia H, Song L, Cong Q, Wang J, Xu H, Chu Y, Li Q, Zhang Y, Zou X, Zhang C, et al: The LIM protein AJUBA promotes colorectal cancer cell survival through suppression of JAK1/STAT1/IFIT2 network. Oncogene. 36:2655–2666. 2017. View Article : Google Scholar : PubMed/NCBI

35 

Zhang X, Li X, Tan F, Yu N and Pei H: STAT1 Inhibits MiR-181a expression to suppress colorectal cancer cell proliferation through PTEN/Akt. J Cell Biochem. 118:3435–3443. 2017. View Article : Google Scholar : PubMed/NCBI

36 

Schroder K, Hertzog PJ, Ravasi T and Hume DA: Interferon-gamma: An overview of signals, mechanisms and functions. J Leukoc Biol. 75:163–189. 2004. View Article : Google Scholar : PubMed/NCBI

37 

Stark GR and Darnell JE Jr: The JAK-STAT pathway at twenty. Immunity. 36:503–514. 2012. View Article : Google Scholar : PubMed/NCBI

38 

Varinou L, Ramsauer K, Karaghiosoff M, Kolbe T, Pfeffer K, Müller M and Decker T: Phosphorylation of the STAT1 transactivation domain is required for full-fledged IFN-gamma-dependent innate immunity. Immunity. 19:793–802. 2003. View Article : Google Scholar : PubMed/NCBI

39 

Garda-Diaz A, Shin DS, Moreno BH, Saco J, Escuin-Ordinas H, Rodriguez GA, Zaretsky JM, Sun L, Hugo W, Wang X, et al: Interferon receptor signaling pathways regulating PD-L1 and PD-L2 expression. Cell Rep. 19:1189–1201. 2017. View Article : Google Scholar

40 

Ivashkiv LB: IFNγ: Signalling, epigenetics and roles in immunity, metabolism, disease and cancer immunotherapy. Nat Rev Immunol. 18:545–558. 2018. View Article : Google Scholar : PubMed/NCBI

41 

Abiko K, Mandai M, Hamanishi J, Yoshioka Y, Matsumura N, Baba T, Yamaguchi K, Murakami R, Yamamoto A, Kharma B, et al: PD-L1 on tumor cells is induced in asdtes and promotes peritoneal dissemination of ovarian cancer through CTL dysfunction, din. Cancer Res. 19:1363–1374. 2013.PubMed/NCBI

42 

Tian X, Guan W, Zhang L, Sun W, Zhou D, Lin Q, Ren W, Nadeem L and Xu G: Physical interaction of STAT1 isoforms with TGF-β receptors leads to functional crosstalk between two signaling pathways in epithelial ovarian cancer. J Exp Clin Cancer Res. 37:1032018. View Article : Google Scholar : PubMed/NCBI

43 

Padmanabhan S, Gaire B, Zou Y, Uddin MM and Vancurova I: IFNγ-induced PD-L1 expression in ovarian cancer cells is regulated by JAK1, STAT1 and IRF1 signaling. Cell Signal. 97:1104002022. View Article : Google Scholar : PubMed/NCBI

44 

Yu H, Kortylewski M and Pardoll D: Crosstalk between cancer and immune cells: Role of STAT3 in the tumour microenvironment. Nat Rev Immunol. 7:41–51. 2007. View Article : Google Scholar : PubMed/NCBI

45 

Priceman SJ, Kujawski M, Shen S, Cherryholmes GA, Lee H, Zhang C, Kruper L, Mortimer J, Jove R, Riggs AD and Yu H: Regulation of adipose tissue T cell subsets by Stat3 is crucial for diet-induced obesity and insulin resistance. Proc Natl Acad Sci USA. 110:13079–13084. 2013. View Article : Google Scholar : PubMed/NCBI

46 

Deng J, Liu Y, Lee H, Herrmann A, Zhang W, Zhang C, Shen S, Priceman SJ, Kujawski M, Pal SK, et al: S1PR1-STAT3 signaling is crucial for myeloid cell colonization at future metastatic sites. Cancer Cell. 21:642–654. 2012. View Article : Google Scholar : PubMed/NCBI

47 

Park EJ, Lee JH, Yu GY, He G, Ali SR, Holzer RG, Osterreicher CH, Takahashi H and Karin M: Dietary and genetic obesity promote liver inflammation and tumorigenesis by enhancing IL-6 and TNF expression. Cell. 140:197–208. 2012. View Article : Google Scholar

48 

Carro MS, Lim WK, Alvarez MJ, Bollo RJ, Zhao X, Snyder EY, Sulman EP, Anne SL, Doetsch F, Colman H, et al: The transcriptional network for mesenchymal transformation of brain tumours. Nature. 463:318–325. 2010. View Article : Google Scholar : PubMed/NCBI

49 

Marotta LL, Almendro V, Marusyk A, Shipitsin M, Schemme J, Walker SR, Bloushtain-Qimron N, Kim JJ, Choudhury SA, Maruyama R, et al: The JAK2/STAT3 signaling pathway is required for growth of CD44+CD24-stem cell-like breast cancer cells in human tumors. J Clin Invest. 121:2723–2735. 2011. View Article : Google Scholar : PubMed/NCBI

50 

Schroeder A, Herrmann A, Cherryholmes G, Kowolik C, Buettner R, Pal S, Yu H, Müller-Newen G and Jove R: Loss of androgen receptor expression promotes a stem-like cell phenotype in prostate cancer through STAT3 signaling. Cancer Res. 74:1227–1237. 2014. View Article : Google Scholar : PubMed/NCBI

51 

Bollrath J, Phesse TJ, von Burstin VA, Putoczki T, Bennecke M, Bateman T, Nebelsiek T, Lundgren-May T, Canli O, Schwitalla S, et al: gp130-mediated Stat3 activation in enterocytes regulates cell survival and cell-cycle progression during colitis-associated tumorigenesis. Cancer Cell. 15:91–102. 2009. View Article : Google Scholar : PubMed/NCBI

52 

Grivennikov S, Karin E, Terzic J, Mucida D, Yu GY, Vallabhapurapu S, Scheller J, Rose-John S, Cheroutre H, Eckmann L and Karin M: IL-6 and Stat3 are required for survival of intestinal epithelial cells and development of colitis-associated cancer. Cancer Cell. 15:103–113. 2009. View Article : Google Scholar : PubMed/NCBI

53 

Yu H and Jove R: The STATs of cancer-new molecular targets come of age. Nat Rev Cancer. 4:97–105. 2004. View Article : Google Scholar : PubMed/NCBI

54 

Lin TS, Mahajan S and Frank DA: STAT signaling in the pathogenesis and treatment of leukemias. Oncogene. 19:2496–2504. 2000. View Article : Google Scholar : PubMed/NCBI

55 

Battle TE and Frank DA: The role of STATs in apoptosis. Curr Mol Med. 2:381–392. 2002. View Article : Google Scholar : PubMed/NCBI

56 

Bruns HA and Kaplan MH: The role of constitutively active Stat6 in leukemia and lymphoma. Crit Rev Oncol Hematol. 57:245–253. 2006. View Article : Google Scholar : PubMed/NCBI

57 

Sorger H, Dey S, Vieyra-Garcia PA, Pölöske D, Teufelberger AR, de Araujo ED, Sedighi A, Graf R, Spiegl B, Lazzeri I, et al: Blocking STAT3/5 through direct or upstream kinase targeting in leukemic cutaneous T-cell lymphoma. EMBO Mol Med. 14:e152002022. View Article : Google Scholar : PubMed/NCBI

58 

Zhao R, Xing S, Li Z, Fu X, Li Q, Krantz SB and Zhao ZJ: Identification of an acquired JAK2 mutation in polycythemia vera. J Biol Chem. 280:22788–22792. 2005. View Article : Google Scholar : PubMed/NCBI

59 

Zhao L, Ma Y, Seemann J and Huang LJ: A regulating role of the JAK2 FERM domain in hyperactivation of JAK2(V617F). Biochem J. 426:91–98. 2010. View Article : Google Scholar : PubMed/NCBI

60 

Kralovics R, Passamonti F, Buser AS, Teo SS, Tiedt R, Passweg JR, Tichelli A, Cazzola M and Skoda RC: A gain-of-function mutation of JAK2 in myeloproliferative disorders. N Engl J Med. 352:1779–1790. 2005. View Article : Google Scholar : PubMed/NCBI

61 

Levine RL, Wadleigh M, Cools J, Ebert BL, Wernig G, Huntly BJ, Boggon TJ, Wlodarska I, Clark JJ, Moore S, et al: Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. Cancer Cell. 7:387–397. 2005. View Article : Google Scholar : PubMed/NCBI

62 

Walz C, Crowley BJ, Hudon HE, Gramlich JL, Neuberg DS, Podar K, Griffin JD and Sattler M: Activated Jak2 with the V617F point mutation promotes G1/S phase transition. J Biol Chem. 281:18177–18183. 2006. View Article : Google Scholar : PubMed/NCBI

63 

Wernig G, Gonneville JR, Crowley BJ, Rodrigues MS, Reddy MM, Hudon HE, Walz C, Reiter A, Podar K, Royer Y, et al: The Jak2V617F oncogene associated with myeloproliferative diseases requires a functional FERM domain for transformation and for expression of the Myc and Pim protooncogenes. Blood. 111:3751–3759. 2008. View Article : Google Scholar : PubMed/NCBI

64 

Furuhata A, Kimura A, Shide K, Shimoda K, Murakami M, Ito H, Gao S, Yoshida K, Tagawa Y, Hagiwara K, et al: p27 deregulation by Skp2 overexpression induced by the JAK2V617 mutation. Biochem Biophys Res Commun. 383:411–416. 2009. View Article : Google Scholar : PubMed/NCBI

65 

Hanahan D and Weinberg RA: Hallmarks of cancer: The next generation. Cell. 144:646–674. 2011. View Article : Google Scholar : PubMed/NCBI

66 

Jäkel H, Weinl C and Hengst L: Phosphorylation of p27Kip1 by JAK2 directly links cytokine receptor signaling to cell cycle control. Oncogene. 30:3502–3512. 2011. View Article : Google Scholar : PubMed/NCBI

67 

Mohrherr J, Uras IZ, Moll HP and Casanova E: STAT3: Versatile functions in non-small cell lung cancer. Cancers (Basel). 12:11072020. View Article : Google Scholar : PubMed/NCBI

68 

Bromberg J: Stat proteins and oncogenesis. J Clin Investig. 109:1139–1142. 2002. View Article : Google Scholar : PubMed/NCBI

69 

Huynh J, Etemadi N, Hollande F, Ernst M and Buchert M: The JAK/STAT3 axis: A comprehensive drug target for solid malignancies. Semin Cancer Biol. 45:13–22. 2017. View Article : Google Scholar : PubMed/NCBI

70 

Lee HJ, Zhuang G, Cao Y, Du P, Kim HJ and Settleman J: Drug resistance via feedback activation of Stat3 oncogene-addicted cancer cells. Cancer Cell. 26:207–221. 2014. View Article : Google Scholar : PubMed/NCBI

71 

Gao SP, Mark KG, Leslie K, Pao W, Motoi N, Gerald WL, Travis WD, Bornmann W, Veach D, Clarkson B and Bromberg JF: Mutations in the EGFR kinase domain mediate STAT3 activation via IL-6 production in human lung adenocarcinomas. J Clin Investig. 117:3846–3856. 2007. View Article : Google Scholar : PubMed/NCBI

72 

Zhu Z, Aref AR, Cohoon TJ, Barbie TU, Imamura Y, Yang S, Moody SE, Shen RR, Schinzel AC, Thai TC, et al: Inhibition of KRAS-driven tumorigenicity by interruption of an autocrine cytokine circuit. Cancer Discov. 4:452–465. 2014. View Article : Google Scholar : PubMed/NCBI

73 

Liu D, Huang Y, Zeng J, Chen B, Huang N, Guo N, Liu L, Xu H, Mo X and Li W: Down-regulation of JAK1 by RNA interference inhibits growth of the lung cancer cell line A549 and interferes with the PI3K/mTOR pathway. J Cancer Res Clin Oncol. 137:1629–1640. 2011. View Article : Google Scholar : PubMed/NCBI

74 

Xu Y, Jin J, Xu J, Shao YW and Fan Y: JAK2 variations and functions in lung adenocarcinoma. Tumour Biol. 39:10104283177111402017. View Article : Google Scholar : PubMed/NCBI

75 

Lee JH, Kim C, Baek SH, Ko JH, Lee SG, Yang WM, Um JY, Sethi G and Ahn KS: Capsazepine inhibits JAK/STAT3 signaling, tumor growth, and cell survival in prostate cancer. Oncotarget. 8:17700–17711. 2017. View Article : Google Scholar : PubMed/NCBI

76 

Lee JH, Kim JE, Kim BG, Han HH, Kang S and Cho NH: STAT3-induced WDR1 overexpression promotes breast cancer cell migration. Cell Signal. 28:1753–1760. 2016. View Article : Google Scholar : PubMed/NCBI

77 

Subramaniam A, Shanmugam MK, Ong TH, Li F, Perumal E, Chen L, Vali S, Abbasi T, Kapoor S, Ahn KS, et al: Emodin inhibits growth and induces apoptosis in an orthotopic hepatocellular carcinoma model by blocking activation of STAT3. Br J Pharmacol. 170:807–821. 2013. View Article : Google Scholar : PubMed/NCBI

78 

Paul A, Das S, Das J, Samadder A, Bishayee K, Sadhukhan R and Khuda-Bukhsh AR: Diarylheptanoid-myricanone isolated from ethanolic extract of Myrica cerifera shows anticancer effects on HeLa and PC3 cell lines: Signalling pathway and drug-DNA interaction. J Integr Med. 11:405–415. 2013. View Article : Google Scholar : PubMed/NCBI

79 

He G and Karin M: NF-kappaB and STAT3-key players in liver inflammation and cancer. Cell Res. 21:159–168. 2011. View Article : Google Scholar : PubMed/NCBI

80 

Liu Z, Chen T, Lu X, Xie H, Zhou L and Zheng S: Overexpression of variant PNPLA3 gene at I148M position causes malignant transformation of hepatocytes via IL-6-JAK2/STAT3 pathway in low dose free fatty acid exposure: A laboratory investigation in vitro and in vivo. Am J Transl Res. 8:1319–1338. 2016.PubMed/NCBI

81 

Miller AM, Wang H, Bertola A, Park O, Horiguchi N, Ki SH, Yin S, Lafdil F and Gao B: Inflammation-associated interleukin-6/signal transducer and activator of transcription 3 activation ameliorates alcoholic and nonalcoholic fatty liver diseases in interleukin-10-deficient mice. Hepatol. 54:846–856. 2011. View Article : Google Scholar

82 

Kim E, Kim M, Woo DH, Shin Y, Shin J, Chang N, Oh YT, Kim H, Rheey J, Nakano I, et al: Phosphorylation of EZH2 activates STAT3 signaling via STAT3 methylation and promotes tumorigenicity of glioblastoma stem-like cells. Cancer Cell. 23:839–852. 2013. View Article : Google Scholar : PubMed/NCBI

83 

Cao R, Wang L, Wang H, Xia L, Erdjument-Bromage H, Tempst P, Jones RS and Zhang Y: Role of histone H3 lysine 27 methylation in Polycomb-group silencing. Science. 298:1039–1043. 2002. View Article : Google Scholar : PubMed/NCBI

84 

Kim KH and Roberts CW: Targeting EZH2 in cancer. Nat Med. 22:128–134. 2016. View Article : Google Scholar : PubMed/NCBI

85 

Kleer CG, Cao Q, Varambally S, Shen R, Ota I, Tomlins SA, Ghosh D, Sewalt RG, Otte AP, Hayes DF, et al: EZH2 is a marker of aggressive breast cancer and promotes neoplastic transformation of breast epithelial cells. Proc Natl Acad Sci USA. 100:11606–11611. 2003. View Article : Google Scholar : PubMed/NCBI

86 

Cebria F, Kobayashi C, Umesono Y, Nakazawa M, Mineta K, Ikeo K, Gojobori T, Itoh M, Taira M, Sánchez Alvarado A and Agata K: The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature. 419:620–624. 2002.PubMed/NCBI

87 

Cao W, Ribeiro Rde O, Liu D, Saintigny P, Xia R, Xue Y, Lin R, Mao L and Ren H: EZH2 promotes malignant behaviors via cell cycle dysregulation and its mRNA level associates with prognosis of patient with non-small cell lung cancer. PLoS One. 7:e529842012. View Article : Google Scholar : PubMed/NCBI

88 

Wu LJ, Zhang X, Wang J, Kong X, Zheng BY and Yu H: HeZ: ZMYND10 downregulates cyclins B1 and D1 to arrest cell cycle by trimethylating lysine 9 on histone 3. Life Res. 4:17–24. 2021. View Article : Google Scholar

89 

Zhang Y and Tong T: FOXA1 antagonizes EZH2-mediated CDKN2A repression in carcinogenesis. Biochem Biophys Res Commun. 453:172–178. 2014. View Article : Google Scholar : PubMed/NCBI

90 

Ganem D: KSHV infection and the pathogenesis of Kaposi's sarcoma. Annu Rev Pathol. 1:273–296. 2006. View Article : Google Scholar : PubMed/NCBI

91 

Farrell PJ, Rowe DT, Rooney CM and Kouzarides T: Epstein-Barr virus BZLF1 trans-activator specifically binds to a consensus AP-1 site and is related to c-fos. EMBO J. 8:127–132. 1989. View Article : Google Scholar : PubMed/NCBI

92 

Feederle R, Kost M, Baumann M, Janz A, Drouet E, Hammerschmidt W and Delecluse HJ: The Epstein-Barr virus lytic program is controlled by the co-operative functions of two transactivators. EMBO J. 19:3080–3089. 2000. View Article : Google Scholar : PubMed/NCBI

93 

Kenney SC and Mertz JE: Regulation of the latent-lytic switch in Epstein-Barr virus. Semin Cancer Biol. 26:60–68. 2014. View Article : Google Scholar : PubMed/NCBI

94 

Zhang Y, Ma R, Wang Y, Sun W, Yang Z, Han M, Han T, Wu XA and Liu R: Viruses run: the evasion mechanisms of the antiviral innate immunity by Hantavirus. Front Microbiol. 12:7591982021. View Article : Google Scholar : PubMed/NCBI

95 

Mesev EV, LeDesma RA and Ploss A: Decoding type I and III interferon signaling during viral infection. Nat. Microbiol. 4:914–924. 2019.

96 

Boneschi V, Brambilla L, Berti E, Ferrucci S, Corbellino M, Parravicini C and Fossati S: Human herpesvirus 8 DNA in the skin and blood of patients with Mediterranean Kaposi's sarcoma: Clinical correlations. Dermatology. 203:19–23. 2001. View Article : Google Scholar : PubMed/NCBI

97 

Campbell TB, Borok M, Gwanzura L, MaWhinney S, White IE, Ndemera B, Gudza I, Fitzpatrick L and Schooley RT: Relationship of human herpesvirus 8 peripheral blood virus load and Kaposi's sarcoma clinical stage. AIDS. 14:2109–2116. 2000. View Article : Google Scholar : PubMed/NCBI

98 

Murray PG and Young LS: The Role of the Epstein-Barr virus in human disease. Front Biosci. 7:d519–d540. 2002. View Article : Google Scholar : PubMed/NCBI

99 

Chen J, Ueda K, Sakakibara S, Okuno T, Parravicini C, Corbellino M and Yamanishi K: Activation of latent Kaposi's sarcoma-associated herpesvirus by demethylation of the promoter of the lytic transactivator. Proc Natl Acad Sci USA. 98:4119–4124. 2001. View Article : Google Scholar : PubMed/NCBI

100 

Fardet L, Blum L, Kerob D, Agbalika F, Galicier L, Dupuy A, Lafaurie M, Meignin V, Morel P and Lebbé C: Human herpesvirus 8-associated hemophagocytic lymphohistiocytosis in human immunodeficiency virus-infected patients. Clin Infect Dis. 37:285–291. 2003. View Article : Google Scholar : PubMed/NCBI

101 

Grandadam M, Dupin N, Calvez V, Gorin I, Blum L, Kernbaum S, Sicard D, Buisson Y, Agut H, Escande JP and Huraux JM: Exacerbations of clinical symptoms in human immunodeficiency virus type 1-infected patients with multicentric Castleman's disease are associated with a high increase in Kaposi's sarcoma herpesvirus DNA load in peripheral blood mononuclear cells. J Infect Dis. 175:1198–1201. 1997. View Article : Google Scholar : PubMed/NCBI

102 

Oksenhendler E, Carcelain G, Aoki Y, Boulanger E, Maillard A, Clauvel JP and Agbalika F: High levels of human herpesvirus 8 viral load, human interleukin-6, interleukin-10, and C reactive protein correlate with exacerbation of multicentric Castleman disease in HIV-infected patients. Blood. 96:2069–2073. 2000. View Article : Google Scholar : PubMed/NCBI

103 

Robles R, Lugo D, Gee L and Jacobson MA: Effect of antiviral drugs used to treat cytomegalovirus end-organ disease on subsequent course of previously diagnosed Kaposi's sarcoma in patients with AIDS. J Acquir Immune Defic Syndr Hum Retrovirol. 20:34–38. 1999. View Article : Google Scholar : PubMed/NCBI

104 

King CA, Li X, Barbachano-Guerrero A and Bhaduri-McIntosh S: STAT3 regulates lytic activation of Kaposi's sarcoma-associated herpesvirus. J Virol. 89:11347–11355. 2015. View Article : Google Scholar : PubMed/NCBI

105 

Mousavizadeh L and Ghasemi S: Genotype and phenotype of COVID-19: Their roles in pathogenesis. J Microbiol Immunol Infect. 54:159–163. 2021. View Article : Google Scholar : PubMed/NCBI

106 

Robson F, Khan KS, Le TK, Paris C, Demirbag S, Barfuss P, Rocchi P and Ng WL: Coronavirus RNA proofreading: molecular basis and therapeutic targeting. Mol Cell. 79:710–727. 2020. View Article : Google Scholar : PubMed/NCBI

107 

Chou JM, Tsai JL, Hung JN, Chen IH, Chen ST and Tsai MH: The ORF8 protein of SARS-CoV-2 modulates the spike protein and its implications in viral transmission. Front Microbiol. 13:8835972022. View Article : Google Scholar : PubMed/NCBI

108 

Kim D, Lee JY, Yang JS, Kim JW, Kim VN and Chang H: The architecture of SARS-CoV-2 transcriptome. Cell. 181:914–921. e102020. View Article : Google Scholar : PubMed/NCBI

109 

Liu DX, Fung TS, Chong KK, Shukla A and Hilgenfeld R: Accessory proteins of SARS-CoV and other coronaviruses. Antiviral Res. 109:97–109. 2014. View Article : Google Scholar : PubMed/NCBI

110 

Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, Schiergens TS, Herrler G, Wu NH, Nitsche A, et al: SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 181:271–280. e82020. View Article : Google Scholar : PubMed/NCBI

111 

Valcarcel A, Bensussen A, Álvarez-Buylla ER and Díaz J: Structural analysis of SARS-CoV-2 ORF8 protein: Pathogenic and therapeutic implications. Front Genet. 12:6932272021. View Article : Google Scholar : PubMed/NCBI

112 

Leifert JA, Holler PD, Harkins S, Kranz DM and Whitton JL: The cationic region from HIV tat enhances the cell-surface expression of epitope/MHC class I complexes. Gene Ther. 10:2067–2073. 2003. View Article : Google Scholar : PubMed/NCBI

113 

Haque M, Ueda K, Nakano K, Hirata Y, Parravicini C, Corbellino M and Yamanishi K: Major histocompatibility complex class I molecules are down-regulated at the cell surface by the K5 protein encoded by Kaposi's sarcoma-associated herpesvirus/human herpesvirus-8. J Gen Virol. 82:1175–1180. 2001. View Article : Google Scholar : PubMed/NCBI

114 

Selvaraj C, Dinesh DC, Pedone EM, Alothaim AS, Vijayakumar R, Rudhra O and Singh SK: SARS-CoV-2 ORF8 dimerization and binding mode analysis with class I MHC: computational approaches to identify COVID-19 inhibitors. Brief Funct Genomics. 22:227–240. 2023. View Article : Google Scholar : PubMed/NCBI

115 

Cai H, Chen Y, Feng Y, Asadi M, Kaufman L, Lee K, Kehrer T, Miorin L, Garcia-Sastre A, Gusella GL, et al: SARS-CoV-2 viral protein ORF3A injures renal tubules by interacting with TRIM59 to induce STAT3 activation. Mol Ther. 31:774–787. 2023. View Article : Google Scholar : PubMed/NCBI

116 

Ackermann M, Verleden SE, Kuehnel M, Haverich A, Welte T, Laenger F, Vanstapel A, Werlein C, Stark H, Tzankov A, et al: Pulmonary vascular endothelialitis, thrombosis, and angiogenesis in Covid-19. N Engl J Med. 383:120–128. 2020. View Article : Google Scholar : PubMed/NCBI

117 

Klok FA, Kruip MJHA, van der Meer NJM, Arbous MS, Gommers DAMPJ, Kant KM, Kaptein FHJ, van Paassen J, Stals MAM, Huisman MV and Endeman H: Incidence of thrombotic complications in critically ill ICU patients with COVID-19. Thromb Res. 191:145–147. 2020. View Article : Google Scholar : PubMed/NCBI

118 

Matsuyama T, Kubli SP, Yoshinaga SK, Pfeffer K and Mak TW: An aberrant STAT pathway is central to COVID-19. Cell Death Differ. 27:3209–3225. 2020. View Article : Google Scholar : PubMed/NCBI

119 

Martineau AR, Jolliffe DA, Hooper RL, Greenberg L, Aloia JF, Bergman P, Dubnov-Raz G, Esposito S, Ganmaa D, Ginde AA, et al: Vitamin D supplementation to prevent acute respiratory tract infections: Systematic review and meta-analysis of individual participant data. BMJ. 356:i65832017. View Article : Google Scholar : PubMed/NCBI

120 

Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS and Manson JJ; HLH Across Speciality Collaboration, : UK: COVID-19: Consider cytokine storm syndromes and immunosuppression. Lancet. 395:1033–1034. 2020. View Article : Google Scholar : PubMed/NCBI

121 

Jamilloux Y, Henry T, Belot A, Viel S, Fauter M, El Jammal T, Walzer T, Francois B and Seve P: Should we stimulate or suppress immune responses in COVID-19? Cytokine and anti-cytokine interventions. Autoimmun Rev. 19:1025672020. View Article : Google Scholar : PubMed/NCBI

122 

Richardson P, Griffin I, Tucker C, Smith D, Oechsle O, Phelan A, Rawling M, Savory E and Stebbing J: Baricitinib as potential treatment for 2019-nCoV acute respiratory disease. Lancet. 395:e30–e31. 2020. View Article : Google Scholar : PubMed/NCBI

123 

Vannucchi AM, Mortara A, D'Alessio A, Morelli M, Tedeschi A, Festuccia MB, Monforte AD, Capochiani E, Selleri C, Simonetti F, et al: JAK Inhibition with Ruxolitinib in Patients with COVID-19 and severe pneumonia: multicenter clinical experience from a compassionate use program in Italy. J Clin Med. 10:37522021. View Article : Google Scholar : PubMed/NCBI

124 

Dobosh B, Zandi K, Giraldo DM, Goh SL, Musall K, Aldeco M, LeCher J, Giacalone VD, Yang J, Eddins DJ, et al: Baricitinib attenuates the proinflammatory phase of COVID-19 driven by lung-infiltrating monocytes. Cell Rep. 39:1109452022. View Article : Google Scholar : PubMed/NCBI

125 

Ucciferri C, Auricchio A, Marinari S, Vecchiet J and Falasca K: COVID-19 in a patient with SISTEMIC sclerosis: The role of ruxolitinib. Eur J Inflammation. 19:1–4. 2021. View Article : Google Scholar

126 

Ucciferri C, Vecchiet J and Falasca K: Role of monoclonal antibody drugs in the treatment of COVID-19. World J Clin Cases. 8:4280–4285. 2020. View Article : Google Scholar : PubMed/NCBI

127 

Hashemi R, Morshedi M, Asghari Jafarabadi M, Altafi D, Saeed Hosseini-Asl S and Rafie-Arefhosseini S: Anti-inflammatory effects of dietary vitamin D. Neurol Genet. 4:e2782018. View Article : Google Scholar : PubMed/NCBI

128 

Hashemi R, Hosseini-Asl SS, Arefhosseini SR and Morshedi M: The impact of vitamin D3 intake on inflammatory markers in multiple sclerosis patients and their first-degree relatives. PLoS One. 15:e02311452020. View Article : Google Scholar : PubMed/NCBI

129 

Grant WB, Lahore H, McDonnell SL, Baggerly CA, French CB, Aliano JL and Bhattoa HP: Evidence that Vitamin D Supplementation Could Reduce Risk of Influenza and COVID-19 Infections and Deaths. Nutrients. 12:9882020. View Article : Google Scholar : PubMed/NCBI

130 

Hii CS and Ferrante A: The Non-Genomic Actions of Vitamin D. Nutrients. 8:1352016. View Article : Google Scholar : PubMed/NCBI

131 

Hafezi S, Saheb Sharif-Askari F, Saheb Sharif-Askari N, Ali Hussain Alsayed H, Alsafar H, Al Anouti F, Hamid Q and Halwani R: Vitamin D enhances type I IFN signaling in COVID-19 patients. Sci Rep. 12:177782022. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Li W, Zhuang Y, Shao S, Trivedi P, Zheng B, Huang G, He Z and Zhang X: Essential contribution of the JAK/STAT pathway to carcinogenesis, lytic infection of herpesviruses and pathogenesis of COVID‑19 (Review). Mol Med Rep 29: 39, 2024.
APA
Li, W., Zhuang, Y., Shao, S., Trivedi, P., Zheng, B., Huang, G. ... Zhang, X. (2024). Essential contribution of the JAK/STAT pathway to carcinogenesis, lytic infection of herpesviruses and pathogenesis of COVID‑19 (Review). Molecular Medicine Reports, 29, 39. https://doi.org/10.3892/mmr.2024.13163
MLA
Li, W., Zhuang, Y., Shao, S., Trivedi, P., Zheng, B., Huang, G., He, Z., Zhang, X."Essential contribution of the JAK/STAT pathway to carcinogenesis, lytic infection of herpesviruses and pathogenesis of COVID‑19 (Review)". Molecular Medicine Reports 29.3 (2024): 39.
Chicago
Li, W., Zhuang, Y., Shao, S., Trivedi, P., Zheng, B., Huang, G., He, Z., Zhang, X."Essential contribution of the JAK/STAT pathway to carcinogenesis, lytic infection of herpesviruses and pathogenesis of COVID‑19 (Review)". Molecular Medicine Reports 29, no. 3 (2024): 39. https://doi.org/10.3892/mmr.2024.13163
Copy and paste a formatted citation
x
Spandidos Publications style
Li W, Zhuang Y, Shao S, Trivedi P, Zheng B, Huang G, He Z and Zhang X: Essential contribution of the JAK/STAT pathway to carcinogenesis, lytic infection of herpesviruses and pathogenesis of COVID‑19 (Review). Mol Med Rep 29: 39, 2024.
APA
Li, W., Zhuang, Y., Shao, S., Trivedi, P., Zheng, B., Huang, G. ... Zhang, X. (2024). Essential contribution of the JAK/STAT pathway to carcinogenesis, lytic infection of herpesviruses and pathogenesis of COVID‑19 (Review). Molecular Medicine Reports, 29, 39. https://doi.org/10.3892/mmr.2024.13163
MLA
Li, W., Zhuang, Y., Shao, S., Trivedi, P., Zheng, B., Huang, G., He, Z., Zhang, X."Essential contribution of the JAK/STAT pathway to carcinogenesis, lytic infection of herpesviruses and pathogenesis of COVID‑19 (Review)". Molecular Medicine Reports 29.3 (2024): 39.
Chicago
Li, W., Zhuang, Y., Shao, S., Trivedi, P., Zheng, B., Huang, G., He, Z., Zhang, X."Essential contribution of the JAK/STAT pathway to carcinogenesis, lytic infection of herpesviruses and pathogenesis of COVID‑19 (Review)". Molecular Medicine Reports 29, no. 3 (2024): 39. https://doi.org/10.3892/mmr.2024.13163
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team