|
1
|
Parola M and Pinzani M: Liver fibrosis:
Pathophysiology, pathogenetic targets and clinical issues. Mol
Aspects Med. 65:37–55. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Mallat A and Lotersztajn S: Cellular
mechanisms of tissue fibrosis. 5. Novel insights into liver
fibrosis. Am J Physiol Cell Physiol. 305:C789–C799. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Gofton C, Upendran Y, Zheng MH and George
J: MAFLD: How is it different from NAFLD? Clin Mol Hepatol. 29
(Suppl):S17–S31. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Asrani SK, Devarbhavi H, Eaton J and
Kamath PS: Burden of liver diseases in the world. J Hepatol.
70:151–171. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
D'Amico G, Morabito A, D'Amico M, Pasta L,
Malizia G, Rebora P and Valsecchi MG: New concepts on the clinical
course and stratification of compensated and decompensated
cirrhosis. Hepatol Int. 12 (Suppl 1):S34–S43. 2018. View Article : Google Scholar
|
|
6
|
Dewidar B, Meyer C, Dooley S and
Meindl-Beinker AN: TGF-β in hepatic stellate cell activation and
liver fibrogenesis-updated 2019. Cells. 8:14192019. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Rockey DC and Friedman SL: Fibrosis
regression after eradication of hepatitis C virus: From bench to
bedside. Gastroenterology. 160:1502–1520.e1. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Friedman SL and Pinzani M: Hepatic
fibrosis 2022: Unmet needs and a blueprint for the future.
Hepatology. 75:473–488. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Xu M, Wang X, Zou Y and Zhong Y: Key role
of liver sinusoidal endothelial cells in liver fibrosis. Biosci
Trends. 11:163–168. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Brozat JF, Brandt EF, Stark M, Fischer P,
Wirtz TH, Flaßhove A, Rodenhausen AN, Vajen T, Heinzmann ACA,
Schmitz SM, et al: JAM-A is a multifaceted regulator in hepatic
fibrogenesis, supporting LSEC integrity and stellate cell
quiescence. Liver Int. 42:1185–1203. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Lafoz E, Ruart M, Anton A, Oncins A and
Hernández-Gea V: The endothelium as a driver of liver fibrosis and
regeneration. Cells. 9:9292020. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Poisson J, Lemoinne S, Boulanger C, Durand
F, Moreau R, Valla D and Rautou PE: Liver sinusoidal endothelial
cells: Physiology and role in liver diseases. J Hepatol.
66:212–227. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Xie G, Wang L, Wang X, Wang L and DeLeve
LD: Isolation of periportal, midlobular, and centrilobular rat
liver sinusoidal endothelial cells enables study of zonated drug
toxicity. Am J Physiol Gastrointest Liver Physiol. 299:G1204–G1210.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Mönkemöller V, Øie C, Hübner W, Huser T
and McCourt P: Multimodal super-resolution optical microscopy
visualizes the close connection between membrane and the
cytoskeleton in liver sinusoidal endothelial cell fenestrations.
Sci Rep. 5:162792015. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Wack KE, Ross MA, Zegarra V, Sysko LR,
Watkins SC and Stolz DB: Sinusoidal ultrastructure evaluated during
the revascularization of regenerating rat liver. Hepatology.
33:363–378. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Scoazec JY, Racine L, Couvelard A, Flejou
JF and Feldmann G: Endothelial cell heterogeneity in the normal
human liver acinus: In situ immunohistochemical demonstration.
Liver. 14:113–123. 1994. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Barberá-Guillem E, Rocha M, Alvarez A and
Vidal-Vanaclocha F: Differences in the lectin-binding patterns of
the periportal and perivenous endothelial domains in the liver
sinusoids. Hepatology. 14:131–139. 1991. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Di Martino J, Mascalchi P, Legros P,
Lacomme S, Gontier E, Bioulac-Sage P, Balabaud C, Moreau V and
Saltel F: Actin depolymerization in dedifferentiated liver
sinusoidal endothelial cells promotes fenestrae re-formation.
Hepatol Commun. 3:213–219. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Herrnberger L, Hennig R, Kremer W,
Hellerbrand C, Goepferich A, Kalbitzer HR and Tamm ER: Formation of
fenestrae in murine liver sinusoids depends on plasmalemma
vesicle-associated protein and is required for lipoprotein passage.
PLoS One. 9:e1150052014. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
DeLeve LD: Liver sinusoidal endothelial
cells in hepatic fibrosis. Hepatology. 61:1740–1746. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Malovic I, Sørensen KK, Elvevold KH,
Nedredal GI, Paulsen S, Erofeev AV, Smedsrød BH and McCourt PA: The
mannose receptor on murine liver sinusoidal endothelial cells is
the main denatured collagen clearance receptor. Hepatology.
45:1454–1461. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Verwilligen RAF, Mulder L, Rodenburg FJ,
Van Dijke A, Hoekstra M, Bussmann J and Van Eck M: Stabilin 1 and 2
are important regulators for cellular uptake of apolipoprotein
B-containing lipoproteins in zebrafish. Atherosclerosis. 346:18–25.
2022. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Sørensen KK, McCourt P, Berg T, Crossley
C, Le Couteur D, Wake K and Smedsrød B: The scavenger endothelial
cell: A new player in homeostasis and immunity. Am J Physiol Regul
Integr Comp Physiol. 303:R1217–R1230. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Su T, Yang Y, Lai S, Jeong J, Jung Y,
McConnell M, Utsumi T and Iwakiri Y: Single-cell transcriptomics
reveals zone-specific alterations of liver sinusoidal endothelial
cells in cirrhosis. Cell Mol Gastroenterol Hepatol. 11:1139–1161.
2021. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Deleve LD, Wang X and Guo Y: Sinusoidal
endothelial cells prevent rat stellate cell activation and promote
reversion to quiescence. Hepatology. 48:920–930. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Horn T, Christoffersen P and Henriksen JH:
Alcoholic liver injury: Defenestration in noncirrhotic livers-a
scanning electron microscopic study. Hepatology. 7:77–82. 1987.
View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Jin Y, Guo YH, Li JC, Li Q, Ye D, Zhang XX
and Li JT: Vascular endothelial growth factor protein and gene
delivery by novel nanomaterials for promoting liver regeneration
after partial hepatectomy. World J Gastroenterol. 29:3748–3757.
2023. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Xie G, Wang X, Wang L, Wang L, Atkinson
RD, Kanel GC, Gaarde WA and Deleve LD: Role of differentiation of
liver sinusoidal endothelial cells in progression and regression of
hepatic fibrosis in rats. Gastroenterology. 142:918–927.e6. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Carpenter B, Lin Y, Stoll S, Raffai RL,
McCuskey R and Wang R: VEGF is crucial for the hepatic vascular
development required for lipoprotein uptake. Development.
132:3293–3303. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Chen L, Gu T, Li B, Li F, Ma Z, Zhang Q,
Cai X and Lu L: Delta-like ligand 4/DLL4 regulates the
capillarization of liver sinusoidal endothelial cell and liver
fibrogenesis. Biochim Biophys Acta Mol Cell Res. 1866:1663–1675.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Duan JL, Ruan B, Yan XC, Liang L, Song P,
Yang ZY, Liu Y, Dou KF, Han H and Wang L: Endothelial Notch
activation reshapes the angiocrine of sinusoidal endothelia to
aggravate liver fibrosis and blunt regeneration in mice.
Hepatology. 68:677–690. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Francis H, Bohanan J and Alpini G:
Hedgehog signalling and LSEC capillarisation: Stopping this one in
its tracks. Gut. 61:1243–1244. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Yang L, Xu X, Chen Z, Zhang Y, Chen H and
Wang X: miR-511-3p promotes hepatic sinusoidal obstruction syndrome
by activating hedgehog pathway via targeting Ptch1. Am J Physiol
Gastrointest Liver Physiol. 321:G344–G354. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Chen T, Shi Z, Zhao Y, Meng X, Zhao S,
Zheng L, Han X, Hu Z, Yao Q, Lin H, et al: LncRNA Airn maintains
LSEC differentiation to alleviate liver fibrosis via the
KLF2-eNOS-sGC pathway. BMC Med. 20:3352022. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Winkler M, Staniczek T, Kürschner SW,
Schmid CD, Schönhaber H, Cordero J, Kessler L, Mathes A, Sticht C,
Neßling M, et al: Endothelial GATA4 controls liver fibrosis and
regeneration by preventing a pathogenic switch in angiocrine
signaling. J Hepatol. 74:380–393. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Marrone G, Maeso-Díaz R, García-Cardena G,
Abraldes JG, García-Pagán JC, Bosch J and Gracia-Sancho J: KLF2
exerts antifibrotic and vasoprotective effects in cirrhotic rat
livers: Behind the molecular mechanisms of statins. Gut.
64:1434–1443. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
de Haan W, Dheedene W, Apelt K,
Décombas-Deschamps S, Vinckier S, Verhulst S, Conidi A, Deffieux T,
Staring MW, Vandervoort P, et al: Endothelial Zeb2 preserves the
hepatic angioarchitecture and protects against liver fibrosis.
Cardiovasc Res. 118:1262–1275. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Maretti-Mira AC, Wang X, Wang L and DeLeve
LD: Incomplete differentiation of engrafted bone marrow endothelial
progenitor cells initiates hepatic fibrosis in the rat. Hepatology.
69:1259–1272. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Desroches-Castan A, Tillet E, Ricard N,
Ouarné M, Mallet C, Belmudes L, Couté Y, Boillot O, Scoazec JY,
Bailly S and Feige JJ: Bone morphogenetic protein 9 is a paracrine
factor controlling liver sinusoidal endothelial cell fenestration
and protecting against hepatic fibrosis. Hepatology. 70:1392–1408.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Gaitantzi H, Karch J, Germann L, Cai C,
Rausch V, Birgin E, Rahbari N, Seitz T, Hellerbrand C, König C, et
al: BMP-9 modulates the hepatic responses to LPS. Cells. 9:6172020.
View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Desroches-Castan A, Tillet E, Ricard N,
Ouarné M, Mallet C, Feige JJ and Bailly S: Differential
Consequences of Bmp9 deletion on sinusoidal endothelial cell
differentiation and liver fibrosis in 129/Ola and C57BL/6 Mice.
Cells. 8:10792019. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Kawai H, Osawa Y, Matsuda M, Tsunoda T,
Yanagida K, Hishikawa D, Okawara M, Sakamoto Y, Shimagaki T,
Tsutsui Y, et al: Sphingosine-1-phosphate promotes tumor
development and liver fibrosis in mouse model of congestive
hepatopathy. Hepatology. 76:112–125. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Kantari-Mimoun C, Krzywinska E, Castells
M, Milien C, Klose R, Meinecke AK, Lemberger U, Mathivet T,
Gojkovic M, Schrödter K, et al: Boosting the hypoxic response in
myeloid cells accelerates resolution of fibrosis and regeneration
of the liver in mice. Oncotarget. 8:15085–15100. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Kwok W, Lee SH, Culberson C, Korneszczuk K
and Clemens MG: Caveolin-1 mediates endotoxin inhibition of
endothelin-1-induced endothelial nitric oxide synthase activity in
liver sinusoidal endothelial cells. Am J Physiol Gastrointest Liver
Physiol. 297:G930–G939. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Li H: Intercellular crosstalk of liver
sinusoidal endothelial cells in liver fibrosis, cirrhosis and
hepatocellular carcinoma. Dig Liver Dis. 54:598–613. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Trautwein C, Friedman SL, Schuppan D and
Pinzani M: Hepatic fibrosis: Concept to treatment. J Hepatol. 62 (1
Suppl):S15–S24. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Venkatraman L and Tucker-Kellogg L: The
CD47-binding peptide of thrombospondin-1 induces defenestration of
liver sinusoidal endothelial cells. Liver Int. 33:1386–1397. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Liepelt A and Tacke F: Stromal
cell-derived factor-1 (SDF-1) as a target in liver diseases. Am J
Physiol Gastrointest Liver Physiol. 311:G203–G209. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Wu X, Shu L, Zhang Z, Li J, Zong J, Cheong
LY, Ye D, Lam KSL, Song E, Wang C, Xu A and Hoo RLC: Adipocyte
fatty acid binding protein promotes the onset and progression of
liver fibrosis via mediating the crosstalk between liver sinusoidal
endothelial cells and hepatic stellate cells. Adv Sci (Weinh).
8:e20037212021. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Wang R, Ding Q, Yaqoob U, de Assuncao TM,
Verma VK, Hirsova P, Cao S, Mukhopadhyay D, Huebert RC and Shah VH:
Exosome adherence and internalization by hepatic stellate cells
triggers Sphingosine 1-Phosphate-dependent Migration. J Biol Chem.
290:30684–30696. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Zapotoczny B, Szafranska K, Kus E, Braet
F, Wisse E, Chlopicki S and Szymonski M: Tracking fenestrae
dynamics in live murine liver sinusoidal endothelial cells.
Hepatology. 69:876–888. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Du W and Wang L: The crosstalk between
liver sinusoidal endothelial cells and hepatic microenvironment in
NASH related liver fibrosis. Front Immunol. 13:9361962022.
View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Lao Y, Li Y, Zhang P, Shao Q, Lin W, Qiu
B, Lv Y, Tang L, Su S, Zhang H, et al: Targeting Endothelial
Erk1/2-Akt axis as a regeneration strategy to bypass fibrosis
during chronic liver injury in mice. Mol Ther. 26:2779–2797. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Colucci S, Altamura S, Marques O, Dropmann
A, Horvat NK, Müdder K, Hammad S, Dooley S and Muckenthaler MU:
Liver sinusoidal endothelial cells suppress bone morphogenetic
protein 2 production in response to TGFβ pathway activation.
Hepatology. 74:2186–2200. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Ding BS, Cao Z, Lis R, Nolan DJ, Guo P,
Simons M, Penfold ME, Shido K, Rabbany SY and Rafii S: Divergent
angiocrine signals from vascular niche balance liver regeneration
and fibrosis. Nature. 505:97–102. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Yan Z, Qu K, Zhang J, Huang Q, Qu P, Xu X,
Yuan P, Huang X, Shao Y, Liu C, et al: CD147 promotes liver
fibrosis progression via VEGF-A/VEGFR2 signalling-mediated
cross-talk between hepatocytes and sinusoidal endothelial cells.
Clin Sci (Lond). 129:699–710. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Su T and Iwakiri Y: Endothelial Leukocyte
Cell-Derived Chemotaxin 2/Tyrosine Kinase with immunoglobulin-like
and epidermal growth factor-like domains 1 signaling in liver
fibrosis. Hepatology. 72:347–349. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Murray PJ, Allen JE, Biswas SK, Fisher EA,
Gilroy DW, Goerdt S, Gordon S, Hamilton JA, Ivashkiv LB, Lawrence
T, et al: Macrophage activation and polarization: Nomenclature and
experimental guidelines. Immunity. 41:14–20. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Arrese M, Cabrera D, Kalergis AM and
Feldstein AE: Innate Immunity and Inflammation in NAFLD/NASH. Dig
Dis Sci. 61:1294–1303. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Shetty S, Lalor PF and Adams DH: Liver
sinusoidal endothelial cells-gatekeepers of hepatic immunity. Nat
Rev Gastroenterol Hepatol. 15:555–567. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
You Q, Holt M, Yin H, Li G, Hu CJ and Ju
C: Role of hepatic resident and infiltrating macrophages in liver
repair after acute injury. Biochem Pharmacol. 86:836–843. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Miyao M, Kotani H, Ishida T, Kawai C,
Manabe S, Abiru H and Tamaki K: Pivotal role of liver sinusoidal
endothelial cells in NAFLD/NASH progression. Lab Invest.
95:1130–1144. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Ford AJ, Jain G and Rajagopalan P:
Designing a fibrotic microenvironment to investigate changes in
human liver sinusoidal endothelial cell function. Acta Biomater.
24:220–227. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Kamada Y, Sato M, Kida S, Akita M,
Mizutani K, Fujii H, Sobajima T, Yoshida Y, Shinzaki S, Takamatsu
S, et al: N-acetylglucosaminyltransferase V exacerbates
concanavalin A-induced hepatitis in mice. Mol Med Rep.
11:3573–3584. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Ni Y, Li JM, Liu MK, Zhang TT, Wang DP,
Zhou WH, Hu LZ and Lv WL: Pathological process of liver sinusoidal
endothelial cells in liver diseases. World J Gastroenterol.
23:7666–7677. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Connolly MK, Bedrosian AS, Malhotra A,
Henning JR, Ibrahim J, Vera V, Cieza-Rubio NE, Hassan BU, Pachter
HL, Cohen S, et al: In hepatic fibrosis, liver sinusoidal
endothelial cells acquire enhanced immunogenicity. J Immunol.
185:2200–2208. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Bonder CS, Norman MU, Swain MG, Zbytnuik
LD, Yamanouchi J, Santamaria P, Ajuebor M, Salmi M, Jalkanen S and
Kubes P: Rules of recruitment for Th1 and Th2 lymphocytes in
inflamed liver: A role for alpha-4 integrin and vascular adhesion
protein-1. Immunity. 23:153–163. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Barrow F, Khan S, Wang H and Revelo XS:
The Emerging Role of B Cells in the Pathogenesis of NAFLD.
Hepatology. 74:2277–2286. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Wehr A, Baeck C, Heymann F, Niemietz PM,
Hammerich L, Martin C, Zimmermann HW, Pack O, Gassler N, Hittatiya
K, et al: Chemokine receptor CXCR6-dependent hepatic NK T Cell
accumulation promotes inflammation and liver fibrosis. J Immunol.
190:5226–5236. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Neumann K, Rudolph C, Neumann C, Janke M,
Amsen D and Scheffold A: Liver sinusoidal endothelial cells induce
immunosuppressive IL-10-producing Th1 cells via the Notch pathway.
Eur J Immunol. 45:2008–2016. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Dauphinee SM and Karsan A:
Lipopolysaccharide signaling in endothelial cells. Lab Invest.
86:9–22. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Gola A, Dorrington MG, Speranza E, Sala C,
Shih RM, Radtke AJ, Wong HS, Baptista AP, Hernandez JM, Castellani
G, et al: Commensal-driven immune zonation of the liver promotes
host defence. Nature. 589:131–136. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Greuter T, Yaqoob U, Gan C, Jalan-Sakrikar
N, Kostallari E, Lu J, Gao J, Sun L, Liu M, Sehrawat TS, et al:
Mechanotransduction-induced glycolysis epigenetically regulates a
CXCL1-dominant angiocrine signaling program in liver sinusoidal
endothelial cells in vitro and in vivo. J Hepatol. 77:723–734.
2022. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Fujita K, Nozaki Y, Wada K, Yoneda M, Endo
H, Takahashi H, Iwasaki T, Inamori M, Abe Y, Kobayashi N, et al:
Effectiveness of antiplatelet drugs against experimental
non-alcoholic fatty liver disease. Gut. 57:1583–1591. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Malehmir M, Pfister D, Gallage S,
Szydlowska M, Inverso D, Kotsiliti E, Leone V, Peiseler M,
Surewaard BGJ, Rath D, et al: Platelet GPIbα is a mediator and
potential interventional target for NASH and subsequent liver
cancer. Nat Med. 25:641–655. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Lalor PF, Herbert J, Bicknell R and Adams
DH: Hepatic sinusoidal endothelium avidly binds platelets in an
integrin-dependent manner, leading to platelet and endothelial
activation and leukocyte recruitment. Am J Physiol Gastrointest
Liver Physiol. 304:G469–G478. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Joshi N, Kopec AK, Ray JL, Cline-Fedewa H,
Groeneveld DJ, Lisman T and Luyendyk JP: Von Willebrand factor
deficiency reduces liver fibrosis in mice. Toxicol Appl Pharmacol.
328:540592017. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Weyrich AS: Platelets: More than a sack of
glue. Hematology Am Soc Hematol Educ Program. 2014:400–403. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Chauhan A, Adams DH, Watson SP and Lalor
PF: Platelets: No longer bystanders in liver disease. Hepatology.
64:1774–1784. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Ripoche J: Blood platelets and
inflammation: Their relationship with liver and digestive diseases.
Clin Res Hepatol Gastroenterol. 35:353–357. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Lisman T and Luyendyk JP: Platelets as
modulators of liver diseases. Semin Thromb Hemost. 44:114–125.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Brougham-Cook A, Kimmel HRC, Monckton CP,
Owen D, Khetani SR and Underhill GH: Engineered matrix
microenvironments reveal the heterogeneity of liver sinusoidal
endothelial cell phenotypic responses. APL Bioeng. 6:0461022022.
View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Olsen AL, Sackey BK, Marcinkiewicz C,
Boettiger D and Wells RG: Fibronectin extra domain-A promotes
hepatic stellate cell motility but not differentiation into
myofibroblasts. Gastroenterology. 142:928–937.e3. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Liu L, You Z, Yu H, Zhou L, Zhao H, Yan X,
Li D, Wang B, Zhu L, Xu Y, et al: Mechanotransduction-modulated
fibrotic microniches reveal the contribution of angiogenesis in
liver fibrosis. Nat Mater. 16:1252–1261. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Ruan B, Duan JL, Xu H, Tao KS, Han H, Dou
GR and Wang L: Capillarized Liver sinusoidal endothelial cells
undergo partial endothelial-mesenchymal transition to actively
deposit sinusoidal ECM in liver fibrosis. Front Cell Dev Biol.
9:6710812021. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Iwakiri Y and Trebicka J: Portal
hypertension in cirrhosis: Pathophysiological mechanisms and
therapy. JHEP Rep. 3:1003162021. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Trebicka J, Reiberger T and Laleman W:
Gut-Liver Axis Links Portal Hypertension to Acute-on-Chronic Liver
Failure. Visc Med. 34:270–275. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Bravo M, Raurell I, Hide D,
Fernández-Iglesias A, Gil M, Barberá A, Salcedo MT, Augustin S,
Genescà J and Martell M: Restoration of liver sinusoidal cell
phenotypes by statins improves portal hypertension and histology in
rats with NASH. Sci Rep. 9:201832019. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Iwakiri Y: Endothelial dysfunction in the
regulation of portal hypertension. Liver Int. 32:199–213. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Rockey DC and Chung JJ: Reduced nitric
oxide production by endothelial cells in cirrhotic rat liver:
Endothelial dysfunction in portal hypertension. Gastroenterology.
114:344–351. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Gracia-Sancho J, Marrone G and
Fernández-Iglesias A: Hepatic microcirculation and mechanisms of
portal hypertension. Nat Rev Gastroenterol Hepatol. 16:221–234.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Hammoutene A, Biquard L, Lasselin J,
Kheloufi M, Tanguy M, Vion AC, Mérian J, Colnot N, Loyer X, Tedgui
A, et al: A defect in endothelial autophagy occurs in patients with
non-alcoholic steatohepatitis and promotes inflammation and
fibrosis. J Hepatol. 72:528–538. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Maeso-Díaz R, Ortega-Ribera M, Lafoz E,
Lozano JJ, Baiges A, Francés R, Albillos A, Peralta C, García-Pagán
JC, Bosch J, et al: Aging influences hepatic microvascular biology
and liver fibrosis in advanced chronic liver disease. Aging Dis.
10:684–698. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Bosch J, Groszmann RJ and Shah VH:
Evolution in the understanding of the pathophysiological basis of
portal hypertension: How changes in paradigm are leading to
successful new treatments. J Hepatol. 62 (1 Suppl):S121–S130. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Medina J, Arroyo AG, Sánchez-Madrid F and
Moreno-Otero R: Angiogenesis in chronic inflammatory liver disease.
Hepatology. 39:1185–1195. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Hilscher MB, Sehrawat T, Arab JP, Zeng Z,
Gao J, Liu M, Kostallari E, Gao Y, Simonetto DA, Yaqoob U, et al:
Mechanical stretch increases expression of CXCL1 in liver
sinusoidal endothelial cells to recruit neutrophils, generate
sinusoidal microthombi, and promote portal hypertension.
Gastroenterology. 157:193–209.e9. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Yu Z, Guo J, Liu Y, Wang M, Liu Z, Gao Y
and Huang L: Nano delivery of simvastatin targets liver sinusoidal
endothelial cells to remodel tumor microenvironment for
hepatocellular carcinoma. J Nanobiotechnology. 20:92022. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Boyer-Diaz Z, Aristu-Zabalza P,
Andrés-Rozas M, Robert C, Ortega-Ribera M, Fernández-Iglesias A,
Broqua P, Junien JL, Wettstein G, Bosch J and Gracia-Sancho J:
Pan-PPAR agonist lanifibranor improves portal hypertension and
hepatic fibrosis in experimental advanced chronic liver disease. J
Hepatol. 74:1188–1199. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Hide D, Gil M, Andrade F, Rafael D,
Raurell I, Bravo M, Barberá A, Gracia-Sancho J, Vargas V, Augustin
S, et al: Simvastatin-loaded polymeric micelles are more effective
and less toxic than conventional statins in a pre-clinical model of
advanced chronic liver disease. Nanomedicine. 29:1022672020.
View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Zhang LF, Wang XH, Zhang CL, Lee J, Duan
BW, Xing L, Li L, Oh YK and Jiang HL: Sequential nano-penetrators
of capillarized liver sinusoids and extracellular matrix barriers
for liver fibrosis therapy. ACS Nano. 16:14029–14042. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Gu T, Shen B, Li B, Guo Y, Li F, Ma Z,
Chen L, Zhang Q, Qu Y, Dong H, et al: miR-30c inhibits angiogenesis
by targeting delta-like ligand 4 in liver sinusoidal endothelial
cell to attenuate liver fibrosis. FASEB J. 35:e215712021.
View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Mookerjee RP, Mehta G, Balasubramaniyan V,
Mohamed Fel Z, Davies N, Sharma V, Iwakiri Y and Jalan R: Hepatic
dimethylarginine-dimethylaminohydrolase1 is reduced in cirrhosis
and is a target for therapy in portal hypertension. J Hepatol.
62:325–331. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Kumar K, Dong Y, Kumar V, Almawash S and
Mahato RI: The use of micelles to deliver potential hedgehog
pathway inhibitor for the treatment of liver fibrosis.
Theranostics. 9:7537–7555. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Zhao S, Zhang Z, Qian L, Lin Q, Zhang C,
Shao J, Zhang F and Zheng S: Tetramethylpyrazine attenuates carbon
tetrachloride-caused liver injury and fibrogenesis and reduces
hepatic angiogenesis in rats. Biomed Pharmacother. 86:521–530.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Gao L, Yang X, Li Y, Wang Z, Wang S, Tan
S, Chen A, Cao P, Shao J, Zhang Z, et al: Curcumol inhibits
KLF5-dependent angiogenesis by blocking the ROS/ERK signaling in
liver sinusoidal endothelial cells. Life Sci. 264:1186962021.
View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Yang X, Wang Z, Kai J, Wang F, Jia Y, Wang
S, Tan S, Shen X, Chen A, Shao J, et al: Curcumol attenuates liver
sinusoidal endothelial cell angiogenesis via regulating
Glis-PROX1-HIF-1α in liver fibrosis. Cell Prolif. 53:e127622020.
View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Bae CR, Zhang H and Kwon YG: The
endothelial dysfunction blocker CU06-1004 ameliorates
choline-deficient L-amino acid diet-induced non-alcoholic
steatohepatitis in mice. PLoS One. 15:e02434972020. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Turaga RC, Satyanarayana G, Sharma M, Yang
JJ, Wang S, Liu C, Li S, Yang H, Grossniklaus H, Farris AB, et al:
Targeting integrin αvβ3 by a rationally designed protein for
chronic liver disease treatment. Commun Biol. 4:10872021.
View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Ye Q, Zhou Y, Zhao C, Xu L and Ping J:
Salidroside Inhibits CCl4-Induced Liver fibrosis in mice by
reducing activation and migration of HSC induced by liver
sinusoidal endothelial cell-derived exosomal SphK1. Front
Pharmacol. 12:6778102021. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Guo Q, Furuta K, Islam S, Caporarello N,
Kostallari E, Dielis K, Tschumperlin DJ, Hirsova P and Ibrahim SH:
Liver sinusoidal endothelial cell expressed vascular cell adhesion
molecule 1 promotes liver fibrosis. Front Immunol. 13:9832552022.
View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Ruart M, Chavarria L, Campreciós G,
Suárez-Herrera N, Montironi C, Guixé-Muntet S, Bosch J, Friedman
SL, Garcia-Pagán JC and Hernández-Gea V: Impaired endothelial
autophagy promotes liver fibrosis by aggravating the oxidative
stress response during acute liver injury. J Hepatol. 70:458–469.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Lin Y, Dong MQ, Liu ZM, Xu M, Huang ZH,
Liu HJ, Gao Y and Zhou WJ: A strategy of vascular-targeted therapy
for liver fibrosis. Hepatology. 76:660–675. 2022. View Article : Google Scholar : PubMed/NCBI
|