|
1
|
Smolarz B, Szyłło K and Romanowicz H:
Endometriosis: Epidemiology, classification, pathogenesis,
treatment and genetics (Review of Literature). Int J Mol Sci.
22:105542021. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Samimi M, Pourhanifeh MH, Mehdizadehkashi
A, Eftekhar T and Asemi Z: The role of inflammation, oxidative
stress, angiogenesis, and apoptosis in the pathophysiology of
endometriosis: Basic science and new insights based on gene
expression. J Cell Physiol. 234:19384–19392. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Zondervan KT, Becker CM and Missmer SA:
Endometriosis. N Engl J Med. 382:1244–1256. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Brasil DL, Montagna E, Trevisan CM, La
Rosa VL, Laganà AS, Barbosa CP, Bianco B and Zaia V: Psychological
stress levels in women with endometriosis: Systematic review and
meta-analysis of observational studies. Minerva Med. 111:90–102.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Sullivan-Myers C, Sherman KA, Beath AP,
Duckworth TJ and Cooper MJW: Delineating sociodemographic, medical
and quality of life factors associated with psychological distress
in individuals with endometriosis. Hum Reprod. 36:2170–2180. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Wang Y, Nicholes K and Shih IM: The origin
and pathogenesis of endometriosis. Annu Rev Pathol. 15:71–95. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Laganà AS, Vitale SG, Salmeri FM, Triolo
O, Ban Frangež H, Vrtačnik-Bokal E, Stojanovska L, Apostolopoulos
V, Granese R and Sofo V: Unus pro omnibus, omnes pro uno: A novel,
evidence-based, unifying theory for the pathogenesis of
endometriosis. Med Hypotheses. 103:10–20. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Dudley AC and Griffioen AW: Pathological
angiogenesis: Mechanisms and therapeutic strategies. Angiogenesis.
26:313–347. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Ben Dhaou C, Mandi K, Frye M, Acheampong
A, Radi A, De Becker B, Antoine M, Baeyens N, Wittamer V and
Parmentier M: Chemerin regulates normal angiogenesis and
hypoxia-driven neovascularization. Angiogenesis. 25:159–179. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Li H, Cai E, Cheng H, Ye X, Ma R, Zhu H
and Chang X: FGA Controls VEGFA secretion to promote angiogenesis
by activating the VEGFR2-FAK signalling pathway. Front Endocrinol
(Lausanne). 13:7918602022. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Tan Y, Flynn WF, Sivajothi S, Luo D, Bozal
SB, Davé M, Luciano AA, Robson P, Luciano DE and Courtois ET:
Single-cell analysis of endometriosis reveals a coordinated
transcriptional programme driving immunotolerance and angiogenesis
across eutopic and ectopic tissues. Nat Cell Biol. 24:1306–1318.
2022. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Hon JX, Wahab NA, Karim AKA, Mokhtar NM
and Mokhtar MH: MicroRNAs in Endometriosis: Insights into
inflammation and progesterone resistance. Int J Mol Sci.
24:150012023. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Potente M, Gerhardt H and Carmeliet P:
Basic and therapeutic aspects of angiogenesis. Cell. 146:873–887.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Cha J, Sun X and Dey SK: Mechanisms of
implantation: Strategies for successful pregnancy. Nat Med.
18:1754–1767. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Tarokh M, Ghaffari Novin M, Poordast T,
Tavana Z, Nazarian H, Norouzian M and Gharesi-Fard B: Serum and
peritoneal fluid cytokine profiles in infertile women with
endometriosis. Iran J Immunol. 16:151–162. 2019.PubMed/NCBI
|
|
16
|
Laschke MW and Menger MD: Basic mechanisms
of vascularization in endometriosis and their clinical
implications. Hum Reprod Update. 24:207–224. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Symons LK, Miller JE, Kay VR, Marks RM,
Liblik K, Koti M and Tayade C: The immunopathophysiology of
endometriosis. Trends Mol Med. 24:748–762. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Chen S, Liu Y, Zhong Z, Wei C, Liu Y and
Zhu X: Peritoneal immune microenvironment of endometriosis: Role
and therapeutic perspectives. Front Immunol. 14:11346632023.
View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Guo F, He Y, Fan Y, Du Z, Sun H, Feng Z,
Zhang G and Xiong T: G-CSF and IL-6 may be involved in formation of
endometriosis lesions by increasing the expression of angiogenic
factors in neutrophils. Mol Hum Reprod. 27:gaab0642021. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Sikora J, Mielczarek-Palacz A and
Kondera-Anasz Z: Association of the precursor of interleukin-1β and
peritoneal inflammation-role in pathogenesis of endometriosis. J
Clin Lab Anal. 30:831–837. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Li C, Zhao HL, Li YJ, Zhang YY, Liu HY,
Feng FZ and Yan H: The expression and significance of leukemia
inhibitory factor, interleukin-6 and vascular endothelial growth
factor in Chinese patients with endometriosis. Arch Gynecol Obstet.
304:163–170. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Barcz E, Rózewska ES, Kaminski P, Demkow
U, Bobrowska K and Marianowski L: Angiogenic activity and IL-8
concentrations in peritoneal fluid and sera in endometriosis. Int J
Gynaecol Obstet. 79:229–235. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Sikora J, Smycz-Kubańska M,
Mielczarek-Palacz A, Bednarek I and Kondera-Anasz Z: The
involvement of multifunctional TGF-β and related cytokines in
pathogenesis of endometriosis. Immunol Lett. 201:31–37. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Zhang F, Liu XL, Wang W, Dong HL, Xia YF,
Ruan LP and Liu LP: Expression of MMIF, HIF-1α and VEGF in serum
and endometrial tissues of patients with endometriosis. Curr Med
Sci. 38:499–504. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Khodarahmian M, Amidi F, Moini A, Kashani
L, Salahi E, Danaii-Mehrabad S, Nashtaei MS, Mojtahedi MF,
Esfandyari S and Sobhani A: A randomized exploratory trial to
assess the effects of resveratrol on VEGF and TNF-α 2 expression in
endometriosis women. J Reprod Immunol. 143:1032482021. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Nanda A K T, Banerjee P, Dutta M, Wangdi
T, Sharma P, Chaudhury K and Jana SK: Cytokines, angiogenesis, and
extracellular matrix degradation are augmented by oxidative stress
in endometriosis. Ann Lab Med. 40:390–397. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Singh AK, Dutta M, Chattopadhyay R,
Chakravarty B and Chaudhury K: Intrafollicular interleukin-8,
interleukin-12, and adrenomedullin are the promising prognostic
markers of oocyte and embryo quality in women with endometriosis. J
Assist Reprod Genet. 33:1363–1372. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Monsanto SP, Edwards AK, Zhou J,
Nagarkatti P, Nagarkatti M, Young SL, Lessey BA and Tayade C:
Surgical removal of endometriotic lesions alters local and systemic
proinflammatory cytokines in endometriosis patients. Fertil Steril.
105:968–977. e52016. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Vazgiourakis VM, Zervou MI, Papageorgiou
L, Chaniotis D, Spandidos DA, Vlachakis D, Eliopoulos E and
Goulielmos GN: Association of endometriosis with cardiovascular
disease: Genetic aspects (Review). Int J Mol Med. 51:292023.
View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Ahn SH, Edwards AK, Singh SS, Young SL,
Lessey BA and Tayade C: IL-17A contributes to the pathogenesis of
endometriosis by triggering proinflammatory cytokines and
angiogenic growth factors. J Immunol. 195:2591–2600. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Lin YJ, Lai MD, Lei HY and Wing LY:
Neutrophils and macrophages promote angiogenesis in the early stage
of endometriosis in a mouse model. Endocrinology. 147:1278–1286.
2006. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Yan WK, Liu YN, Song SS, Kang JW, Zhang Y,
Lu L, Wei SW, Xu QX, Zhang WQ, Liu XZ, et al: Zearalenone affects
the growth of endometriosis via estrogen signaling and inflammatory
pathways. Ecotoxicol Environ Saf. 241:1138262022. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Gou Y, Li X, Li P, Zhang H, Xu T, Wang H,
Wang B, Ma X, Jiang X and Zhang Z: Estrogen receptor β upregulates
CCL2 via NF-κB signaling in endometriotic stromal cells and
recruits macrophages to promote the pathogenesis of endometriosis.
Hum Reprod. 34:646–658. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Laganà AS, Salmeri FM, Ban Frangež H,
Ghezzi F, Vrtačnik-Bokal E and Granese R: Evaluation of M1 and M2
macrophages in ovarian endometriomas from women affected by
endometriosis at different stages of the disease. Gynecol
Endocrinol. 36:441–444. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Li Q, Yuan M, Jiao X, Huang Y, Li J, Li D,
Ji M and Wang G: M1 macrophage-derived nanovesicles repolarize M2
macrophages for inhibiting the development of endometriosis. Front
Immunol. 12:7077842021. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Vallvé-Juanico J, Houshdaran S and Giudice
LC: The endometrial immune environment of women with endometriosis.
Hum Reprod Update. 25:564–591. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Gao X, Gao H, Shao W, Wang J, Li M and Liu
S: The extracellular vesicle-macrophage regulatory axis: A novel
pathogenesis for endometriosis. Biomolecules. 13:13762023.
View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Suen JL, Chang Y, Shiu YS, Hsu CY, Sharma
P, Chiu CC, Chen YJ, Hour TC and Tsai EM: IL-10 from plasmacytoid
dendritic cells promotes angiogenesis in the early stage of
endometriosis. J Pathol. 249:485–497. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Fainaru O, Adini A, Benny O, Adini I,
Short S, Bazinet L, Nakai K, Pravda E, Hornstein MD, D'Amato RJ and
Folkman J: Dendritic cells support angiogenesis and promote lesion
growth in a murine model of endometriosis. FASEB J. 22:522–529.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Talaat RM, Mohamed SF, Bassyouni IH and
Raouf AA: Th1/Th2/Th17/Treg cytokine imbalance in systemic lupus
erythematosus (SLE) patients: Correlation with disease activity.
Cytokine. 72:146–153. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Kang YJ, Cho HJ, Lee Y, Park A, Kim MJ,
Jeung IC, Jung YW, Jung H, Choi I, Lee HG and Yoon SR: IL-17A and
Th17 cells contribute to endometrial cell survival by inhibiting
apoptosis and NK cell mediated cytotoxicity of endometrial cells
via ERK1/2 pathway. Immune Netw. 23:e142023. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Miller JE, Ahn SH, Marks RM, Monsanto SP,
Fazleabas AT, Koti M and Tayade C: IL-17A modulates peritoneal
macrophage recruitment and M2 polarization in endometriosis. Front
Immunol. 11:1082020. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Apte RS, Chen DS and Ferrara N: VEGF in
signaling and disease: Beyond discovery and development. Cell.
176:1248–1264. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Wu MH, Hsiao KY and Tsai SJ: Hypoxia: The
force of endometriosis. J Obstet Gynaecol Res. 45:532–541. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Liu H, Zhang Z, Xiong W, Zhang L, Xiong Y,
Li N, He H, Du Y and Liu Y: Hypoxia-inducible factor-1α promotes
endometrial stromal cells migration and invasion by upregulating
autophagy in endometriosis. Reproduction. 153:809–820. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Fu JL, Hsiao KY, Lee HC, Li WN, Chang N,
Wu MH and Tsai SJ: Suppression of COUP-TFII upregulates angiogenin
and promotes angiogenesis in endometriosis. Hum Reprod.
33:1517–1527. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Zhou Y, Jin Y, Wang Y and Wu R: Hypoxia
activates the unfolded protein response signaling network: An
adaptive mechanism for endometriosis. Front Endocrinol (Lausanne).
13:9455782022. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Cheng J, Yang HL, Gu CJ, Liu YK, Shao J,
Zhu R, He YY, Zhu XY and Li MQ: Melatonin restricts the viability
and angiogenesis of vascular endothelial cells by suppressing
HIF-1α/ROS/VEGF. Int J Mol Med. 43:945–955. 2019.PubMed/NCBI
|
|
49
|
Ferrara N and Adamis AP: Ten years of
anti-vascular endothelial growth factor therapy. Nat Rev Drug
Discov. 15:385–403. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Li WN, Hsiao KY, Wang CA, Chang N, Hsu PL,
Sun CH, Wu SR, Wu MH and Tsai SJ: Extracellular vesicle-associated
VEGF-C promotes lymphangiogenesis and immune cells infiltration in
endometriosis. Proc Natl Acad Sci USA. 117:25859–25868. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Ureyen Ozdemir E, Adali E, Islimye Taskin
M, Yavasoglu A, Aktug H, Oltulu F and Inceboz U: Effects of
ranibizumab and zoledronic acid on endometriosis in a rat model.
Arch Gynecol Obstet. 305:267–274. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Zani ACT, Valerio FP, Meola J, da Silva
AR, Nogueira AA, Candido-Dos-Reis FJ, Poli-Neto OB and Rosa-E-Silva
JC: Impact of bevacizumab on experimentally induced endometriotic
lesions: Angiogenesis, invasion, apoptosis, and cell proliferation.
Reprod Sci. 27:1943–1950. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Liu Y, Wang J and Zhang X: An update on
the multifaceted role of NF-kappaB in endometriosis. Int J Biol
Sci. 18:4400–4413. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Shamloo N, Taghavi N, Yazdani F, Azimian P
and Ahmadi S: Evaluation of VEGF expression correlates with COX-2
expression in pleomorphic adenoma, mucoepidermoid carcinoma and
adenoid cystic carcinoma. Dent Res J (Isfahan). 17:100–106. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Siracusa R, D'Amico R, Cordaro M, Peritore
AF, Genovese T, Gugliandolo E, Crupi R, Impellizzeri D, Cuzzocrea
S, Fusco R and Di Paola R: The Methyl Ester of
2-Cyano-3,12-Dioxooleana-1,9-Dien-28-Oic acid reduces endometrial
lesions development by modulating the NFkB and Nrf2 pathways. Int J
Mol Sci. 22:39912021. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Santulli P, Marcellin L, Tosti C,
Chouzenoux S, Cerles O, Borghese B, Batteux F and Chapron C: MAP
kinases and the inflammatory signaling cascade as targets for the
treatment of endometriosis? Expert Opin Ther Targets. 19:1465–1483.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Lai ZZ, Yang HL, Ha SY, Chang KK, Mei J,
Zhou WJ, Qiu XM, Wang XQ, Zhu R, Li DJ and Li MQ: Cyclooxygenase-2
in Endometriosis. Int J Biol Sci. 15:2783–2797. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Hashemi Goradel N, Najafi M, Salehi E,
Farhood B and Mortezaee K: Cyclooxygenase-2 in cancer: A review. J
Cell Physiol. 234:5683–5699. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Ke J, Ye J, Li M and Zhu Z: The role of
matrix metalloproteinases in endometriosis: A potential target.
Biomolecules. 11:17392021. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Jana S, Chatterjee K, Ray AK, DasMahapatra
P and Swarnakar S: Regulation of matrix metalloproteinase-2
activity by COX-2-PGE2-pAKT axis promotes angiogenesis in
endometriosis. PLoS One. 11:e01635402016. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Horne AW, Daniels J, Hummelshoj L, Cox E
and Cooper KG: Surgical removal of superficial peritoneal
endometriosis for managing women with chronic pelvic pain: time for
a rethink? BJOG. 126:1414–1416. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Kiesel L and Sourouni M: Diagnosis of
endometriosis in the 21st century. Climacteric. 22:296–302. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Kotowska M, Urbaniak J, Falęcki WJ,
Łazarewicz P, Masiak M and Szymusik I: Awareness of endometriosis
symptoms-A cross sectional survey among polish women. Int J Environ
Res Public Health. 18:99192021. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Ghai V, Jan H, Shakir F, Haines P and Kent
A: Diagnostic delay for superficial and deep endometriosis in the
United Kingdom. J Obstet Gynaecol. 40:83–89. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Rokhgireh S, Mehdizadeh Kashi A, Chaichian
S, Delbandi AA, Allahqoli L, Ahmadi-Pishkuhi M, Khodaverdi S and
Alkatout I: The diagnostic accuracy of combined Enolase/Cr, CA125,
and CA19-9 in the detection of endometriosis. Biomed Res Int.
2020:52082792020. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Harada T, Kubota T and Aso T: Usefulness
of CA19-9 versus CA125 for the diagnosis of endometriosis. Fertil
Steril. 78:733–739. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Zhang X, Nie D, Zhang L and Liu X: Study
on diagnostic values and pathological conditions of serum HGF and
CA199 in endometriosis. Am J Transl Res. 13:2849–2857.
2021.PubMed/NCBI
|
|
68
|
Anastasiu CV, Moga MA, Elena Neculau A,
Bălan A, Scârneciu I, Dragomir RM, Dull AM and Chicea LM:
Biomarkers for the noninvasive diagnosis of endometriosis: State of
the art and future perspectives. Int J Mol Sci. 21:17502020.
View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Moein Mahini S, Younesi M, Mortazavi G,
Samare-Najaf M, Karim Azadbakht M and Jamali N: Non-invasive
diagnosis of endometriosis: Immunologic and genetic markers. Clin
Chim Acta. 538:70–86. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Kim KH, Park JK, Choi YW, Kim YH, Lee EN,
Lee JR, Kim HS, Baek SY, Kim BS, Lee KS and Yoon S: Hexane extract
of aged black garlic reduces cell proliferation and attenuates the
expression of ICAM-1 and VCAM-1 in TNF-α-activated human
endometrial stromal cells. Int J Mol Med. 32:67–78. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Fukaya T, Sugawara J, Yoshida H, Murakami
T and Yajima A: Intercellular adhesion molecule-1 and hepatocyte
growth factor in human endometriosis: Original investigation and a
review of literature. Gynecol Obstet Invest. 47 (Suppl 1):S11–S16;
discussion 16–17. 1999. View Article : Google Scholar
|
|
72
|
Kuessel L, Wenzl R, Proestling K,
Balendran S, Pateisky P, Yotova I, Yerlikaya G, Streubel B and
Husslein H: Soluble VCAM-1/soluble ICAM-1 ratio is a promising
biomarker for diagnosing endometriosis. Hum Reprod. 32:770–779.
2017.PubMed/NCBI
|
|
73
|
O'Brien J, Hayder H, Zayed Y and Peng C:
Overview of MicroRNA biogenesis, mechanisms of actions, and
circulation. Front Endocrinol (Lausanne). 9:4022018. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Cosar E, Mamillapalli R, Ersoy GS, Cho S,
Seifer B and Taylor HS: Serum microRNAs as diagnostic markers of
endometriosis: A comprehensive array-based analysis. Fertil Steril.
106:402–409. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Yang RQ, Teng H, Xu XH, Liu SY, Wang YH,
Guo FJ and Liu XJ: Microarray analysis of microRNA deregulation and
angiogenesis-related proteins in endometriosis. Genet Mol Res.
15:2016.
|
|
76
|
Zubrzycka A, Migdalska-Sęk M, Jędrzejczyk
S and Brzeziańska-Lasota E: Circulating miRNAs related to
epithelial-mesenchymal transitions (EMT) as the new molecular
markers in endometriosis. Curr Issues Mol Biol. 43:900–916. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Quintero-Fabián S, Arreola R,
Becerril-Villanueva E, Torres-Romero JC, Arana-Argáez V,
Lara-Riegos J, Ramírez-Camacho MA and Alvarez-Sánchez ME: Role of
matrix metalloproteinases in angiogenesis and cancer. Front Oncol.
9:13702019. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Hossein Razi M, Eftekhar M, Ghasemi N,
Hasan Sheikhha M and Dehghani Firoozabadi A: Expression levels of
circulatory mir-185-5p, vascular endothelial growth factor, and
platelet-derived growth factor target genes in endometriosis. Int J
Reprod Biomed. 18:347–358. 2020.PubMed/NCBI
|
|
79
|
Moustafa S, Burn M, Mamillapalli R,
Nematian S, Flores V and Taylor HS: Accurate diagnosis of
endometriosis using serum microRNAs. Am J Obstet Gynecol.
223:557.e1–557.e11. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Cho S, Mutlu L, Grechukhina O and Taylor
HS: Circulating microRNAs as potential biomarkers for
endometriosis. Fertil Steril. 103:1252–1260.e1. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Sheikhvatan M, Chaichian S and Moazzami B:
A systematic review and bioinformatics study on genes and
micro-RNAs involving the transformation of endometriosis into
ovarian cancer. Microrna. 9:101–111. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Nematian SE, Mamillapalli R, Kadakia TS,
Majidi Zolbin M, Moustafa S and Taylor HS: Systemic inflammation
induced by microRNAs: Endometriosis-Derived alterations in
circulating microRNA 125b-5p and Let-7b-5p regulate macrophage
cytokine production. J Clin Endocrinol Metab. 103:64–74. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Wang L, Zhang J, Sun H, Ji X and Zhang S:
Effect of miR-451 on IVF/ICSI-ET outcome in patient with
endometriosis and infertility. Am J Transl Res. 13:13051–13058.
2021.PubMed/NCBI
|
|
84
|
Nothnick WB, Falcone T, Joshi N, Fazleabas
AT and Graham A: Serum miR-451a levels are significantly elevated
in women with endometriosis and recapitulated in baboons (Papio
anubis) with experimentally-induced disease. Reprod Sci.
24:1195–1202. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Dai L, Lou W, Zhu J, Zhou X and Di W:
MiR-199a inhibits the angiogenic potential of endometrial stromal
cells under hypoxia by targeting HIF-1α/VEGF pathway. Int J Clin
Exp Pathol. 8:4735–4744. 2015.PubMed/NCBI
|
|
86
|
Maged AM, Deeb WS, El Amir A, Zaki SS, El
Sawah H, Al Mohamady M, Metwally AA and Katta MA: Diagnostic
accuracy of serum miR-122 and miR-199a in women with endometriosis.
Int J Gynaecol Obstet. 141:14–19. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Hsu CY, Hsieh TH, Tsai CF, Tsai HP, Chen
HS, Chang Y, Chuang HY, Lee JN, Hsu YL and Tsai EM: miRNA-199a-5p
regulates VEGFA in endometrial mesenchymal stem cells and
contributes to the pathogenesis of endometriosis. J Pathol.
232:330–343. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Lin SC, Wang CC, Wu MH, Yang SH, Li YH and
Tsai SJ: Hypoxia-induced microRNA-20a expression increases ERK
phosphorylation and angiogenic gene expression in endometriotic
stromal cells. J Clin Endocrinol Metab. 97:E1515–1523. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Lei Z, Li B, Yang Z, Fang H, Zhang GM,
Feng ZH and Huang B: Regulation of HIF-1alpha and VEGF by miR-20b
tunes tumor cells to adapt to the alteration of oxygen
concentration. PLoS One. 4:e76292009. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Ramón LA, Braza-Boïls A, Gilabert-Estellés
J, Gilabert J, España F, Chirivella M and Estellés A: microRNAs
expression in endometriosis and their relation to angiogenic
factors. Hum Reprod. 26:1082–1090. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Marí-Alexandre J, García-Oms J,
Barceló-Molina M, Gilabert-Aguilar J, Estellés A, Braza-Boíls A and
Gilabert-Estellés J: MicroRNAs and angiogenesis in endometriosis.
Thromb Res. 135 (Suppl 1):S38–S40. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
van Solingen C, Seghers L, Bijkerk R,
Duijs JM, Roeten MK, van Oeveren-Rietdijk AM, Baelde HJ, Monge M,
Vos JB, de Boer HC, et al: Antagomir-mediated silencing of
endothelial cell specific microRNA-126 impairs ischemia-induced
angiogenesis. J Cell Mol Med. 13((8A)): 1577–1585. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Panda H, Pelakh L, Chuang TD, Luo X,
Bukulmez O and Chegini N: Endometrial miR-200c is altered during
transformation into cancerous states and targets the expression of
ZEBs, VEGFA, FLT1, IKKβ, KLF9, and FBLN5. Reprod Sci. 19:786–796.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Rekker K, Saare M, Roost AM, Kaart T,
Sõritsa D, Karro H, Sõritsa A, Simón C, Salumets A and Peters M:
Circulating miR-200-family micro-RNAs have altered plasma levels in
patients with endometriosis and vary with blood collection time.
Fertil Steril. 104:938–946.e2. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Misir S, Hepokur C, Oksasoglu B, Yildiz C,
Yanik A and Aliyazicioglu Y: Circulating serum miR-200c and
miR-34a-5p as diagnostic biomarkers for endometriosis. J Gynecol
Obstet Hum Reprod. 50:1020922021. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Papari E, Noruzinia M, Kashani L and
Foster WG: Identification of candidate microRNA markers of
endometriosis with the use of next-generation sequencing and
quantitative real-time polymerase chain reaction. Fertil Steril.
113:1232–1241. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Nisenblat V, Sharkey DJ, Wang Z, Evans SF,
Healey M, Ohlsson Teague EMC, Print CG, Robertson SA and Hull ML:
Plasma miRNAs display limited potential as diagnostic tools for
endometriosis. J Clin Endocrinol Metab. 104:1999–2022. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Wang WT, Zhao YN, Han BW, Hong SJ and Chen
YQ: Circulating microRNAs identified in a genome-wide serum
microRNA expression analysis as noninvasive biomarkers for
endometriosis. J Clin Endocrinol Metab. 98:281–289. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Zafari N, Tarafdari AM, Izadi P, Noruzinia
M, Yekaninejad MS, Bahramy A and Mohebalian A: A Panel of Plasma
miRNAs 199b-3p, 224-5p and Let-7d-3p as non-invasive diagnostic
biomarkers for endometriosis. Reprod Sci. 28:991–999. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Marí-Alexandre J, Carcelén AP, Agababyan
C, Moreno-Manuel A, García-Oms J, Calabuig-Fariñas S and
Gilabert-Estellés J: Interplay Between MicroRNAs and oxidative
stress in ovarian conditions with a focus on ovarian cancer and
endometriosis. Int J Mol Sci. 20:53222019. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Zhou S, Huang C, Wang W and Liu J:
MiR-370-3p inhibits the development of human endometriosis by
downregulating EDN1 expression in endometrial stromal cells. Cell
Biol Int. 45:1183–1190. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Khan M, Shah PM, Khan IA, Islam SU, Ahmad
Z, Khan F and Lee Y: IoMT-Enabled Computer-Aided Diagnosis of
pulmonary embolism from computed tomography scans using deep
learning. Sensors (Basel). 23:14712023. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Mohd Aman AH, Hassan WH, Sameen S,
Attarbashi ZS, Alizadeh M and Latiff LA: IoMT amid COVID-19
pandemic: Application, architecture, technology, and security. J
Netw Comput Appl. 174:1028862021. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Wang F, Wang H, Jin D and Zhang Y: Serum
miR-17, IL-4, and IL-6 levels for diagnosis of endometriosis.
Medicine (Baltimore). 97:e108532018. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Menzhinskaya IV, Pavlovich SV, Melkumyan
AG, Chuprynin VD, Yarotskaya EL and Sukhikh GT: Potential
significance of serum autoantibodies to endometrial antigens,
α-Enolase and hormones in non-invasive diagnosis and pathogenesis
of endometriosis. Int J Mol Sci. 24:155782023. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Mathiasen M, Egekvist AG, Kesmodel US,
Knudsen UB and Seyer-Hansen M: Similar evolution of pain symptoms
and quality of life in women with and without endometriosis
undergoing assisted reproductive technology (ART). Acta Obstet
Gynecol Scand. 98:77–85. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Gao Y, Liu P and Shi R: Anlotinib as a
molecular targeted therapy for tumors. Oncol Lett. 20:1001–1014.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
He Y, Hung SW, Liang B, Zhang R, Gao Y,
Chu CY, Zhang T, Xu H, Chung JPW and Wang CC: Receptor tyrosine
kinase inhibitor sunitinib as novel immunotherapy to inhibit
myeloid-derived suppressor cells for treatment of endometriosis.
Front Immunol. 12:6412062021. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Yildiz C, Kacan T, Akkar OB, Karakus S,
Kacan SB, Ozer H and Cetin A: Effects of pazopanib, sunitinib, and
sorafenib, Anti-VEGF agents, on the growth of experimental
endometriosis in rats. Reprod Sci. 22:1445–1451. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Iampietro C, Brossa A, Canosa S, Tritta S,
Croston GE, Reinheimer TM, Bonelli F, Carosso AR, Gennarelli G,
Cosma S, et al: Quinagolide treatment reduces invasive and
angiogenic properties of endometrial mesenchymal stromal cells. Int
J Mol Sci. 23:17752022. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Pellicer N, Galliano D, Herraiz S, Bagger
YZ, Arce JC and Pellicer A: Use of dopamine agonists to target
angiogenesis in women with endometriosis. Hum Reprod. 36:850–858.
2021. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Hamid AM, Madkour WA, Moawad A, Elzaher MA
and Roberts MP: Does cabergoline help in decreasing endometrioma
size compared to LHRH agonist? A prospective randomized study. Arch
Gynecol Obstet. 290:677–682. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Mendoza-Torreblanca JG, Cárdenas-Rodríguez
N, Carro-Rodríguez J, Contreras-García IJ, Garciadiego-Cázares D,
Ortega-Cuellar D, Martínez-López V, Alfaro-Rodríguez A,
Evia-Ramírez AN, Ignacio-Mejía I, et al: Antiangiogenic effect of
dopamine and dopaminergic agonists as an adjuvant therapeutic
option in the treatment of cancer, endometriosis, and
osteoarthritis. Int J Mol Sci. 24:101992023. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Olivares C, Ricci A, Bilotas M, Barañao RI
and Meresman G: The inhibitory effect of celecoxib and
rosiglitazone on experimental endometriosis. Fertil Steril.
96:428–433. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Zhang S, Zhuang L, Liu Q, Yu X, Min Q,
Chen M and Chen Q: Rosiglitazone affects the progression of
surgically-induced endometriosis in a rat model. Mol Med Rep.
23:352021.PubMed/NCBI
|
|
116
|
Nenicu A, Körbel C, Gu Y, Menger MD and
Laschke MW: Combined blockade of angiotensin II type 1 receptor and
activation of peroxisome proliferator-activated receptor-γ by
telmisartan effectively inhibits vascularization and growth of
murine endometriosis-like lesions. Hum Reprod. 29:1011–1024. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Nenicu A, Gu Y, Körbel C, Menger MD and
Laschke MW: Combination therapy with telmisartan and parecoxib
induces regression of endometriotic lesions. Br J Pharmacol.
174:2623–2635. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Nasu K, Nishida M, Ueda T, Yuge A, Takai N
and Narahara H: Application of the nuclear factor-kappaB inhibitor
BAY 11-7085 for the treatment of endometriosis: An in vitro study.
Am J Physiol Endocrinol Metab. 293:E16–E23. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Zhang JJ, Xu ZM, Chang H, Zhang CM, Dai
HY, Ji XQ, Li C and Wang XF: Pyrrolidine dithiocarbamate attenuates
nuclear factor-ĸB activation, cyclooxygenase-2 expression and
prostaglandin E2 production in human endometriotic epithelial
cells. Gynecol Obstet Invest. 72:163–168. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Huang R, Chen S, Zhao M, Li Z and Zhu L:
Ginsenoside Rg3 attenuates endometriosis by inhibiting the
viability of human ectopic endometrial stromal cells through the
nuclear factor-kappaB signaling pathway. J Gynecol Obstet Hum
Reprod. 49:1016422020. View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Vallée A and Lecarpentier Y: Curcumin and
Endometriosis. Int J Mol Sci. 21:E24402020. View Article : Google Scholar
|
|
122
|
Chowdhury I, Banerjee S, Driss A, Xu W,
Mehrabi S, Nezhat C, Sidell N, Taylor RN and Thompson WE: Curcumin
attenuates proangiogenic and proinflammatory factors in human
eutopic endometrial stromal cells through the NF-κB signaling
pathway. J Cell Physiol. 234:6298–6312. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Wei X and Shao X: Nobiletin alleviates
endometriosis via down-regulating NF-κB activity in endometriosis
mouse model. Biosci Rep. 38:BSR201804702018. View Article : Google Scholar : PubMed/NCBI
|
|
124
|
Uludag SZ, Demirtas E, Sahin Y and Aygen
EM: Dienogest reduces endometrioma volume and endometriosis-related
pain symptoms. J Obstet Gynaecol. 41:1246–1251. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
125
|
Keleş CD, Vural B, Filiz S, Vural F, Gacar
G, Eraldemir FC and Kurnaz S: The effects of etanercept and
cabergoline on endometriotic implants, uterus and ovaries in rat
endometriosis model. J Reprod Immunol. 146:1033402021. View Article : Google Scholar : PubMed/NCBI
|
|
126
|
Ren XU, Wang Y, Xu G and Dai L: Effect of
rapamycin on endometriosis in mice. Exp Ther Med. 12:101–106. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
127
|
Grammatis AL, Georgiou EX and Becker CM:
Pentoxifylline for the treatment of endometriosis-associated pain
and infertility. Cochrane Database Syst Rev.
8:CD0076772021.PubMed/NCBI
|
|
128
|
Dicitore A, Castiglioni S, Saronni D,
Gentilini D, Borghi MO, Stabile S, Vignali M, Di Blasio AM, Persani
L and Vitale G: Effects of human recombinant type I IFNs (IFN-α2b
and IFN-β1a) on growth and migration of primary endometrial stromal
cells from women with deeply infiltrating endometriosis: A
preliminary study. Eur J Obstet Gynecol Reprod Biol. 230:192–198.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
129
|
Söderman L, Böttiger Y, Edlund M,
Järnbert-Pettersson H and Marions L: Adjuvant use of melatonin for
pain management in endometriosis-associated pelvic pain-A
randomized double-blinded, placebo-controlled trial. PLoS One.
18:e02861822023. View Article : Google Scholar : PubMed/NCBI
|
|
130
|
Vašková J, Klepcová Z, Špaková I, Urdzík
P, Štofilová J, Bertková I, Kľoc M and Rabajdová M: The importance
of natural antioxidants in female reproduction. Antioxidants
(Basel). 12:9072023. View Article : Google Scholar : PubMed/NCBI
|
|
131
|
Schwertner A, Conceição Dos Santos CC,
Costa GD, Deitos A, de Souza A, de Souza IC, Torres IL, da Cunha
Filho JS and Caumo W: Efficacy of melatonin in the treatment of
endometriosis: A phase II, randomized, double-blind,
placebo-controlled trial. Pain. 154:874–881. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
132
|
Santanam N, Kavtaradze N, Murphy A,
Dominguez C and Parthasarathy S: Antioxidant supplementation
reduces endometriosis-related pelvic pain in humans. Transl Res.
161:189–195. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
133
|
Li Y, Zeng X, Lu D, Yin M, Shan M and Gao
Y: Erastin induces ferroptosis via ferroportin-mediated iron
accumulation in endometriosis. Hum Reprod. 36:951–964. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
134
|
Bouquet de Joliniere J, Fruscalzo A,
Khomsi F, Stochino Loi E, Cherbanyk F, Ayoubi JM and Feki A:
Antiangiogenic therapy as a new strategy in the treatment of
endometriosis? The first case report. Front Surg. 8:7916862021.
View Article : Google Scholar : PubMed/NCBI
|
|
135
|
Bodnar RJ: Anti-Angiogenic Drugs:
Involvement in cutaneous side effects and wound-healing
complication. Adv Wound Care (New Rochelle). 3:635–646. 2014.
View Article : Google Scholar : PubMed/NCBI
|