You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.
I agree
International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.
International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.
Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.
Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.
Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.
Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.
Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.
International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.
Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.
Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.
Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.
An International Open Access Journal Devoted to General Medicine.
![]() |
![]() |
|
Rubio-Ramos A, Labat-de-Hoz L, Correas I and Alonso MA: The MAL protein, an integral component of specialized membranes, in normal cells and cancer. Cells. 10:10652021. View Article : Google Scholar : PubMed/NCBI | |
|
Sánchez-Pulido L, Martín-Belmonte F, Valencia A and Alonso MA: MARVEL: A conserved domain involved in membrane apposition events. Trends Biochem Sci. 27:599–601. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
Alonso MA and Weissman SM: cDNA cloning and sequence of MAL, a hydrophobic protein associated with human T-cell differentiation. Proc Natl Acad Sci USA. 84:1997–2001. 1987. View Article : Google Scholar : PubMed/NCBI | |
|
Cheong KH, Zacchetti D, Schneeberger EE and Simons K: VIP17/MAL, a lipid raft-associated protein, is involved in apical transport in MDCK cells. Proc Natl Acad Sci USA. 96:6241–6248. 1999. View Article : Google Scholar : PubMed/NCBI | |
|
Martín-Belmonte F, Puertollano R, Millán J and Alonso MA: The MAL proteolipid is necessary for the overall apical delivery of membrane proteins in the polarized epithelial Madin-Darby canine kidney and fischer rat thyroid cell lines. Mol Biol Cell. 11:2033–2045. 2000. View Article : Google Scholar : PubMed/NCBI | |
|
Martín-Belmonte F, Arvan P and Alonso MA: MAL mediates apical transport of secretory proteins in polarized epithelial Madin-Darby canine kidney cells. J Biol Chem. 276:49337–49342. 2001. View Article : Google Scholar : PubMed/NCBI | |
|
Puertollano R, Martín-Belmonte F, Millán J, de Marco MC, Albar JP, Kremer L and Alonso MA: The MAL proteolipid is necessary for normal apical transport and accurate sorting of the influenza virus hemagglutinin in Madin-Darby canine kidney cells. J Cell Biol. 145:141–151. 1999. View Article : Google Scholar : PubMed/NCBI | |
|
Martín-Belmonte F, Kremer L, Albar JP, Marazuela M and Alonso MA: Expression of the MAL gene in the thyroid: The MAL proteolipid, a component of glycolipid-enriched membranes, is apically distributed in thyroid follicles. Endocrinology. 139:2077–2084. 1998. View Article : Google Scholar : PubMed/NCBI | |
|
Puertollano R and Alonso MA: MAL, an integral element of the apical sorting machinery, is an itinerant protein that cycles between the trans-Golgi network and the plasma membrane. Mol Biol Cell. 10:3435–3447. 1999. View Article : Google Scholar : PubMed/NCBI | |
|
Mostov KE, Verges M and Altschuler Y: Membrane traffic in polarized epithelial cells. Curr Opin Cell Biol. 12:483–490. 2000. View Article : Google Scholar : PubMed/NCBI | |
|
Simons K and Wandinger-Ness A: Polarized sorting in epithelia. Cell. 62:207–210. 1990. View Article : Google Scholar : PubMed/NCBI | |
|
Matter K and Mellman I: Mechanisms of cell polarity: Sorting and transport in epithelial cells. Curr Opin Cell Biol. 6:545–554. 1994. View Article : Google Scholar : PubMed/NCBI | |
|
Raleigh DR, Marchiando AM, Zhang Y, Shen L, Sasaki H, Wang Y, Long M and Turner JR: Tight junction-associated MARVEL proteins marveld3, tricellulin, and occludin have distinct but overlapping functions. Mol Biol Cell. 21:1200–1213. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Duan HJ, Li XY, Liu C and Deng XL: Chemokine-like factor-like MARVEL transmembrane domain-containing family in autoimmune diseases. Chin Med J (Engl). 133:951–958. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Magyar JP, Ebensperger C, Schaeren-Wiemers N and Suter U: Myelin and lymphocyte protein (MAL/MVP17/VIP17) and plasmolipin are members of an extended gene family. Gene. 189:269–275. 1997. View Article : Google Scholar : PubMed/NCBI | |
|
Janz R, Südhof TC, Hammer RE, Unni V, Siegelbaum SA and Bolshakov VY: Essential roles in synaptic plasticity for synaptogyrin I and synaptophysin I. Neuron. 24:687–700. 1999. View Article : Google Scholar : PubMed/NCBI | |
|
Adams DJ, Arthur CP and Stowell MH: Architecture of the synaptophysin/synaptobrevin complex: Structural evidence for an entropic clustering function at the synapse. Sci Rep. 5:136592015. View Article : Google Scholar : PubMed/NCBI | |
|
Han W, Ding P, Xu M, Wang L, Rui M, Shi S, Liu Y, Zheng Y, Chen Y, Yang T and Ma D: Identification of eight genes encoding chemokine-like factor superfamily members 1–8 (CKLFSF1-8) by in silico cloning and experimental validation. Genomics. 81:609–617. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Lu J, Wu QQ, Zhou YB, Zhang KH, Pang BX, Li L, Sun N, Wang HS, Zhang S, Li WJ, et al: Cancer research advance in CKLF-like MARVEL transmembrane domain containing member family (review). Asian Pac J Cancer Prev. 17:2741–2744. 2016.PubMed/NCBI | |
|
Pérez P, Puertollano R and Alonso MA: Structural and biochemical similarities reveal a family of proteins related to the MAL proteolipid, a component of detergent-insoluble membrane microdomains. Biochem Biophys Res Commun. 232:618–621. 1997. View Article : Google Scholar : PubMed/NCBI | |
|
de Marco MC, Puertollano R, Martínez-Menárguez JA and Alonso MA: Dynamics of MAL2 during glycosylphosphatidylinositol-anchored protein transcytotic transport to the apical surface of hepatoma HepG2 cells. Traffic. 7:61–73. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Marazuela M, Acevedo A, García-López MA, Adrados M, de Marco MC and Alonso MA: Expression of MAL2, an integral protein component of the machinery for basolateral-to-apical transcytosis, in human epithelia. J Histochem Cytochem. 52:243–252. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Muppa P, Dao L, McCann B, Mcphail E, Shi M and Rech K: Co-expression of MAL and PD-L2 by Immunohistochemistry is Specific for Primary Mediastinal Large B-Cell Lymphoma. Lab Invest. 99 (Suppl 1):972019. | |
|
Marazuela M, Acevedo A, Adrados M, García-López MA and Alonso MA: Expression of MAL, an integral protein component of the machinery for raft-mediated pical transport, in human epithelia. J Histochem Cytochem. 51:665–674. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang B, Xiao J, Cheng X and Liu T: MAL2 interacts with IQGAP1 to promote pancreatic cancer progression by increasing ERK1/2 phosphorylation. Biochem Biophys Res Commun. 554:63–70. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Zheng C, Wang J, Zhang J, Hou S, Zheng Y and Wang Q: Myelin and lymphocyte protein 2 regulates cell proliferation and metastasis through the Notch pathway in prostate adenocarcinoma. Transl Androl Urol. 10:2067–2077. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Zhu J, Shimizu E, Zhang X, Partridge NC and Qin L: EGFR signaling suppresses osteoblast differentiation and inhibits expression of master osteoblastic transcription factors Runx2 and Osterix. J Cell Biochem. 112:1749–1760. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Bello-Morales R, Pérez-Hernández M, Rejas MT, Matesanz F, Alcina A and López-Guerrero JA: Interaction of PLP with GFP-MAL2 in the human oligodendroglial cell line HOG. PLoS One. 6:e193882011. View Article : Google Scholar : PubMed/NCBI | |
|
Lian Z, Yan X, Diao Y, Cui D and Liu H: T cell differentiation protein 2 facilitates cell proliferation by enhancing mTOR-mediated ribosome biogenesis in non-small cell lung cancer. Discov Oncol. 13:262022. View Article : Google Scholar : PubMed/NCBI | |
|
Byrne JA, Maleki S, Hardy JR, Gloss BS, Murali R, Scurry JP, Fanayan S, Emmanuel C, Hacker NF, Sutherland RL, et al: MAL2 and tumor protein D52 (TPD52) are frequently overexpressed in ovarian carcinoma, but differentially associated with histological subtype and patient outcome. BMC Cancer. 10:4972010. View Article : Google Scholar : PubMed/NCBI | |
|
Chen L, Li H, Yao D, Zou Q, Yu W and Zhou L: The novel circ_0084904/miR-802/MAL2 axis promotes the development of cervical cancer. Reprod Biol. 22:1006002022. View Article : Google Scholar : PubMed/NCBI | |
|
Mimori K, Shiraishi T, Mashino K, Sonoda H, Yamashita K, Yoshinaga K, Masuda T, Utsunomiya T, Alonso MA, Inoue H and Mori M: MAL gene expression in esophageal cancer suppresses motility, invasion and tumorigenicity and enhances apoptosis through the Fas pathway. Oncogene. 22:3463–3471. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Zorzan E, Elgendy R, Guerra G, Da Ros S, Gelain ME, Bonsembiante F, Garaffo G, Vitale N, Piva R, Marconato L, et al: Hypermethylation-mediated silencing of CIDEA, MAL and PCDH17 tumour suppressor genes in canine DLBCL: From multi-omics analyses to mechanistic studies. Int J Mol Sci. 23:40212022. View Article : Google Scholar : PubMed/NCBI | |
|
Tao L, Mu X, Chen H, Jin D, Zhang R, Zhao Y, Fan J, Cao M and Zhou Z: FTO modifies the m6A level of MALAT and promotes bladder cancer progression. Clin Transl Med. 11:e3102021. View Article : Google Scholar : PubMed/NCBI | |
|
Edwards JR, Yarychkivska O, Boulard M and Bestor TH: DNA methylation and DNA methyltransferases. Epigenetics Chromatin. 10:232017. View Article : Google Scholar : PubMed/NCBI | |
|
Deaton AM and Bird A: CpG islands and the regulation of transcription. Genes Dev. 25:1010–1022. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Wang JS, Guo M, Montgomery EA, Thompson RE, Cosby H, Hicks L, Wang S, Herman JG and Canto MI: DNA promoter hypermethylation of p16 and APC predicts neoplastic progression in Barrett's esophagus. Am J Gastroenterol. 104:2153–2160. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Labat-de-Hoz L, Rubio-Ramos A, Correas I and Alonso MA: The MAL family of proteins: Normal function, expression in cancer, and potential use as cancer biomarkers. Cancers (Basel). 15:28012023. View Article : Google Scholar : PubMed/NCBI | |
|
Lara-Lemus R: On the role of myelin and lymphocyte protein (MAL) in cancer: A puzzle with two faces. J Cancer. 10:2312–2318. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Overmeer RM, Louwers JA, Meijer CJ, van Kemenade FJ, Hesselink AT, Daalmeijer NF, Wilting SM, Heideman DA, Verheijen RH, Zaal A, et al: Combined CADM1 and MAL promoter methylation analysis to detect (pre-)malignant cervical lesions in high-risk HPV-positive women. Int J Cancer. 129:2218–2225. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Holubekova V, Mersakova S, Grendar M, Snahnicanova Z, Kudela E, Kalman M, Lasabova Z, Danko J and Zubor P: The role of CADM1 and MAL promoter methylation in inflammation and cervical intraepithelial neoplasia. Genet Test Mol Biomarkers. 24:256–263. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
de Marco MC, Martín-Belmonte F, Kremer L, Albar JP, Correas I, Vaerman JP, Marazuela M, Byrne JA and Alonso MA: MAL2, a novel raft protein of the MAL family, is an essential component of the machinery for transcytosis in hepatoma HepG2 cells. J Cell Biol. 159:37–44. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
Fang Y, Wang L, Wan C, Sun Y, Van der Jeught K, Zhou Z, Dong T, So KM, Yu T, Li Y, et al: MAL2 drives immune evasion in breast cancer by suppressing tumor antigen presentation. J Clin Invest. 131:e1408372021. View Article : Google Scholar : PubMed/NCBI | |
|
Hamacher M, Pippirs U, Köhler A, Müller HW and Bosse F: Plasmolipin: Genomic structure, chromosomal localization, protein expression pattern, and putative association with Bardet-Biedl syndrome. Mamm Genome. 12:933–937. 2001. View Article : Google Scholar : PubMed/NCBI | |
|
Hanahan D and Weinberg RA: Hallmarks of cancer: The next generation. Cell. 144:646–674. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Aranda JF, Reglero-Real N, Kremer L, Marcos-Ramiro B, Ruiz-Sáenz A, Calvo M, Enrich C, Correas I, Millán J and Alonso MA: MYADM regulates Rac1 targeting to ordered membranes required for cell spreading and migration. Mol Biol Cell. 22:1252–1262. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Alonso MA, Barton DE and Francke U: Assignment of the T-cell differentiation gene MAL to human chromosome 2, region cen-q13. Immunogenetics. 27:91–95. 1988. View Article : Google Scholar : PubMed/NCBI | |
|
Kent WJ, Sugnet CW, Furey TS, Roskin KM, Pringle TH, Zahler AM and Haussler D: The human genome browser at UCSC. Genome Res. 12:996–1006. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
Marazuela M and Alonso MA: Expression of MAL and MAL2, two elements of the protein machinery for raft-mediated transport, in normal and neoplastic human tissue. Histol Histopathol. 19:925–933. 2004.PubMed/NCBI | |
|
Michel V and Bakovic M: Lipid rafts in health and disease. Biol Cell. 99:129–140. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Patra SK and Bettuzzi S: Epigenetic DNA-methylation regulation of genes coding for lipid raft-associated components: A role for raft proteins in cell transformation and cancer progression (review). Oncol Rep. 17:1279–1290. 2007.PubMed/NCBI | |
|
Leitner J, Mahasongkram K, Schatzlmaier P, Pfisterer K, Leksa V, Pata S, Kasinrerk W, Stockinger H and Steinberger P: Differentiation and activation of human CD4 T cells is associated with a gradual loss of myelin and lymphocyte protein. Eur J Immunol. 51:848–863. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Antón OM, Andrés-Delgado L, Reglero-Real N, Batista A and Alonso MA: MAL protein controls protein sorting at the supramolecular activation cluster of human T lymphocytes. J Immunol. 186:6345–6356. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Ventimiglia LN, Fernández-Martín L, Martínez-Alonso E, Antón OM, Guerra M, Martínez-Menárguez JA, Andrés G and Alonso MA: Cutting edge: Regulation of exosome secretion by the integral MAL protein in T cells. J Immunol. 195:810–814. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Kim T, Fiedler K, Madison DL, Krueger WH and Pfeiffer SE: Cloning and characterization of MVP17: A developmentally regulated myelin protein in oligodendrocytes. J Neurosci Res. 42:413–422. 1995. View Article : Google Scholar : PubMed/NCBI | |
|
Schaeren-Wiemers N, Schaefer C, Valenzuela DM, Yancopoulos GD and Schwab ME: Identification of new oligodendrocyte- and myelin-specific genes by a differential screening approach. J Neurochem. 65:10–22. 1995. View Article : Google Scholar : PubMed/NCBI | |
|
Zacchetti D, Peränen J, Murata M, Fiedler K and Simons K: VIP17/MAL, a proteolipid in apical transport vesicles. FEBS Lett. 377:465–469. 1995. View Article : Google Scholar : PubMed/NCBI | |
|
Millán J, Puertollano R, Fan L and Alonso MA: Caveolin and MAL, two protein components of internal detergent-insoluble membranes, are in distinct lipid microenvironments in MDCK cells. Biochem Biophys Res Commun. 233:707–712. 1997. View Article : Google Scholar : PubMed/NCBI | |
|
Frank M, Schaeren-Wiemers N, Schneider R and Schwab ME: Developmental expression pattern of the myelin proteolipid MAL indicates different functions of MAL for immature Schwann cells and in a late step of CNS myelinogenesis. J Neurochem. 73:587–597. 1999. View Article : Google Scholar : PubMed/NCBI | |
|
Frank M: MAL, a proteolipid in glycosphingolipid enriched domains: Functional implications in myelin and beyond. Prog Neurobiol. 60:531–544. 2000. View Article : Google Scholar : PubMed/NCBI | |
|
Copie-Bergman C, Plonquet A, Alonso MA, Boulland ML, Marquet J, Divine M, Möller P, Leroy K and Gaulard P: MAL expression in lymphoid cells: further evidence for MAL as a distinct molecular marker of primary mediastinal large B-cell lymphomas. Mod Pathol. 15:1172–1180. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
Overmeer RM, Henken FE, Bierkens M, Wilting SM, Timmerman I, Meijer CJ, Snijders PJ and Steenbergen RD: Repression of MAL tumour suppressor activity by promoter methylation during cervical carcinogenesis. J Pathol. 219:327–336. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Cao W, Zhang ZY, Xu Q, Sun Q, Yan M, Zhang J, Zhang P, Han ZG and Chen WT: Epigenetic silencing of MAL, a putative tumor suppressor gene, can contribute to human epithelium cell carcinoma. Mol Cancer. 9:2962010. View Article : Google Scholar : PubMed/NCBI | |
|
Wilting SM, de Wilde J, Meijer CJ, Berkhof J, Yi Y, van Wieringen WN, Braakhuis BJ, Meijer GA, Ylstra B, Snijders PJ and Steenbergen RD: Integrated genomic and transcriptional profiling identifies chromosomal loci with altered gene expression in cervical cancer. Genes Chromosomes Cancer. 47:890–905. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Maruya S, Kim HW, Weber RS, Lee JJ, Kies M, Luna MA, Batsakis JG and El-Naggar AK: Gene expression screening of salivary gland neoplasms: Molecular markers of potential histogenetic and clinical significance. J Mol Diagn. 6:180–190. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Suzuki M, Shiraishi K, Eguchi A, Ikeda K, Mori T, Yoshimoto K, Ohba Y, Yamada T, Ito T, Baba Y and Baba H: Aberrant methylation of LINE-1, SLIT2, MAL and IGFBP7 in non-small cell lung cancer. Oncol Rep. 29:1308–1314. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Ostrow KL, Park HL, Hoque MO, Kim MS, Liu J, Argani P, Westra W, Van Criekinge W and Sidransky D: Pharmacologic unmasking of epigenetically silenced genes in breast cancer. Clin Cancer Res. 15:1184–1191. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Li D, Zhang J, Wu L, Yang X, Chen Z and Yuan J: Myelin and lymphocyte protein (MAL): A novel biomarker for uterine corpus endometrial carcinoma. Cancer Manag Res. 13:7311–7323. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
His ED, Sup SJ, Alemany C, Tso E, Skacel M, Elson P, Alonso MA and Pohlman B: MAL is expressed in a subset of Hodgkin lymphoma and identifies a population of patients with poor prognosis. Am J Clin Pathol. 125:776–782. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Kohno T, Moriuchi R, Katamine S, Yamada Y, Tomonaga M and Matsuyama T: Identification of genes associated with the progression of adult T cell leukemia (ATL). Jpn J Cancer Res. 91:1103–1110. 2000. View Article : Google Scholar : PubMed/NCBI | |
|
Chan JK: Mediastinal large B-cell lymphoma: New evidence in support of its distinctive identity. Adv Anat Pathol. 7:201–209. 2000. View Article : Google Scholar : PubMed/NCBI | |
|
Copie-Bergman C, Gaulard P, Maouche-Chrétien L, Brière J, Haioun C, Alonso MA, Roméo PH and Leroy K: The MAL gene is expressed in primary mediastinal large B-cell lymphoma. Blood. 94:3567–3575. 1999. View Article : Google Scholar : PubMed/NCBI | |
|
Lind GE, Ahlquist T, Kolberg M, Berg M, Eknaes M, Alonso MA, Kallioniemi A, Meling GI, Skotheim RI, Rognum TO, et al: Hypermethylated MAL gene-a silent marker of early colon tumorigenesis. J Transl Med. 6:132008. View Article : Google Scholar : PubMed/NCBI | |
|
Jin Z, Wang L, Zhang Y, Cheng Y, Gao Y, Feng X, Dong M, Cao Z, Chen S, Yu H, et al: MAL hypermethylation is a tissue-specific event that correlates with MAL mRNA expression in esophageal carcinoma. Sci Rep. 3:28382013. View Article : Google Scholar : PubMed/NCBI | |
|
Horne HN, Lee PS, Murphy SK, Alonso MA, Olson JA Jr and Marks JR: Inactivation of the MAL gene in breast cancer is a common event that predicts benefit from adjuvant chemotherapy. Mol Cancer Res. 7:199–209. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Buffart TE, Overmeer RM, Steenbergen RD, Tijssen M, van Grieken NC, Snijders PJ, Grabsch HI, van de Velde CJ, Carvalho B and Meijer GA: MAL promoter hypermethylation as a novel prognostic marker in gastric cancer. Br J Cancer. 99:1802–1807. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Geng Z, Li J, Li S, Wang Y, Zhang L, Hu Q, Wang X, Zuo L, Song X, Zhang X, et al: MAL protein suppresses the metastasis and invasion of GC cells by interfering with the phosphorylation of STAT3. J Transl Med. 20:502022. View Article : Google Scholar : PubMed/NCBI | |
|
Deng F and Han Bae Y: Lipid raft-mediated and upregulated coordination pathways assist transport of glycocholic acid-modified nanoparticle in a human breast cancer cell line of SK-BR-3. Int J Pharm. 617:1215892022. View Article : Google Scholar : PubMed/NCBI | |
|
Bierkens M, Hesselink AT, Meijer CJ, Heideman DA, Wisman GB, van der Zee AG, Snijders PJ and Steenbergen RD: CADM1 and MAL promoter methylation levels in hrHPV-positive cervical scrapes increase proportional to degree and duration of underlying cervical disease. Int J Cancer. 133:1293–1299. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Salta S, Lobo J, Magalhães B, Henrique R and Jerónimo C: DNA methylation as a triage marker for colposcopy referral in HPV-based cervical cancer screening: A systematic review and meta-analysis. Clin Epigenetics. 15:1252023. View Article : Google Scholar : PubMed/NCBI | |
|
De Strooper LM, Hesselink AT, Berkhof J, Meijer CJ, Snijders PJ, Steenbergen RD and Heideman DA: Combined CADM1/MAL methylation and cytology testing for colposcopy triage of high-risk HPV-positive women. Cancer Epidemiol Biomarkers Prev. 23:1933–1937. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Leffers M, Herbst J, Kropidlowski J, Prieske K, Bohnen AL, Peine S, Jaeger A, Oliveira-Ferrer L, Goy Y, Schmalfeldt B, et al: Combined liquid biopsy methylation analysis of CADM1 and MAL in cervical cancer patients. Cancers (Basel). 14:39542022. View Article : Google Scholar : PubMed/NCBI | |
|
Phillips S, Cassells K, Garland SM, Machalek DA, Roberts JM, Templeton DJ, Jin F, Poynten IM, Hillman RJ, Grulich AE, et al: Gene methylation of CADM1 and MAL identified as a biomarker of high grade anal intraepithelial neoplasia. Sci Rep. 12:35652022. View Article : Google Scholar : PubMed/NCBI | |
|
Berchuck A, Iversen ES, Lancaster JM, Pittman J, Luo J, Lee P, Murphy S, Dressman HK, Febbo PG, West M, et al: Patterns of gene expression that characterize long-term survival in advanced stage serous ovarian cancers. Clin Cancer Res. 11:3686–3696. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Zanotti L, Romani C, Tassone L, Todeschini P, Tassi RA, Bandiera E, Damia G, Ricci F, Ardighieri L, Calza S, et al: MAL gene overexpression as a marker of high-grade serous ovarian carcinoma stem-like cells that predicts chemoresistance and poor prognosis. BMC Cancer. 17:3662017. View Article : Google Scholar : PubMed/NCBI | |
|
Lee PS, Teaberry VS, Bland AE, Huang Z, Whitaker RS, Baba T, Fujii S, Secord AA, Berchuck A and Murphy SK: Elevated MAL expression is accompanied by promoter hypomethylation and platinum resistance in epithelial ovarian cancer. Int J Cancer. 126:1378–1389. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Iwasaki T, Matsushita M, Nonaka D, Nagata K, Kato M, Kuwamoto S, Murakami I and Hayashi K: Lower expression of CADM1 and higher expression of MAL in Merkel cell carcinomas are associated with Merkel cell polyomavirus infection and better prognosis. Hum Pathol. 48:1–8. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Su C, Huang R, Yu Z, Zheng J, Liu F, Liang H and Mo Z: Myelin and lymphocyte protein serves as a prognostic biomarker and is closely associated with the tumor microenvironment in the nephroblastoma. Cancer Med. 11:1427–1438. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Pal SK, Noguchi S, Yamamoto G, Yamada A, Isobe T, Hayashi S, Tanaka J, Tanaka Y, Kamijo R, Yamane GY and Tachikawa T: Expression of myelin and lymphocyte protein (MAL) in oral carcinogenesis. Med Mol Morphol. 45:222–228. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Beder LB, Gunduz M, Hotomi M, Fujihara K, Shimada J, Tamura S, Gunduz E, Fukushima K, Yaykasli K, Grenman R, et al: T-lymphocyte maturation-associated protein gene as a candidate metastasis suppressor for head and neck squamous cell carcinomas. Cancer Sci. 100:873–880. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Luo Y, Zhou LQ, Yang F, Chen JC, Chen JJ and Wang YJ: Construction and analysis of a conjunctive diagnostic model of HNSCC with random forest and artificial neural network. Sci Rep. 13:67362023. View Article : Google Scholar : PubMed/NCBI | |
|
Yue Y, Song M, Qiao Y, Li P, Yuan Y, Lian J, Wang S and Zhang Y: Gene function analysis and underlying mechanism of esophagus cancer based on microarray gene expression profiling. Oncotarget. 8:105222–105237. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Wang X, Li G, Luo Q and Gan C: Identification of crucial genes associated with esophageal squamous cell carcinoma by gene expression profile analysis. Oncol Lett. 15:8983–8990. 2018.PubMed/NCBI | |
|
Visser E, Franken IA, Brosens LA, Ruurda JP and van Hillegersberg R: Prognostic gene expression profiling in esophageal cancer: A systematic review. Oncotarget. 8:5566–5577. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Choi B, Han TS, Min J, Hur K, Lee SM, Lee HJ, Kim YJ and Yang HK: MAL and TMEM220 are novel DNA methylation markers in human gastric cancer. Biomarkers. 22:35–44. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Kurashige J, Sawada G, Takahashi Y, Eguchi H, Sudo T, Ikegami T, Yoshizumi T, Soejima Y, Ikeda T, Kawanaka H, et al: Suppression of MAL gene expression in gastric cancer correlates with metastasis and mortality. Fukuoka Igaku Zasshi. 104:344–349. 2013.PubMed/NCBI | |
|
Ahlquist T, Lind GE, Costa VL, Meling GI, Vatn M, Hoff GS, Rognum TO, Skotheim RI, Thiis-Evensen E and Lothe RA: Gene methylation profiles of normal mucosa, and benign and malignant colorectal tumors identify early onset markers. Mol Cancer. 7:942008. View Article : Google Scholar : PubMed/NCBI | |
|
Patai ÁV, Valcz G, Hollósi P, Kalmár A, Péterfia B, Patai Á, Wichmann B, Spisák S, Barták BK, Leiszter K, et al: Comprehensive DNA methylation analysis reveals a common ten-gene methylation signature in colorectal adenomas and carcinomas. PLoS One. 10:e01338362015. View Article : Google Scholar : PubMed/NCBI | |
|
Sambuudash O, Kim HS and Cho MY: Lack of aberrant methylation in an adjacent area of left-sided colorectal cancer. Yonsei Med J. 58:749–755. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Liu X, Bi H, Ge A, Xia T, Fu J, Liu Y, Sun H, Li D and Zhao Y: DNA hypermethylation of MAL gene may act as an independent predictor of favorable prognosis in patients with colorectal cancer. Transl Cancer Res. 8:1985–1996. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Ma R, Xu YE, Wang M and Peng W: Suppression of MAL gene expression is associated with colorectal cancer metastasis. Oncol Lett. 10:957–961. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Huang KT, Mikeska T, Li J, Takano EA, Millar EK, Graham PH, Boyle SE, Campbell IG, Speed TP, Dobrovic A and Fox SB: Assessment of DNA methylation profiling and copy number variation as indications of clonal relationship in ipsilateral and contralateral breast cancers to distinguish recurrent breast cancer from a second primary tumour. BMC Cancer. 15:6692015. View Article : Google Scholar : PubMed/NCBI | |
|
Vasiljević N, Scibior-Bentkowska D, Brentnall AR, Cuzick J and Lorincz AT: Credentialing of DNA methylation assays for human genes as diagnostic biomarkers of cervical intraepithelial neoplasia in high-risk HPV positive women. Gynecol Oncol. 132:709–714. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Ki EY, Lee KH, Hur SY, Rhee JE, Kee MK, Kang C and Park JS: Methylation of cervical neoplastic cells infected with human papillomavirus 16. Int J Gynecol Cancer. 26:176–183. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Deng J, Wang Y, Zhang S and Chen L: A novel long noncoding RNA located on the antisense strand of MAL promotes the invasion and metastasis of oral squamous cell carcinoma. Arch Oral Biol. 155:1057902023. View Article : Google Scholar : PubMed/NCBI | |
|
Meršaková S, Holubeková V, Grendár M, Višňovský J, Ňachajová M, Kalman M, Kúdela E, Žúbor P, Bielik T, Lasabová Z and Danko J: Methylation of CADM1 and MAL together with HPV status in cytological cervical specimens serves an important role in the progression of cervical intraepithelial neoplasia. Oncol Lett. 16:7166–7174. 2018.PubMed/NCBI | |
|
Ondič O, Němcová J, Alaghehbandan R, Černá K, Gomolčáková B, Kinkorová-Luňáčková I, Chytra J, Šidlová H, Májek O and Bouda J: The detection of DNA methylation of tumour suppressor genes in cervical high-grade squamous intraepithelial lesion: A prospective cytological-histological correlation study of 70 cases. Cytopathology. 30:426–431. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Berchuck A, Iversen ES, Luo J, Clarke JP, Horne H, Levine DA, Boyd J, Alonso MA, Secord AA, Bernardini MQ, et al: Microarray analysis of early stage serous ovarian cancers shows profiles predictive of favorable outcome. Clin Cancer Res. 15:2448–2455. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Kulbe H, Otto R, Darb-Esfahani S, Lammert H, Abobaker S, Welsch G, Chekerov R, Schäfer R, Dragun D, Hummel M, et al: Discovery and validation of novel biomarkers for detection of epithelial ovarian cancer. Cells. 8:7132019. View Article : Google Scholar : PubMed/NCBI | |
|
Vasiljević N, Ahmad AS, Thorat MA, Fisher G, Berney DM, Møller H, Foster CS, Cuzick J and Lorincz AT: DNA methylation gene-based models indicating independent poor outcome in prostate cancer. BMC Cancer. 14:6552014. View Article : Google Scholar : PubMed/NCBI | |
|
Ahmad AS, Vasiljević N, Carter P, Berney DM, Møller H, Foster CS, Cuzick J and Lorincz AT: A novel DNA methylation score accurately predicts death from prostate cancer in men with low to intermediate clinical risk factors. Oncotarget. 7:71833–71840. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Choi P and Chen C: Genetic expression profiles and biologic pathway alterations in head and neck squamous cell carcinoma. Cancer. 104:1113–1128. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Riva G, Biolatti M, Pecorari G, Dell'Oste V and Landolfo S: PYHIN proteins and HPV: Role in the pathogenesis of head and neck squamous cell carcinoma. Microorganisms. 8:142019. View Article : Google Scholar : PubMed/NCBI | |
|
Misawa K, Imai A, Matsui H, Kanai A, Misawa Y, Mochizuki D, Mima M, Yamada S, Kurokawa T, Nakagawa T and Mineta H: Identification of novel methylation markers in HPV-associated oropharyngeal cancer: Genome-wide discovery, tissue verification and validation testing in ctDNA. Oncogene. 39:4741–4755. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Jiang Y, Chen Y, Gao L, Ye Q and Alonso MA: Expression pattern of MAL in normal epithelial cells, benign tumor, and squamous cell carcinoma of larynx. Lin Chuang Er Bi Yan Hou Tou Jing Wai Ke Za Zhi. 23:451–453. 2009.(In Chinese). PubMed/NCBI | |
|
Wilson SH, Bailey AM, Nourse CR, Mattei MG and Byrne JA: Identification of MAL2, a novel member of the mal proteolipid family, though interactions with TPD52-like proteins in the yeast two-hybrid system. Genomics. 76:81–88. 2001. View Article : Google Scholar : PubMed/NCBI | |
|
In JG, Striz AC, Bernad A and Tuma PL: Serine/threonine kinase 16 and MAL2 regulate constitutive secretion of soluble cargo in hepatic cells. Biochem J. 463:201–213. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Marazuela M, Martín-Belmonte F, García-López MA, Aranda JF, de Marco MC and Alonso MA: Expression and distribution of MAL2, an essential element of the machinery for basolateral-to-apical transcytosis, in human thyroid epithelial cells. Endocrinology. 145:1011–1016. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Llorente A, de Marco MC and Alonso MA: Caveolin-1 and MAL are located on prostasomes secreted by the prostate cancer PC-3 cell line. J Cell Sci. 117:5343–5351. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Fanayan S, Shehata M, Agterof AP, McGuckin MA, Alonso MA and Byrne JA: Mucin 1 (MUC1) is a novel partner for MAL2 in breast carcinoma cells. BMC Cell Biol. 10:72009. View Article : Google Scholar : PubMed/NCBI | |
|
In JG and Tuma PL: MAL2 selectively regulates polymeric IgA receptor delivery from the Golgi to the plasma membrane in WIF-B cells. Traffic. 11:1056–1066. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
López-Coral A, Del Vecchio GJ, Chahine JJ, Kallakury BV and Tuma PL: MAL2-induced actin-based protrusion formation is anti-oncogenic in hepatocellular carcinoma. Cancers (Basel). 12:4222020. View Article : Google Scholar : PubMed/NCBI | |
|
Farazi PA and DePinho RA: The genetic and environmental basis of hepatocellular carcinoma. Discov Med. 6:182–186. 2006.PubMed/NCBI | |
|
Bhandari A, Shen Y, Sindan N, Xia E, Gautam B, Lv S and Zhang X: MAL2 promotes proliferation, migration, and invasion through regulating epithelial-mesenchymal transition in breast cancer cell lines. Biochem Biophys Res Commun. 504:434–439. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
An L, Gong H, Yu X, Zhang W, Liu X, Yang X, Shu L, Liu J and Yang L: Downregulation of MAL2 inhibits breast cancer progression through regulating β-catenin/c-Myc axis. Cancer Cell Int. 23:1442023. View Article : Google Scholar : PubMed/NCBI | |
|
Zhong Y, Zhuang Z, Mo P, Shang Q, Lin M, Gong J, Huang J, Mo H and Huang M: Overexpression of MAL2 correlates with immune infiltration and poor prognosis in breast cancer. Evid Based Complement Alternat Med. 2021:55578732021. View Article : Google Scholar : PubMed/NCBI | |
|
Yuan J, Jiang X, Lan H, Zhang X, Ding T, Yang F, Zeng D, Yong J, Niu B and Xiao S: Multi-omics analysis of the therapeutic value of MAL2 based on data mining in human cancers. Front Cell Dev Biol. 9:7366492022. View Article : Google Scholar : PubMed/NCBI | |
|
Jeong J, Shin JH, Li W, Hong JY, Lim J, Hwang JY, Chung JJ, Yan Q, Liu Y, Choi J and Wysolmerski J: MAL2 mediates the formation of stable HER2 signaling complexes within lipid raft-rich membrane protrusions in breast cancer cells. Cell Rep. 37:1101602021. View Article : Google Scholar : PubMed/NCBI | |
|
Dersh D and Yewdell JW: Immune MAL2-practice: Breast cancer immunoevasion via MHC class I degradation. J Clin Invest. 131:e1443442021. View Article : Google Scholar : PubMed/NCBI | |
|
Zhu X, Bu J, Zhu T and Jiang Y: Targeting KK-LC-1 inhibits malignant biological behaviors of triple-negative breast cancer. J Transl Med. 21:1842023. View Article : Google Scholar : PubMed/NCBI | |
|
Eguchi D, Ohuchida K, Kozono S, Ikenaga N, Shindo K, Cui L, Fujiwara K, Akagawa S, Ohtsuka T, Takahata S, et al: MAL2 expression predicts distant metastasis and short survival in pancreatic cancer. Surgery. 154:573–582. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Xiong F, Wu GH, Wang B and Chen YJ: Plastin-3 is a diagnostic and prognostic marker for pancreatic adenocarcinoma and distinguishes from diffuse large B-cell lymphoma. Cancer Cell Int. 21:4112021. View Article : Google Scholar : PubMed/NCBI | |
|
Chen Y, Zheng B, Robbins DH, Lewin DN, Mikhitarian K, Graham A, Rumpp L, Glenn T, Gillanders WE, Cole DJ, et al: Accurate discrimination of pancreatic ductal adenocarcinoma and chronic pancreatitis using multimarker expression data and samples obtained by minimally invasive fine needle aspiration. Int J Cancer. 120:1511–1517. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Gao X, Chen Z, Li A, Zhang X and Cai X: MiR-129 regulates growth and invasion by targeting MAL2 in papillary thyroid carcinoma. Biomed Pharmacother. 105:1072–1078. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Li J, Li Y, Liu H, Liu Y and Cui B: The four-transmembrane protein MAL2 and tumor protein D52 (TPD52) are highly expressed in colorectal cancer and correlated with poor prognosis. PLoS One. 12:e01785152017. View Article : Google Scholar : PubMed/NCBI | |
|
Wang K, Yang Y, Zheng S and Hu W: Association mining identifies MAL2 as a novel tumor suppressor in colorectal cancer. Onco Targets Ther. 15:761–769. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Shao B, Fu X, Li X, Li Y and Gan N: RP11-284F21.9 promotes oral squamous cell carcinoma development via the miR-383-5p/MAL2 axis. J Oral Pathol Med. 49:21–29. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Dasgupta S, Tripathi PK, Qin H, Bhattacharya-Chatterjee M, Valentino J and Chatterjee SK: Identification of molecular targets for immunotherapy of patients with head and neck squamous cell carcinoma. Oral Oncol. 42:306–316. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Weis VG, Petersen CP, Mills JC, Tuma PL, Whitehead RH and Goldenring JR: Establishment of novel in vitro mouse chief cell and SPEM cultures identifies MAL2 as a marker of metaplasia in the stomach. Am J Physiol Gastrointest Liver Physiol. 307:G777–G792. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Guo JU, Agarwal V, Guo H and Bartel DP: Expanded identification and characterization of mammalian circular RNAs. Genome Biol. 15:4092014. View Article : Google Scholar : PubMed/NCBI | |
|
Smolarz B, Zadrożna-Nowak A and Romanowicz H: The role of lncRNA in the development of tumors, including breast cancer. Int J Mol Sci. 22:84272021. View Article : Google Scholar : PubMed/NCBI | |
|
He J, Yan H, Wei S and Chen G: LncRNA ST8SIA6-AS1 promotes cholangiocarcinoma progression by suppressing the miR-145-5p/MAL2 axis. Onco Targets Ther. 14:3209–3223. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang C, Xu L, Li X, Chen Y, Shi T and Wang Q: LINC00460 facilitates cell proliferation and inhibits ferroptosis in breast cancer through the miR-320a/MAL2 axis. Technol Cancer Res Treat. 22:153303382311643592023. View Article : Google Scholar : PubMed/NCBI | |
|
Le Guelte A and Macara IG: Plasmolipin-a new player in endocytosis and epithelial development. EMBO J. 34:1147–1148. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Rodríguez-Fraticelli AE, Bagwell J, Bosch-Fortea M, Boncompain G, Reglero-Real N, García-León MJ, Andrés G, Toribio ML, Alonso MA, Millán J, et al: Developmental regulation of apical endocytosis controls epithelial patterning in vertebrate tubular organs. Nat Cell Biol. 17:241–250. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
You J, Corley SM, Wen L, Hodge C, Höllhumer R, Madigan MC, Wilkins MR and Sutton G: RNA-Seq analysis and comparison of corneal epithelium in keratoconus and myopia patients. Sci Rep. 8:3892018. View Article : Google Scholar : PubMed/NCBI | |
|
Yaffe Y, Hugger I, Yassaf IN, Shepshelovitch J, Sklan EH, Elkabetz Y, Yeheskel A, Pasmanik-Chor M, Benzing C, Macmillan A, et al: The myelin proteolipid plasmolipin forms oligomers and induces liquid-ordered membranes in the Golgi complex. J Cell Sci. 128:2293–2302. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Fischer I, Cochary EF, Konola JT and Romano-Clark G: Expression of plasmolipin in oligodendrocytes. J Neurosci Res. 28:81–89. 1991. View Article : Google Scholar : PubMed/NCBI | |
|
Fischer I, Durrie R and Sapirstein VS: Plasmolipin: The other myelin proteolipid. A review of studies on its structure, expression, and function. Neurochem Res. 19:959–966. 1994. View Article : Google Scholar : PubMed/NCBI | |
|
Shea TB, Fischer I and Sapirstein V: Expression of a plasma membrane proteolipid during differentiation of neuronal and glial cells in primary culture. J Neurochem. 47:697–706. 1986. View Article : Google Scholar : PubMed/NCBI | |
|
Hasse B, Bosse F and Müller HW: Proteins of peripheral myelin are associated with glycosphingolipid/cholesterol-enriched membranes. J Neurosci Res. 69:227–232. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
Fredriksson K, Van Itallie CM, Aponte A, Gucek M, Tietgens AJ and Anderson JM: Proteomic analysis of proteins surrounding occludin and claudin-4 reveals their proximity to signaling and trafficking networks. PLoS One. 10:e01170742015. View Article : Google Scholar : PubMed/NCBI | |
|
Sapirstein VS, Nolan C, Stern R, Ciocci M and Masur SK: Identification of the plasma membrane proteolipid protein as a constituent of brain coated vesicles and synaptic plasma membrane. J Neurochem. 51:925–933. 1988. View Article : Google Scholar : PubMed/NCBI | |
|
Sapirstein VS, Nolan CE, Stern R, Gray-Board G and Beard ME: Identification of plasmolipin as a major constituent of white matter clathrin-coated vesicles. J Neurochem. 58:1372–1378. 1992. View Article : Google Scholar : PubMed/NCBI | |
|
Azzaz F, Mazzarino M, Chahinian H, Yahi N, Scala CD and Fantini J: Structure of the myelin sheath proteolipid plasmolipin (PLLP) in a ganglioside-containing lipid raft. Front Biosci (Landmark Ed). 28:1572023. View Article : Google Scholar : PubMed/NCBI | |
|
Gillen C, Gleichmann M, Greiner-Petter R, Zoidl G, Kupfer S, Bosse F, Auer J and Müller HW: Full-lenth cloning, expression and cellular localization of rat plasmolipin mRNA, a proteolipid of PNS and CNS. Eur J Neurosci. 8:405–414. 1996. View Article : Google Scholar : PubMed/NCBI | |
|
Fischer I and Sapirstein VS: Molecular cloning of plasmolipin. Characterization of a novel proteolipid restricted to brain and kidney. J Biol Chem. 269:24912–24919. 1994. View Article : Google Scholar : PubMed/NCBI | |
|
Bosse F, Hasse B, Pippirs U, Greiner-Petter R and Müller HW: Proteolipid plasmolipin: Localization in polarized cells, regulated expression and lipid raft association in CNS and PNS myelin. J Neurochem. 86:508–518. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Dannaeus K, Bessonova M and Jönsson JI: Characterization of the mouse myeloid-associated differentiation marker (MYADM) gene: Promoter analysis and protein localization. Mol Biol Rep. 32:149–157. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Takematsu E, Spencer A, Auster J, Chen PC, Graham A, Martin P and Baker AB: Genome wide analysis of gene expression changes in skin from patients with type 2 diabetes. PLoS One. 15:e02252672020. View Article : Google Scholar : PubMed/NCBI | |
|
Zheng P, Sun S, Wang J, Cheng ZJ, Lei KC, Xue M, Zhang T, Huang H, Zhang XD and Sun B: Integrative omics analysis identifies biomarkers of idiopathic pulmonary fibrosis. Cell Mol Life Sci. 79:662022. View Article : Google Scholar : PubMed/NCBI | |
|
Lautner-Rieske A, Thiebe R and Zachau HG: Searching for non-V kappa transcripts from the human immunoglobulin kappa locus. Gene. 159:199–202. 1995. View Article : Google Scholar : PubMed/NCBI | |
|
de Marco MC, Kremer L, Albar JP, Martinez-Menarguez JA, Ballesta J, Garcia-Lopez MA, Marazuela M, Puertollano R and Alonso MA: BENE, a novel raft-associated protein of the MAL proteolipid family, interacts with caveolin-1 in human endothelial-like ECV304 cells. J Biol Chem. 276:23009–23017. 2001. View Article : Google Scholar : PubMed/NCBI | |
|
Rubio-Ramos A, Bernabé-Rubio M, Labat-de-Hoz L, Casares-Arias J, Kremer L, Correas I and Alonso MA: MALL, a membrane-tetra-spanning proteolipid overexpressed in cancer, is present in membraneless nuclear biomolecular condensates. Cell Mol Life Sci. 79:2362022. View Article : Google Scholar : PubMed/NCBI | |
|
Kim K, Park U, Wang J, Lee J, Park S, Kim S, Choi D, Kim C and Park J: Gene profiling of colonic serrated adenomas by using oligonucleotide microarray. Int J Colorectal Dis. 23:569–580. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Kim HA, Kim KH and Lee RA: Expression of caveolin-1 is correlated with Akt-1 in colorectal cancer tissues. Exp Mol Pathol. 80:165–170. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Wang X, Fan J, Yu F, Cui F, Sun X, Zhong L, Yan D, Zhou C, Deng G, Wang B, et al: Decreased MALL expression negatively impacts colorectal cancer patient survival. Oncotarget. 7:22911–22927. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Li DX, Yu QX, Zeng CX, Ye LX, Guo YQ, Liu JF, Zheng HH, Feng D and Wei W: A novel endothelial-related prognostic index by integrating single-cell and bulk RNA sequencing data for patients with kidney renal clear cell carcinoma. Front Genet. 14:10964912023. View Article : Google Scholar : PubMed/NCBI | |
|
Aranda JF, Reglero-Real N, Marcos-Ramiro B, Ruiz-Sáenz A, Fernández-Martín L, Bernabé-Rubio M, Kremer L, Ridley AJ, Correas I, Alonso MA and Millán J: MYADM controls endothelial barrier function through ERM-dependent regulation of ICAM-1 expression. Mol Biol Cell. 24:483–494. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Wang Q, Li N, Wang X, Shen J, Hong X, Yu H, Zhang Y, Wan T, Zhang L, Wang J and Cao X: Membrane protein hMYADM preferentially expressed in myeloid cells is up-regulated during differentiation of stem cells and myeloid leukemia cells. Life Sci. 80:420–429. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Cui W, Yu L, He H, Chu Y, Gao J, Wan B, Tang L and Zhao S: Cloning of human myeloid-associated differentiation marker (MYADM) gene whose expression was up-regulated in NB4 cells induced by all-trans retinoic acid. Mol Biol Rep. 28:123–138. 2001. View Article : Google Scholar : PubMed/NCBI | |
|
Pettersson M, Dannaeus K, Nilsson K and Jönsson JI: Isolation of MYADM, a novel hematopoietic-associated marker gene expressed in multipotent progenitor cells and up-regulated during myeloid differentiation. J Leukoc Biol. 67:423–431. 2000. View Article : Google Scholar : PubMed/NCBI | |
|
Dy ABC, Langlais PR, Barker NK, Addison KJ, Tanyaratsrisakul S, Boitano S, Christenson SA, Kraft M, Meyers D, Bleecker ER, et al: Myeloid-associated differentiation marker is a novel SP-A-associated transmembrane protein whose expression on airway epithelial cells correlates with asthma severity. Sci Rep. 11:233922021. View Article : Google Scholar : PubMed/NCBI | |
|
Sun L, Lin P, Chen Y, Yu H, Ren S, Wang J, Zhao L and Du G: miR-182-3p/Myadm contribute to pulmonary artery hypertension vascular remodeling via a KLF4/p21-dependent mechanism. Theranostics. 10:5581–5599. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
de Wit NJ, Rijntjes J, Diepstra JH, van Kuppevelt TH, Weidle UH, Ruiter DJ and van Muijen GN: Analysis of differential gene expression in human melanocytic tumour lesions by custom made oligonucleotide arrays. Br J Cancer. 92:2249–2261. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Megger DA, Naboulsi W, Meyer HE and Sitek B: Proteome analyses of hepatocellular carcinoma. J Clin Transl Hepatol. 2:23–30. 2014.PubMed/NCBI | |
|
Zhou M, Chen Y, Gu X and Wang C: A comprehensive bioinformatic analysis for identification of myeloid-associated differentiation marker as a potential negative prognostic biomarker in non-small-cell lung cancer. Pathol Oncol Res. 28:16105042022. View Article : Google Scholar : PubMed/NCBI | |
|
Wang X, Dou X, Ren X, Rong Z, Sun L, Deng Y, Chen P and Li Z: A ductal-cell-related risk model integrating single-cell and bulk sequencing data predicts the prognosis of patients with pancreatic adenocarcinoma. Front Genet. 12:7636362021. View Article : Google Scholar : PubMed/NCBI | |
|
Papasotiriou I, Apostolou P, Ntanovasilis DA, Parsonidis P, Osmonov D and Jünemann KP: Study and detection of potential markers for predicting metastasis into lymph nodes in prostate cancer. Biomark Med. 14:1317–1327. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Echevarria MI, Awasthi S, Cheng CH, Berglund AE, Rounbehler RJ, Gerke TA, Takhar M, Davicioni E, Klein EA, Freedland SJ, et al: African American specific gene panel predictive of poor prostate cancer outcome. J Urol. 202:247–255. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang B, Ren Z, Zheng H, Lin M, Chen G, Luo OJ and Zhu G: CRISPR activation screening in a mouse model for drivers of hepatocellular carcinoma growth and metastasis. iScience. 26:1060992023. View Article : Google Scholar : PubMed/NCBI | |
|
Li D, Jin C, Yin C, Zhang Y, Pang B, Tian L, Han W, Ma D and Wang Y: An alternative splice form of CMTM8 induces apoptosis. Int J Biochem Cell Biol. 39:2107–2119. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Jin C, Ding P, Wang Y and Ma D: Regulation of EGF receptor signaling by the MARVEL domain-containing protein CKLFSF8. FEBS Lett. 579:6375–6382. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Jin C, Wang Y, Han W, Zhang Y, He Q, Li D, Yin C, Tian L, Liu D, Song Q and Ma D: CMTM8 induces caspase-dependent and -independent apoptosis through a mitochondria-mediated pathway. J Cell Physiol. 211:112–120. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Yan M, Zhu X, Qiao H, Zhang H, Xie W and Cai J: Downregulated CMTM8 correlates with poor prognosis in gastric cancer patients. DNA Cell Biol. 40:791–797. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Wu K, Li X, Gu H, Yang Q, Liu Y and Wang L: Research advances in CKLF-like MARVEL transmembrane domain-containing family in non-small cell lung cancer. Int J Biol Sci. 15:2576–2583. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Hu H, Chen JW, Xu KX, Wang D, Wang Y, Wang GW, Zhang SY and Wang XF: Expressions of CMTM8 and E-cadherin in primary and metastatic clear cell renal cell carcinoma. Beijing Da Xue Xue Bao Yi Xue Ban. 45:537–541. 2013.(In Chinese). PubMed/NCBI | |
|
Zhang W, Mendoza MC, Pei X, Ilter D, Mahoney SJ, Zhang Y, Ma D, Blenis J and Wang Y: Down-regulation of CMTM8 induces epithelial-to-mesenchymal transition-like changes via c-MET/extracellular signal-regulated kinase (ERK) signaling. J Biol Chem. 287:11850–11858. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Zeng X, Ma X, Guo H, Wei L, Zhang Y, Sun C, Han N, Sun S and Zhang N: MicroRNA-582-5p promotes triple-negative breast cancer invasion and metastasis by antagonizing CMTM8. Bioengineered. 12:10126–10135. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Both J, Krijgsman O, Bras J, Schaap GR, Baas F, Ylstra B and Hulsebos TJ: Focal chromosomal copy number aberrations identify CMTM8 and GPR177 as new candidate driver genes in osteosarcoma. PLoS One. 9:e1158352014. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang S, Pei X, Hu H, Zhang W, Mo X, Song Q, Zhang Y, Xu K, Wang Y and Na Y: Functional characterization of the tumor suppressor CMTM8 and its association with prognosis in bladder cancer. Tumour Biol. 37:6217–6225. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Gao D, Hu H, Wang Y, Yu W, Zhou J, Wang X, Wang W, Zhou C and Xu K: CMTM8 inhibits the carcinogenesis and progression of bladder cancer. Oncol Rep. 34:2853–2863. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Kang N, Xie X, Zhou X, Wang Y, Chen S, Qi R, Liu T and Jiang H: Identification and validation of EMT-immune-related prognostic biomarkers CDKN2A, CMTM8 and ILK in colon cancer. BMC Gastroenterol. 22:1902022. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang M, Wang J, Yue H and Zhang L: Identification of prognostic biomarkers in the CMTM family genes of human ovarian cancer through bioinformatics analysis and experimental verification. Front Genet. 13:9183192022. View Article : Google Scholar : PubMed/NCBI | |
|
Shi W, Zhang C, Ning Z, Hua Y, Li Y, Chen L, Liu L, Chen Z and Meng Z: CMTM8 as an LPA1-associated partner mediates lysophosphatidic acid-induced pancreatic cancer metastasis. Ann Transl Med. 9:422021. View Article : Google Scholar : PubMed/NCBI | |
|
Liu Y, Chew MH, Tham CK, Tang CL, Ong SY and Zhao Y: Methylation of serum SST gene is an independent prognostic marker in colorectal cancer. Am J Cancer Res. 6:2098–2108. 2016.PubMed/NCBI | |
|
Guerrero-Preston R, Hadar T, Ostrow KL, Soudry E, Echenique M, Ili-Gangas C, Pérez G, Perez J, Brebi-Mieville P, Deschamps J, et al: Differential promoter methylation of kinesin family member 1a in plasma is associated with breast cancer and DNA repair capacity. Oncol Rep. 32:505–512. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Hentschel AE, Nieuwenhuijzen JA, Bosschieter J, Splunter APV, Lissenberg-Witte BI, Voorn JPV, Segerink LI, Moorselaar RJAV and Steenbergen RDM: Comparative analysis of urine fractions for optimal bladder cancer detection using DNA methylation markers. Cancers (Basel). 12:8592020. View Article : Google Scholar : PubMed/NCBI | |
|
Lind GE, Danielsen SA, Ahlquist T, Merok MA, Andresen K, Skotheim RI, Hektoen M, Rognum TO, Meling GI, Hoff G, et al: Identification of an epigenetic biomarker panel with high sensitivity and specificity for colorectal cancer and adenomas. Mol Cancer. 10:852011. View Article : Google Scholar : PubMed/NCBI | |
|
Obermayr E, Sanchez-Cabo F, Tea MK, Singer CF, Krainer M, Fischer MB, Sehouli J, Reinthaller A, Horvat R, Heinze G, et al: Assessment of a six gene panel for the molecular detection of circulating tumor cells in the blood of female cancer patients. BMC Cancer. 10:6662010. View Article : Google Scholar : PubMed/NCBI | |
|
Obermayr E, Maritschnegg E, Agreiter C, Pecha N, Speiser P, Helmy-Bader S, Danzinger S, Krainer M, Singer C and Zeillinger R: Efficient leukocyte depletion by a novel microfluidic platform enables the molecular detection and characterization of circulating tumor cells. Oncotarget. 9:812–823. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Ding W, Li Z, Wang C, Dai J, Ruan G and Tu C: Anthracycline versus nonanthracycline adjuvant therapy for early breast cancer: A systematic review and meta-analysis. Medicine (Baltimore). 97:e129082018. View Article : Google Scholar : PubMed/NCBI | |
|
Willson ML, Burke L, Ferguson T, Ghersi D, Nowak AK and Wilcken N: Taxanes for adjuvant treatment of early breast cancer. Cochrane Database Syst Rev. 9:CD0044212019.PubMed/NCBI | |
|
Arumugam T, Ramachandran V, Fournier KF, Wang H, Marquis L, Abbruzzese JL, Gallick GE, Logsdon CD, McConkey DJ and Choi W: Epithelial to mesenchymal transition contributes to drug resistance in pancreatic cancer. Cancer Res. 69:5820–5828. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Bracker TU, Sommer A, Fichtner I, Faus H, Haendler B and Hess-Stumpp H: Efficacy of MS-275, a selective inhibitor of class I histone deacetylases, in human colon cancer models. Int J Oncol. 35:909–920. 2009.PubMed/NCBI |