You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.
I agree
International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.
International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.
Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.
Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.
Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.
Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.
Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.
International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.
Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.
Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.
Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.
An International Open Access Journal Devoted to General Medicine.
![]() |
![]() |
![]() |
![]() |
|
Cohn JN, Ferrari R and Sharpe N: Cardiac remodeling-concepts and clinical implications: A consensus paper from an international forum on cardiac remodeling. Behalf of an international forum on cardiac remodeling. J Am Coll Cardiol. 35:569–582. 2000. View Article : Google Scholar : PubMed/NCBI | |
|
Yang D, Liu HQ, Liu FY, Tang N, Guo Z, Ma SQ, An P, Wang MY, Wu HM, Yang Z, et al: The roles of noncardiomyocytes in cardiac remodeling. Int J Biol Sci. 16:2414–2429. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Wu QQ, Xiao Y, Yuan Y, Ma ZG, Liao HH, Liu C, Zhu JX, Yang Z, Deng W and Tang QZ: Mechanisms contributing to cardiac remodelling. Clin Sci (Lond). 131:2319–2345. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Gao J, Xu W, Wang J, Wang K and Li P: The role and molecular mechanism of non-coding RNAs in pathological cardiac remodeling. Int J Mol Sci. 18:6082017. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang LS, Liu Y, Chen Y, Ren JL, Zhang YR, Yu YR, Jia MZ, Ning ZP, Du J, Tang CS and Qi YF: Intermedin alleviates pathological cardiac remodeling by upregulating klotho. Pharmacol Res. 159:1049262020. View Article : Google Scholar : PubMed/NCBI | |
|
Takefuji M, Wirth A, Lukasova M, Takefuji S, Boettger T, Braun T, Althoff T, Offermanns S and Wettschureck N: G(13)-mediated signaling pathway is required for pressure overload-induced cardiac remodeling and heart failure. Circulation. 126:1972–1982. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
McCarroll CS, He W, Foote K, Bradley A, McGlynn K, Vidler F, Nixon C, Nather K, Fattah C, Riddell A, et al: Runx1 deficiency protects against adverse cardiac remodeling after myocardial infarction. Circulation. 137:57–70. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Bujak M, Ren G, Kweon HJ, Dobaczewski M, Reddy A, Taffet G, Wang XF and Frangogiannis NG: Essential role of Smad3 in infarct healing and in the pathogenesis of cardiac remodeling. Circulation. 116:2127–2138. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Ni L, Yuan C, Chen G, Zhang C and Wu X: SGLT2i: Beyond the glucose-lowering effect. Cardiovasc Diabetol. 19:982020. View Article : Google Scholar : PubMed/NCBI | |
|
Home PD, Pocock SJ, Beck-Nielsen H, Curtis PS, Gomis R, Hanefeld M, Jones NP, Komajda M and McMurray JJV; RECORD Study Team, : Rosiglitazone evaluated for cardiovascular outcomes in oral agent combination therapy for type 2 diabetes (RECORD): A multicentre, randomised, open-label trial. Lancet. 373:2125–2135. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Wilcox T, De Block C, Schwartzbard AZ and Newman JD: Diabetic agents, from metformin to SGLT2 inhibitors and GLP1 receptor agonists: JACC focus seminar. J Am Coll Cardiol. 75:1956–1974. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Zinman B, Wanner C, Lachin JM, Fitchett D, Bluhmki E, Hantel S, Mattheus M, Devins T, Johansen OE, Woerle HJ, et al: Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med. 373:2117–2128. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Neal B, Perkovic V, Mahaffey KW, de Zeeuw D, Fulcher G, Erondu N, Shaw W, Law G, Desai M and Matthews DR; CANVAS Program Collaborative Group, : Canagliflozin and cardiovascular and renal events in type 2 diabetes. N Engl J Med. 377:644–657. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Wiviott SD, Raz I, Bonaca MP, Mosenzon O, Kato ET, Cahn A, Silverman MG, Zelniker TA, Kuder JF, Murphy SA, et al: Dapagliflozin and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 380:347–357. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
McDonagh TA, Metra M, Adamo M, Gardner RS, Baumbach A, Böhm M, Burri H, Butler J, Čelutkienė J, Chioncel O, et al: 2021 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J. 42:3599–3726. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Heidenreich PA, Bozkurt B, Aguilar D, Allen LA, Byun JJ, Colvin MM, Deswal A, Drazner MH, Dunlay SM, Evers LR, et al: 2022 AHA/ACC/HFSA guideline for the management of heart failure: A report of the American college of cardiology/American heart association joint committee on clinical practice guidelines. Circulation. 145:e895–e1032. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Braunwald E: Gliflozins in the management of cardiovascular disease. N Engl J Med. 386:2024–2034. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Van Steenbergen A, Balteau M, Ginion A, Ferté L, Battault S, Ravenstein CM, Balligand JL, Daskalopoulos EP, Gilon P, Despa F, et al: Sodium-myoinositol cotransporter-1, SMIT1, mediates the production of reactive oxygen species induced by hyperglycemia in the heart. Sci Rep. 7:411662017. View Article : Google Scholar : PubMed/NCBI | |
|
Cowie MR and Fisher M: SGLT2 inhibitors: Mechanisms of cardiovascular benefit beyond glycaemic control. Nat Rev Cardiol. 17:761–772. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Tripolt NJ, Kolesnik E, Pferschy PN, Verheyen N, Ablasser K, Sailer S, Alber H, Berger R, Kaulfersch C, Leitner K, et al: Impact of EMpagliflozin on cardiac function and biomarkers of heart failure in patients with acute MYocardial infarction-the EMMY trial. Am Heart J. 221:39–47. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
von Lewinski D, Tripolt NJ, Sourij H, Pferschy PN, Oulhaj A, Alber H, Gwechenberger M, Martinek M, Seidl S, Moertl D, et al: Ertugliflozin to reduce arrhythmic burden in ICD/CRT patients (ERASe-trial)-a phase III study. Am Heart J. 246:152–160. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Lee MMY, Brooksbank KJM, Wetherall K, Mangion K, Roditi G, Campbell RT, Berry C, Chong V, Coyle L, Docherty KF, et al: Effect of empagliflozin on left ventricular volumes in patients with type 2 diabetes, or prediabetes, and heart failure with reduced ejection fraction (SUGAR-DM-HF). Circulation. 143:516–525. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Aimo A, Vergaro G, González A, Barison A, Lupón J, Delgado V, Richards AM, de Boer RA, Thum T, Arfsten H, et al: Cardiac remodelling-part 2: Clinical, imaging and laboratory findings. A review from the study group on biomarkers of the heart failure association of the European society of cardiology. Eur J Heart Fail. 24:944–958. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Singh JSS, Fathi A, Vickneson K, Mordi I, Mohan M, Houston JG, Pearson ER, Struthers AD and Lang CC: Research into the effect of SGLT2 inhibition on left ventricular remodelling in patients with heart failure and diabetes mellitus (REFORM) trial rationale and design. Cardiovasc Diabetol. 15:972016. View Article : Google Scholar : PubMed/NCBI | |
|
Santos-Gallego CG, Vargas-Delgado AP, Requena-Ibanez JA, Garcia-Ropero A, Mancini D, Pinney S, Macaluso F, Sartori S, Roque M, Sabatel-Perez F, et al: Randomized trial of empagliflozin in nondiabetic patients with heart failure and reduced ejection fraction. J Am Coll Cardiol. 77:243–255. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Verma S, Mazer CD, Yan AT, Mason T, Garg V, Teoh H, Zuo F, Quan A, Farkouh ME, Fitchett DH, et al: Effect of empagliflozin on left ventricular mass in patients with type 2 diabetes mellitus and coronary artery disease: The EMPA-HEART cardiolink-6 randomized clinical trial. Circulation. 140:1693–1702. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Omar M, Jensen J, Ali M, Frederiksen PH, Kistorp C, Videbæk L, Poulsen MK, Tuxen CD, Möller S, Gustafsson F, et al: Associations of empagliflozin with left ventricular volumes, mass, and function in patients with heart failure and reduced ejection fraction: A substudy of the empire HF randomized clinical trial. JAMA Cardiol. 6:836–840. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Hwang IC, Cho GY, Yoon YE, Park JJ, Park JB, Lee SP, Kim HK, Kim YJ and Sohn DW: Different effects of SGLT2 inhibitors according to the presence and types of heart failure in type 2 diabetic patients. Cardiovasc Diabetol. 19:692020. View Article : Google Scholar : PubMed/NCBI | |
|
Soga F, Tanaka H, Tatsumi K, Mochizuki Y, Sano H, Toki H, Matsumoto K, Shite J, Takaoka H, Doi T and Hirata KI: Impact of dapagliflozin on left ventricular diastolic function of patients with type 2 diabetic mellitus with chronic heart failure. Cardiovasc Diabetol. 17:1322018. View Article : Google Scholar : PubMed/NCBI | |
|
Brown AJM, Gandy S, McCrimmon R, Houston JG, Struthers AD and Lang CC: A randomized controlled trial of dapagliflozin on left ventricular hypertrophy in people with type two diabetes: The DAPA-LVH trial. Eur Heart J. 41:3421–3432. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Lan NSR, Yeap BB, Fegan PG, Green G, Rankin JM and Dwivedi G: Empagliflozin and left ventricular diastolic function following an acute coronary syndrome in patients with type 2 diabetes. Int J Cardiovasc Imaging. 37:517–527. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
von Lewinski D, Kolesnik E, Tripolt NJ, Pferschy PN, Benedikt M, Wallner M, Alber H, Berger R, Lichtenauer M, Saely CH, et al: Empagliflozin in acute myocardial infarction: The EMMY trial. Eur Heart J. 43:4421–4432. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Ersbøll M, Jürgens M, Hasbak P, Kjær A, Wolsk E, Zerahn B, Brandt-Jacobsen NH, Gæde P, Rossing P, Faber J, et al: Effect of empagliflozin on myocardial structure and function in patients with type 2 diabetes at high cardiovascular risk: The SIMPLE randomized clinical trial. Int J Cardiovasc Imaging. 38:579–587. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Palmiero G, Cesaro A, Galiero R, Loffredo G, Caturano A, Vetrano E, Rinaldi L, Salvatore T, Ruggiero R, Rosaria Di Palo M, et al: Impact of gliflozins on cardiac remodeling in patients with type 2 diabetes mellitus & reduced ejection fraction heart failure: A pilot prospective study. GLISCAR study. Diabetes Res Clin Pract. 200:1106862023. View Article : Google Scholar : PubMed/NCBI | |
|
Russo V, Malvezzi Caracciolo D'Aquino M, Caturano A, Scognamiglio G, Pezzullo E, Fabiani D, Del Giudice C, Carbone A, Bottino R, Caso V, et al: Improvement of global longitudinal strain and myocardial work in type 2 diabetes patients on sodium-glucose cotransporter 2 inhibitors therapy. J Cardiovasc Pharmacol. 82:196–200. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Nagueh SF: Left ventricular diastolic function: Understanding pathophysiology, diagnosis, and prognosis with echocardiography. JACC Cardiovasc Imaging. 13:228–244. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Ren C, Sun K, Zhang Y, Hu Y, Hu B, Zhao J, He Z, Ding R, Wang W and Liang C: Sodium-glucose CoTransporter-2 inhibitor empagliflozin ameliorates sunitinib-induced cardiac dysfunction via regulation of AMPK-mTOR signaling pathway-mediated autophagy. Front Pharmacol. 12:6641812021. View Article : Google Scholar : PubMed/NCBI | |
|
Santos-Gallego CG, Requena-Ibanez JA, San Antonio R, Ishikawa K, Watanabe S, Picatoste B, Flores E, Garcia-Ropero A, Sanz J, Hajjar RJ, et al: Empagliflozin ameliorates adverse left ventricular remodeling in nondiabetic heart failure by enhancing myocardial energetics. J Am Coll Cardiol. 73:1931–1944. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Yurista SR, Silljé HHW, Oberdorf-Maass SU, Schouten EM, Pavez Giani MG, Hillebrands JL, van Goor H, van Veldhuisen DJ, de Boer RA and Westenbrink BD: Sodium-glucose co-transporter 2 inhibition with empagliflozin improves cardiac function in non-diabetic rats with left ventricular dysfunction after myocardial infarction. Eur J Heart Fail. 21:862–873. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Habibi J, Aroor AR, Sowers JR, Jia G, Hayden MR, Garro M, Barron B, Mayoux E, Rector RS, Whaley-Connell A and DeMarco VG: Sodium glucose transporter 2 (SGLT2) inhibition with empagliflozin improves cardiac diastolic function in a female rodent model of diabetes. Cardiovasc Diabetol. 16:92017. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang N, Feng B, Ma X, Sun K, Xu G and Zhou Y: Dapagliflozin improves left ventricular remodeling and aorta sympathetic tone in a pig model of heart failure with preserved ejection fraction. Cardiovasc Diabetol. 18:1072019. View Article : Google Scholar : PubMed/NCBI | |
|
Lee HC, Shiou YL, Jhuo SJ, Chang CY, Liu PL, Jhuang WJ, Dai ZK, Chen WY, Chen YF and Lee AS: The sodium-glucose co-transporter 2 inhibitor empagliflozin attenuates cardiac fibrosis and improves ventricular hemodynamics in hypertensive heart failure rats. Cardiovasc Diabetol. 18:452019. View Article : Google Scholar : PubMed/NCBI | |
|
Lahnwong S, Palee S, Apaijai N, Sriwichaiin S, Kerdphoo S, Jaiwongkam T, Chattipakorn SC and Chattipakorn N: Acute dapagliflozin administration exerts cardioprotective effects in rats with cardiac ischemia/reperfusion injury. Cardiovasc Diabetol. 19:912020. View Article : Google Scholar : PubMed/NCBI | |
|
Kräker K, Herse F, Golic M, Reichhart N, Crespo-Garcia S, Strauß O, Grune J, Kintscher U, Ebrahim M, Bader M, et al: Effects of empagliflozin and target-organ damage in a novel rodent model of heart failure induced by combined hypertension and diabetes. Sci Rep. 10:140612020. View Article : Google Scholar : PubMed/NCBI | |
|
Santos-Gallego CG, Requena-Ibanez JA, San Antonio R, Garcia-Ropero A, Ishikawa K, Watanabe S, Picatoste B, Vargas-Delgado AP, Flores-Umanzor EJ, Sanz J, et al: Empagliflozin ameliorates diastolic dysfunction and left ventricular fibrosis/stiffness in nondiabetic heart failure: A multimodality study. JACC Cardiovasc Imaging. 14:393–407. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Lin YW, Chen CY, Shih JY, Cheng BC, Chang CP, Lin MT, Ho CH, Chen ZC, Fisch S and Chang WT: Dapagliflozin improves cardiac hemodynamics and mitigates arrhythmogenesis in mitral regurgitation-induced myocardial dysfunction. J Am Heart Assoc. 10:e0192742021. View Article : Google Scholar : PubMed/NCBI | |
|
Dini FL, Galeotti GG, Terlizzese G, Fabiani I, Pugliese NR and Rovai I: Left ventricular mass and thickness: Why does it matter? Heart Fail Clin. 15:159–166. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Matsutani D, Sakamoto M, Kayama Y, Takeda N, Horiuchi R and Utsunomiya K: Effect of canagliflozin on left ventricular diastolic function in patients with type 2 diabetes. Cardiovasc Diabetol. 17:732018. View Article : Google Scholar : PubMed/NCBI | |
|
Nakamura M and Sadoshima J: Mechanisms of physiological and pathological cardiac hypertrophy. Nat Rev Cardiol. 15:387–407. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Querejeta R, López B, González A, Sánchez E, Larman M, Martínez Ubago JL and Díez J: Increased collagen type I synthesis in patients with heart failure of hypertensive origin: Relation to myocardial fibrosis. Circulation. 110:1263–1268. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Frangogiannis NG: Cardiac fibrosis: Cell biological mechanisms, molecular pathways and therapeutic opportunities. Mol Aspects Med. 65:70–99. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Frangogiannis NG: Cardiac fibrosis. Cardiovasc Res. 117:1450–1488. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Travers JG, Tharp CA, Rubino M and McKinsey TA: Therapeutic targets for cardiac fibrosis: From old school to next-gen. J Clin Invest. 132:e1485542022. View Article : Google Scholar : PubMed/NCBI | |
|
Aluja D, Delgado-Tomás S, Ruiz-Meana M, Barrabés JA and Inserte J: Calpains as potential therapeutic targets for myocardial hypertrophy. Int J Mol Sci. 23:41032022. View Article : Google Scholar : PubMed/NCBI | |
|
Yerra VG, Batchu SN, Kabir G, Advani SL, Liu Y, Siddiqi FS, Connelly KA and Advani A: Empagliflozin disrupts a Tnfrsf12a-mediated feed forward loop that promotes left ventricular hypertrophy. Cardiovasc Drugs Ther. 36:619–632. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Shi L, Zhu D, Wang S, Jiang A and Li F: Dapagliflozin attenuates cardiac remodeling in mice model of cardiac pressure overload. Am J Hypertens. 32:452–459. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Li X, Lu Q, Qiu Y, do Carmo JM, Wang Z, da Silva AA, Mouton A, Omoto ACM, Hall ME, Li J and Hall JE: Direct Cardiac actions of the sodium glucose co-transporter 2 inhibitor empagliflozin improve myocardial oxidative phosphorylation and attenuate pressure-overload heart failure. J Am Heart Assoc. 10:e0182982021. View Article : Google Scholar : PubMed/NCBI | |
|
Liu L, Luo H, Liang Y, Tang J and Shu Y: Dapagliflozin ameliorates STZ-induced cardiac hypertrophy in type 2 diabetic rats by inhibiting the calpain-1 expression and nuclear transfer of NF-kappaB. Comput Math Methods Med. 2022:32930542022.PubMed/NCBI | |
|
Wang J, Huang X, Liu H, Chen Y, Li P, Liu L, Li J, Ren Y, Huang J, Xiong E, et al: Empagliflozin ameliorates diabetic cardiomyopathy via attenuating oxidative stress and improving mitochondrial function. Oxid Med Cell Longev. 2022:11224942022.PubMed/NCBI | |
|
Kimura T, Nakamura K, Miyoshi T, Yoshida M, Akazawa K, Saito Y, Akagi S, Ohno Y, Kondo M, Miura D, et al: Inhibitory effects of tofogliflozin on cardiac hypertrophy in dahl salt-sensitive and salt-resistant rats fed a high-fat diet. Int Heart J. 60:728–735. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Hsieh PL, Chu PM, Cheng HC, Huang YT, Chou WC, Tsai KL and Chan SH: Dapagliflozin mitigates doxorubicin-caused myocardium damage by regulating AKT-mediated oxidative stress, cardiac remodeling, and inflammation. Int J Mol Sci. 23:101462022. View Article : Google Scholar : PubMed/NCBI | |
|
Asensio Lopez MDC, Lax A, Hernandez Vicente A, Saura Guillen E, Hernandez-Martinez A, Fernandez Del Palacio MJ, Bayes-Genis A and Pascual Figal DA: Empagliflozin improves post-infarction cardiac remodeling through GTP enzyme cyclohydrolase 1 and irrespective of diabetes status. Sci Rep. 10:135532020. View Article : Google Scholar : PubMed/NCBI | |
|
Jiang K, Xu Y, Wang D, Chen F, Tu Z, Qian J, Xu S, Xu Y, Hwa J, Li J, et al: Cardioprotective mechanism of SGLT2 inhibitor against myocardial infarction is through reduction of autosis. Protein Cell. 13:336–359. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Crow MT, Mani K, Nam YJ and Kitsis RN: The mitochondrial death pathway and cardiac myocyte apoptosis. Circ Res. 95:957–970. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Del Re DP, Amgalan D, Linkermann A, Liu Q and Kitsis RN: Fundamental mechanisms of regulated cell death and implications for heart disease. Physiol Rev. 99:1765–1817. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Abbate A, Bussani R, Amin MS, Vetrovec GW and Baldi A: Acute myocardial infarction and heart failure: Role of apoptosis. Int J Biochem Cell Biol. 38:1834–1840. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Liu Y, Wu M, Xu J, Xu B and Kang L: Empagliflozin prevents from early cardiac injury post myocardial infarction in non-diabetic mice. Eur J Pharm Sci. 161:1057882021. View Article : Google Scholar : PubMed/NCBI | |
|
Long Q, Li L, Yang H, Lu Y, Yang H, Zhu Y, Tang Y, Liu C and Yuan J: SGLT2 inhibitor, canagliflozin, ameliorates cardiac inflammation in experimental autoimmune myocarditis. Int Immunopharmacol. 110:1090242022. View Article : Google Scholar : PubMed/NCBI | |
|
El-Sayed N, Mostafa YM, AboGresha NM, Ahmed AAM, Mahmoud IZ and El-Sayed NM: Dapagliflozin attenuates diabetic cardiomyopathy through erythropoietin up-regulation of AKT/JAK/MAPK pathways in streptozotocin-induced diabetic rats. Chem Biol Interact. 347:1096172021. View Article : Google Scholar : PubMed/NCBI | |
|
Fan ZG, Xu Y, Chen X, Ji MY and Ma GS: Appropriate dose of dapagliflozin improves cardiac outcomes by normalizing mitochondrial fission and reducing cardiomyocyte apoptosis after acute myocardial infarction. Drug Des Devel Ther. 16:2017–2030. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Chang WT, Shih JY, Lin YW, Chen ZC, Kan WC, Lin TH and Hong CS: Dapagliflozin protects against doxorubicin-induced cardiotoxicity by restoring STAT3. Arch Toxicol. 96:2021–2032. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Ren FF, Xie ZY, Jiang YN, Guan X, Chen QY, Lai TF and Li L: Dapagliflozin attenuates pressure overload-induced myocardial remodeling in mice via activating SIRT1 and inhibiting endoplasmic reticulum stress. Acta Pharmacol Sin. 43:1721–1732. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Zein L, Fulda S, Kögel D and van Wijk SJL: Organelle-specific mechanisms of drug-induced autophagy-dependent cell death. Matrix Biol. 100-101:54–64. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang J, Liu J, Huang Y, Chang JYF, Liu L, McKeehan WL, Martin JF and Wang F: FRS2α-mediated FGF signals suppress premature differentiation of cardiac stem cells through regulating autophagy activity. Circ Res. 110:e29–e39. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Morales PE, Arias-Durán C, Ávalos-Guajardo Y, Aedo G, Verdejo HE, Parra V and Lavandero S: Emerging role of mitophagy in cardiovascular physiology and pathology. Mol Aspects Med. 71:1008222020. View Article : Google Scholar : PubMed/NCBI | |
|
Gatica D, Chiong M, Lavandero S and Klionsky DJ: Molecular mechanisms of autophagy in the cardiovascular system. Circ Res. 116:456–467. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Nakai A, Yamaguchi O, Takeda T, Higuchi Y, Hikoso S, Taniike M, Omiya S, Mizote I, Matsumura Y, Asahi M, et al: The role of autophagy in cardiomyocytes in the basal state and in response to hemodynamic stress. Nat Med. 13:619–624. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Munasinghe PE, Riu F, Dixit P, Edamatsu M, Saxena P, Hamer NS, Galvin IF, Bunton RW, Lequeux S, Jones G, et al: Type-2 diabetes increases autophagy in the human heart through promotion of Beclin-1 mediated pathway. Int J Cardiol. 202:13–20. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Shirakabe A, Zhai P, Ikeda Y, Saito T, Maejima Y, Hsu CP, Nomura M, Egashira K, Levine B and Sadoshima J: Drp1-dependent mitochondrial autophagy plays a protective role against pressure overload-induced mitochondrial dysfunction and heart failure. Circulation. 133:1249–1263. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Nishida K and Otsu K: Autophagy during cardiac remodeling. J Mol Cell Cardiol. 95:11–18. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Nah J, Zhai P, Huang CY, Fernández ÁF, Mareedu S, Levine B and Sadoshima J: Upregulation of Rubicon promotes autosis during myocardial ischemia/reperfusion injury. J Clin Invest. 130:2978–2991. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Ikeda S, Zablocki D and Sadoshima J: The role of autophagy in death of cardiomyocytes. J Mol Cell Cardiol. 165:1–8. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Gatica D, Chiong M, Lavandero S and Klionsky DJ: The role of autophagy in cardiovascular pathology. Cardiovasc Res. 118:934–950. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Wang CY, Chen CC, Lin MH, Su HT, Ho MY, Yeh JK, Tsai ML, Hsieh IC and Wen MS: TLR9 binding to Beclin 1 and mitochondrial SIRT3 by a sodium-glucose co-transporter 2 inhibitor protects the heart from doxorubicin toxicity. Biology (Basel). 9:3692020.PubMed/NCBI | |
|
Deng R, Jiang K, Chen F, Miao Y, Lu Y, Su F, Liang J, Qian J, Wang D, Xiang Y and Shen L: Novel cardioprotective mechanism for empagliflozin in nondiabetic myocardial infarction with acute hyperglycemia. Biomed Pharmacother. 154:1136062022. View Article : Google Scholar : PubMed/NCBI | |
|
Kang R, Zeh HJ, Lotze MT and Tang D: The Beclin 1 network regulates autophagy and apoptosis. Cell Death Differ. 18:571–580. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Wang CC, Li Y, Qian XQ, Zhao H, Wang D, Zuo GX and Wang K: Empagliflozin alleviates myocardial I/R injury and cardiomyocyte apoptosis via inhibiting ER stress-induced autophagy and the PERK/ATF4/Beclin1 pathway. J Drug Target. 30:858–872. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Aragón-Herrera A, Feijóo-Bandín S, Otero Santiago M, Barral L, Campos-Toimil M, Gil-Longo J, Costa Pereira TM, Garcia-Caballero T, Rodriguez-Segade S, Rodriguez J, et al: Empagliflozin reduces the levels of CD36 and cardiotoxic lipids while improving autophagy in the hearts of Zucker diabetic fatty rats. Biochem Pharmacol. 170:1136772019. View Article : Google Scholar : PubMed/NCBI | |
|
Ma H and Ma Y: Dapagliflozin inhibits ventricular remodeling in heart failure rats by activating autophagy through AMPK/mTOR pathway. Comput Math Methods Med. 2022:62602022022. View Article : Google Scholar : PubMed/NCBI | |
|
Yu YW, Que JQ, Liu S, Huang KY, Qian L, Weng YB, Rong FN, Wang L, Zhou YY, Xue YJ and Ji KT: Sodium-glucose co-transporter-2 inhibitor of dapagliflozin attenuates myocardial ischemia/reperfusion injury by limiting NLRP3 inflammasome activation and modulating autophagy. Front Cardiovasc Med. 8:7682142022. View Article : Google Scholar : PubMed/NCBI | |
|
Qin Y, Qiao Y, Wang D, Tang C and Yan G: Ferritinophagy and ferroptosis in cardiovascular disease: Mechanisms and potential applications. Biomed Pharmacother. 141:1118722021. View Article : Google Scholar : PubMed/NCBI | |
|
Tang D, Chen X, Kang R and Kroemer G: Ferroptosis: molecular mechanisms and health implications. Cell Res. 31:107–125. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Huang X, Song Y, Wei L, Guo J, Xu W and Li M: The emerging roles of ferroptosis in organ fibrosis and its potential therapeutic effect. Int Immunopharmacol. 116:1098122023. View Article : Google Scholar : PubMed/NCBI | |
|
Feng Y, Madungwe NB, Imam Aliagan AD, Tombo N and Bopassa JC: Liproxstatin-1 protects the mouse myocardium against ischemia/reperfusion injury by decreasing VDAC1 levels and restoring GPX4 levels. Biochem Biophys Res Commun. 520:606–611. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Fang X, Wang H, Han D, Xie E, Yang X, Wei J, Gu S, Gao F, Zhu N, Yin X, et al: Ferroptosis as a target for protection against cardiomyopathy. Proc Natl Acad Sci USA. 116:2672–2680. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Baba Y, Higa JK, Shimada BK, Horiuchi KM, Suhara T, Kobayashi M, Woo JD, Aoyagi H, Marh KS, Kitaoka H and Matsui T: Protective effects of the mechanistic target of rapamycin against excess iron and ferroptosis in cardiomyocytes. Am J Physiol Heart Circ Physiol. 314:H659–H668. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Bai T, Li M, Liu Y, Qiao Z and Wang Z: Inhibition of ferroptosis alleviates atherosclerosis through attenuating lipid peroxidation and endothelial dysfunction in mouse aortic endothelial cell. Free Radic Biol Med. 160:92–102. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Chen X, Xu S, Zhao C and Liu B: Role of TLR4/NADPH oxidase 4 pathway in promoting cell death through autophagy and ferroptosis during heart failure. Biochem Biophys Res Commun. 516:37–43. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Ma S, He LL, Zhang GR, Zuo QJ, Wang ZL, Zhai JL, Zhang TT, Wang Y, Ma HJ and Guo YF: Canagliflozin mitigates ferroptosis and ameliorates heart failure in rats with preserved ejection fraction. Naunyn Schmiedebergs Arch Pharmacol. 395:945–962. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Wang X, Chen X, Zhou W, Men H, Bao T, Sun Y, Wang Q, Tan Y, Keller BB, Tong Q, et al: Ferroptosis is essential for diabetic cardiomyopathy and is prevented by sulforaphane via AMPK/NRF2 pathways. Acta Pharm Sin B. 12:708–722. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Du S, Shi H, Xiong L, Wang P and Shi Y: Canagliflozin mitigates ferroptosis and improves myocardial oxidative stress in mice with diabetic cardiomyopathy. Front Endocrinol (Lausanne). 13:10116692022. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang W, Lu J, Wang Y, Sun P, Gao T, Xu N, Zhang Y and Xie W: Canagliflozin attenuates lipotoxicity in cardiomyocytes by inhibiting inflammation and ferroptosis through activating AMPK pathway. Int J Mol Sci. 24:8582023. View Article : Google Scholar : PubMed/NCBI | |
|
Min J, Wu L, Liu Y, Song G, Deng Q, Jin W, Yu W, Abudureyimu M, Pei Z and Ren J: Empagliflozin attenuates trastuzumab-induced cardiotoxicity through suppression of DNA damage and ferroptosis. Life Sci. 312:1212072023. View Article : Google Scholar : PubMed/NCBI | |
|
Chen W, Zhang Y, Wang Z, Tan M, Lin J, Qian X, Li H and Jiang T: Dapagliflozin alleviates myocardial ischemia/reperfusion injury by reducing ferroptosis via MAPK signaling inhibition. Front Pharmacol. 14:10782052023. View Article : Google Scholar : PubMed/NCBI | |
|
Aimo A, Castiglione V, Borrelli C, Saccaro LF, Franzini M, Masi S, Emdin M and Giannoni A: Oxidative stress and inflammation in the evolution of heart failure: From pathophysiology to therapeutic strategies. Eur J Prev Cardiol. 27:494–510. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Halade GV and Lee DH: Inflammation and resolution signaling in cardiac repair and heart failure. EBioMedicine. 79:1039922022. View Article : Google Scholar : PubMed/NCBI | |
|
Prabhu SD and Frangogiannis NG: The biological basis for cardiac repair after myocardial infarction: From inflammation to fibrosis. Circ Res. 119:91–112. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Timmers L, Pasterkamp G, de Hoog VC, Arslan F, Appelman Y and de Kleijn DPV: The innate immune response in reperfused myocardium. Cardiovasc Res. 94:276–283. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Schroder K and Tschopp J: The inflammasomes. Cell. 140:821–832. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Frieler RA and Mortensen RM: Immune cell and other noncardiomyocyte regulation of cardiac hypertrophy and remodeling. Circulation. 131:1019–1030. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Haudek SB, Taffet GE, Schneider MD and Mann DL: TNF provokes cardiomyocyte apoptosis and cardiac remodeling through activation of multiple cell death pathways. J Clin Invest. 117:2692–2701. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Ing DJ, Zang J, Dzau VJ, Webster KA and Bishopric NH: Modulation of cytokine-induced cardiac myocyte apoptosis by nitric oxide, Bak, and Bcl-x. Circ Res. 84:21–33. 1999. View Article : Google Scholar : PubMed/NCBI | |
|
Meléndez GC, McLarty JL, Levick SP, Du Y, Janicki JS and Brower GL: Interleukin 6 mediates myocardial fibrosis, concentric hypertrophy, and diastolic dysfunction in rats. Hypertension. 56:225–231. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Sivasubramanian N, Coker ML, Kurrelmeyer KM, MacLellan WR, DeMayo FJ, Spinale FG and Mann DL: Left ventricular remodeling in transgenic mice with cardiac restricted overexpression of tumor necrosis factor. Circulation. 104:826–831. 2001. View Article : Google Scholar : PubMed/NCBI | |
|
Saxena A, Chen W, Su Y, Rai V, Uche OU, Li N and Frangogiannis NG: IL-1 induces proinflammatory leukocyte infiltration and regulates fibroblast phenotype in the infarcted myocardium. J Immunol. 191:4838–4848. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Chou CH, Hung CS, Liao CW, Wei LH, Chen CW, Shun CT, Wen WF, Wan CH, Wu XM, Chang YY, et al: IL-6 trans-signalling contributes to aldosterone-induced cardiac fibrosis. Cardiovasc Res. 114:690–702. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Didion SP, Kinzenbaw DA, Schrader LI, Chu Y and Faraci FM: Endogenous interleukin-10 inhibits angiotensin II-induced vascular dysfunction. Hypertension. 54:619–624. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Szalay G, Sauter M, Hald J, Weinzierl A, Kandolf R and Klingel K: Sustained nitric oxide synthesis contributes to immunopathology in ongoing myocarditis attributable to interleukin-10 disorders. Am J Pathol. 169:2085–2093. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Kolijn D, Pabel S, Tian Y, Lódi M, Herwig M, Carrizzo A, Zhazykbayeva S, Kovács A, Fülöp GÁ, Falcão-Pires I, et al: Empagliflozin improves endothelial and cardiomyocyte function in human heart failure with preserved ejection fraction via reduced pro-inflammatory-oxidative pathways and protein kinase Gα oxidation. Cardiovasc Res. 117:495–507. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Yan P, Song X, Tran J, Zhou R, Cao X, Zhao G and Yuan H: Dapagliflozin alleviates coxsackievirus B3-induced acute viral myocarditis by regulating the macrophage polarization through Stat3-related pathways. Inflammation. 45:2078–2090. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Faridvand Y, Nemati M, Zamani-Gharehchamani E, Nejabati HR, Zamani ARN, Nozari S, Safaie N, Nouri M and Jodati A: Dapagliflozin protects H9c2 cells against injury induced by lipopolysaccharide via suppression of CX3CL1/CX3CR1 axis and NF-κB activity. Curr Mol Pharmacol. 15:862–869. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Pinar AA, Scott TE, Huuskes BM, Tapia Cáceres FE, Kemp-Harper BK and Samuel CS: Targeting the NLRP3 inflammasome to treat cardiovascular fibrosis. Pharmacol Ther. 209:1075112020. View Article : Google Scholar : PubMed/NCBI | |
|
Toldo S and Abbate A: The NLRP3 inflammasome in acute myocardial infarction. Nat Rev Cardiol. 15:203–214. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Suetomi T, Willeford A, Brand CS, Cho Y, Ross RS, Miyamoto S and Brown JH: Inflammation and NLRP3 inflammasome activation initiated in response to pressure overload by Ca2+/calmodulin-dependent protein kinase II δ signaling in cardiomyocytes are essential for adverse cardiac remodeling. Circulation. 138:2530–2544. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Sokolova M, Ranheim T, Louwe MC, Halvorsen B, Yndestad A and Aukrust P: NLRP3 inflammasome: A novel player in metabolically induced inflammation-potential influence on the myocardium. J Cardiovasc Pharmacol. 74:276–284. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Ye Y, Bajaj M, Yang HC, Perez-Polo JR and Birnbaum Y: SGLT-2 inhibition with dapagliflozin reduces the activation of the Nlrp3/ASC inflammasome and attenuates the development of diabetic cardiomyopathy in mice with type 2 diabetes. Further augmentation of the effects with saxagliptin, a DPP4 inhibitor. Cardiovasc Drugs Ther. 31:119–132. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Chen H, Tran D, Yang HC, Nylander S, Birnbaum Y and Ye Y: Dapagliflozin and ticagrelor have additive effects on the attenuation of the activation of the NLRP3 inflammasome and the progression of diabetic cardiomyopathy: An AMPK-mTOR interplay. Cardiovasc Drugs Ther. 34:443–461. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Quagliariello V, De Laurentiis M, Rea D, Barbieri A, Monti MG, Carbone A, Paccone A, Altucci L, Conte M, Canale ML, et al: The SGLT-2 inhibitor empagliflozin improves myocardial strain, reduces cardiac fibrosis and pro-inflammatory cytokines in non-diabetic mice treated with doxorubicin. Cardiovasc Diabetol. 20:1502021. View Article : Google Scholar : PubMed/NCBI | |
|
Hu J, Xu J, Tan X, Li D, Yao D, Xu B and Lei Y: Dapagliflozin protects against dilated cardiomyopathy progression by targeting NLRP3 inflammasome activation. Naunyn Schmiedebergs Arch Pharmacol. 396:1461–1470. 2023.PubMed/NCBI | |
|
Pullen AB, Jadapalli JK, Rhourri-Frih B and Halade GV: Re-evaluating the causes and consequences of non-resolving inflammation in chronic cardiovascular disease. Heart Fail Rev. 25:381–391. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Lee TM, Chang NC and Lin SZ: Dapagliflozin, a selective SGLT2 inhibitor, attenuated cardiac fibrosis by regulating the macrophage polarization via STAT3 signaling in infarcted rat hearts. Free Radic Biol Med. 104:298–310. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Chelko SP, Asimaki A, Lowenthal J, Bueno-Beti C, Bedja D, Scalco A, Amat-Alarcon N, Andersen P, Judge DP, Tung L and Saffitz JE: Therapeutic modulation of the immune response in arrhythmogenic cardiomyopathy. Circulation. 140:1491–1505. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Yang Z, Li T, Xian J, Chen J, Huang Y, Zhang Q, Lin X, Lu H and Lin Y: SGLT2 inhibitor dapagliflozin attenuates cardiac fibrosis and inflammation by reverting the HIF-2alpha signaling pathway in arrhythmogenic cardiomyopathy. FASEB J. 36:e224102022. View Article : Google Scholar : PubMed/NCBI | |
|
Salvatore T, Galiero R, Caturano A, Vetrano E, Rinaldi L, Coviello F, Di Martino A, Albanese G, Colantuoni S, Medicamento G, et al: Dysregulated epicardial adipose tissue as a risk factor and potential therapeutic target of heart failure with preserved ejection fraction in diabetes. Biomolecules. 12:1762022. View Article : Google Scholar : PubMed/NCBI | |
|
Gordon M, Meagher P and Connelly KA: Effect of empagliflozin and liraglutide on the nucleotide-binding and oligomerization domain-like receptor family pyrin domain-containing 3 inflammasome in a rodent model of type 2 diabetes mellitus. Can J Diabetes. 45:553–556. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Michaeloudes C, Abubakar-Waziri H, Lakhdar R, Raby K, Dixey P, Adcock IM, Mumby S, Bhavsar PK and Chung KF: Molecular mechanisms of oxidative stress in asthma. Mol Aspects Med. 85:1010262022. View Article : Google Scholar : PubMed/NCBI | |
|
Weissman D and Maack C: Redox signaling in heart failure and therapeutic implications. Free Radic Biol Med. 171:345–364. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang M, Perino A, Ghigo A, Hirsch E and Shah AM: NADPH oxidases in heart failure: Poachers or gamekeepers? Antioxid Redox Signal. 18:1024–1041. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Burgoyne JR, Mongue-Din H, Eaton P and Shah AM: Redox signaling in cardiac physiology and pathology. Circ Res. 111:1091–1106. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
van der Pol A, van Gilst WH, Voors AA and van der Meer P: Treating oxidative stress in heart failure: Past, present and future. Eur J Heart Fail. 21:425–435. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Li A, Zheng N and Ding X: Mitochondrial abnormalities: A hub in metabolic syndrome-related cardiac dysfunction caused by oxidative stress. Heart Fail Rev. 27:1387–1394. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Xing YJ, Liu BH, Wan SJ, Cheng Y, Zhou SM, Sun Y, Yao XM, Hua Q, Meng XJ, Cheng JH, et al: A SGLT2 inhibitor dapagliflozin alleviates diabetic cardiomyopathy by suppressing high glucose-induced oxidative stress in vivo and in vitro. Front Pharmacol. 12:7081772021. View Article : Google Scholar : PubMed/NCBI | |
|
Li X, Flynn ER, do Carmo JM, Wang Z, da Silva AA, Mouton AJ, Omoto ACM, Hall ME and Hall JE: Direct cardiac actions of sodium-glucose cotransporter 2 inhibition improve mitochondrial function and attenuate oxidative stress in pressure overload-induced heart failure. Front Cardiovasc Med. 9:8592532022. View Article : Google Scholar : PubMed/NCBI | |
|
Sun X, Han F, Lu Q, Li X, Ren D, Zhang J, Han Y, Xiang YK and Li J: Empagliflozin ameliorates obesity-related cardiac dysfunction by regulating sestrin2-mediated AMPK-mTOR signaling and redox homeostasis in high-fat diet-induced obese mice. Diabetes. 69:1292–1305. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Bugga P, Mohammed SA, Alam MJ, Katare P, Meghwani H, Maulik SK, Arava S and Banerjee SK: Empagliflozin prohibits high-fructose diet-induced cardiac dysfunction in rats via attenuation of mitochondria-driven oxidative stress. Life Sci. 307:1208622022. View Article : Google Scholar : PubMed/NCBI | |
|
Lopaschuk GD, Ussher JR, Folmes CD, Jaswal JS and Stanley WC: Myocardial fatty acid metabolism in health and disease. Physiol Rev. 90:207–258. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Taegtmeyer H, Sen S and Vela D: Return to the fetal gene program: A suggested metabolic link to gene expression in the heart. Ann N Y Acad Sci. 1188:191–198. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Ingwall JS: Energy metabolism in heart failure and remodelling. Cardiovasc Res. 81:412–419. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Rosca MG, Tandler B and Hoppel CL: Mitochondria in cardiac hypertrophy and heart failure. J Mol Cell Cardiol. 55:31–41. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang L, Jaswal JS, Ussher JR, Sankaralingam S, Wagg C, Zaugg M and Lopaschuk GD: Cardiac insulin-resistance and decreased mitochondrial energy production precede the development of systolic heart failure after pressure-overload hypertrophy. Circ Heart Fail. 6:1039–1048. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
De Jong KA and Lopaschuk GD: Complex energy metabolic changes in heart failure with preserved ejection fraction and heart failure with reduced ejection fraction. Can J Cardiol. 33:860–871. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Kolwicz SC Jr, Olson DP, Marney LC, Garcia-Menendez L, Synovec RE and Tian R: Cardiac-specific deletion of acetyl CoA carboxylase 2 prevents metabolic remodeling during pressure-overload hypertrophy. Circ Res. 111:728–738. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Choi YS, de Mattos ABM, Shao D, Li T, Nabben M, Kim M, Wang W, Tian R and Kolwicz SC Jr: Preservation of myocardial fatty acid oxidation prevents diastolic dysfunction in mice subjected to angiotensin II infusion. J Mol Cell Cardiol. 100:64–71. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Chess DJ, Lei B, Hoit BD, Azimzadeh AM and Stanley WC: Effects of a high saturated fat diet on cardiac hypertrophy and dysfunction in response to pressure overload. J Card Fail. 14:82–88. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Trang NN, Chung CC, Lee TW, Cheng WL, Kao YH, Huang SY, Lee TI and Chen YJ: Empagliflozin and liraglutide differentially modulate cardiac metabolism in diabetic cardiomyopathy in rats. Int J Mol Sci. 22:11772021. View Article : Google Scholar : PubMed/NCBI | |
|
Jia G, DeMarco VG and Sowers JR: Insulin resistance and hyperinsulinaemia in diabetic cardiomyopathy. Nat Rev Endocrinol. 12:144–153. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Lai J and Chen C: The role of epoxyeicosatrienoic acids in cardiac remodeling. Front Physiol. 12:6424702021. View Article : Google Scholar : PubMed/NCBI | |
|
Shi W, Xin Q, Yuan R, Yuan Y, Cong W and Chen K: Neovascularization: The main mechanism of MSCs in ischemic heart disease therapy. Front Cardiovasc Med. 8:6333002021. View Article : Google Scholar : PubMed/NCBI | |
|
Carmeliet P and Jain RK: Molecular mechanisms and clinical applications of angiogenesis. Nature. 473:298–307. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Shu HY, Peng YZ, Hang WJ, Zhang M, Shen L, Wang DW and Zhou N: Trimetazidine enhances myocardial angiogenesis in pressure overload-induced cardiac hypertrophy mice through directly activating Akt and promoting the binding of HSF1 to VEGF-A promoter. Acta Pharmacol Sin. 43:2550–2561. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Ni Y, Deng J, Bai H, Liu C, Liu X and Wang X: CaMKII inhibitor KN-93 impaired angiogenesis and aggravated cardiac remodelling and heart failure via inhibiting NOX2/mtROS/p-VEGFR2 and STAT3 pathways. J Cell Mol Med. 26:312–325. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Blom JN, Wang X, Lu X, Kim MY, Wang G and Feng Q: Inhibition of intraflagellar transport protein-88 promotes epithelial-to-mesenchymal transition and reduces cardiac remodeling post-myocardial infarction. Eur J Pharmacol. 933:1752872022. View Article : Google Scholar : PubMed/NCBI | |
|
Wei T, Huang G, Gao J, Huang C, Sun M, Wu J, Bu J and Shen W: Sirtuin 3 deficiency accelerates hypertensive cardiac remodeling by impairing angiogenesis. J Am Heart Assoc. 6:e0061142017. View Article : Google Scholar : PubMed/NCBI | |
|
Gogiraju R, Hubert A, Fahrer J, Straub BK, Brandt M, Wenzel P, Münzel T, Konstantinides S, Hasenfuss G and Schäfer K: Endothelial leptin receptor deletion promotes cardiac autophagy and angiogenesis following pressure overload by suppressing Akt/mTOR signaling. Circ Heart Fail. 12:e0056222019. View Article : Google Scholar : PubMed/NCBI | |
|
Gu J, Wang S, Guo H, Tan Y, Liang Y, Feng A, Liu Q, Damodaran C, Zhang Z, Keller BB, et al: Inhibition of p53 prevents diabetic cardiomyopathy by preventing early-stage apoptosis and cell senescence, reduced glycolysis, and impaired angiogenesis. Cell Death Dis. 9:822018. View Article : Google Scholar : PubMed/NCBI | |
|
Zhou H, Wang S, Zhu P, Hu S, Chen Y and Ren J: Empagliflozin rescues diabetic myocardial microvascular injury via AMPK-mediated inhibition of mitochondrial fission. Redox Biol. 15:335–346. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Nugrahaningrum DA, Marcelina O, Liu C, Wu S and Kasim V: Dapagliflozin promotes neovascularization by improving paracrine function of skeletal muscle cells in diabetic hindlimb ischemia mice through PHD2/HIF-1α axis. Front Pharmacol. 11:11042020. View Article : Google Scholar : PubMed/NCBI | |
|
Nakao M, Shimizu I, Katsuumi G, Yoshida Y, Suda M, Hayashi Y, Ikegami R, Hsiao YT, Okuda S, Soga T and Minamino T: Empagliflozin maintains capillarization and improves cardiac function in a murine model of left ventricular pressure overload. Sci Rep. 11:183842021. View Article : Google Scholar : PubMed/NCBI | |
|
Zou R, Shi W, Qiu J, Zhou N, Du N, Zhou H, Chen X and Ma L: Empagliflozin attenuates cardiac microvascular ischemia/reperfusion injury through improving mitochondrial homeostasis. Cardiovasc Diabetol. 21:1062022. View Article : Google Scholar : PubMed/NCBI | |
|
Ma L, Zou R, Shi W, Zhou N, Chen S, Zhou H, Chen X and Wu Y: SGLT2 inhibitor dapagliflozin reduces endothelial dysfunction and microvascular damage during cardiac ischemia/reperfusion injury through normalizing the XO-SERCA2-CaMKII-coffilin pathways. Theranostics. 12:5034–5050. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Guo H, Yu X, Liu Y, Paik DT, Justesen JM, Chandy M, Jahng JWS, Zhang T, Wu W, Rwere F, et al: SGLT2 inhibitor ameliorates endothelial dysfunction associated with the common ALDH2 alcohol flushing variant. Sci Transl Med. 15:eabp99522023. View Article : Google Scholar : PubMed/NCBI | |
|
Cai C, Guo Z, Chang X, Li Z, Wu F, He J, Cao T, Wang K, Shi N, Zhou H, et al: Empagliflozin attenuates cardiac microvascular ischemia/reperfusion through activating the AMPKalpha1/ULK1/FUNDC1/mitophagy pathway. Redox Biol. 52:1022882022. View Article : Google Scholar : PubMed/NCBI | |
|
Hanna A and Frangogiannis NG: The role of the TGF-beta superfamily in myocardial infarction. Front Cardiovasc Med. 6:1402019. View Article : Google Scholar : PubMed/NCBI | |
|
Tarbit E, Singh I, Peart JN and Rose'Meyer RB: Biomarkers for the identification of cardiac fibroblast and myofibroblast cells. Heart Fail Rev. 24:1–15. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Li C, Zhang J, Xue M, Li X, Han F, Liu X, Xu L, Lu Y, Cheng Y, Li T, et al: SGLT2 inhibition with empagliflozin attenuates myocardial oxidative stress and fibrosis in diabetic mice heart. Cardiovasc Diabetol. 18:152019. View Article : Google Scholar : PubMed/NCBI | |
|
Humeres C, Shinde AV, Hanna A, Alex L, Hernández SC, Li R, Chen B, Conway SJ and Frangogiannis NG: Smad7 effects on TGF-β and ErbB2 restrain myofibroblast activation and protect from postinfarction heart failure. J Clin Invest. 132:e1469262022. View Article : Google Scholar : PubMed/NCBI | |
|
Daud E, Ertracht O, Bandel N, Moady G, Shehadeh M, Reuveni T and Atar S: The impact of empagliflozin on cardiac physiology and fibrosis early after myocardial infarction in non-diabetic rats. Cardiovasc Diabetol. 20:1322021. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang Y, Lin X, Chu Y, Chen X, Du H, Zhang H, Xu C, Xie H, Ruan Q, Lin J, et al: Dapagliflozin: a sodium-glucose cotransporter 2 inhibitor, attenuates angiotensin II-induced cardiac fibrotic remodeling by regulating TGFβ1/Smad signaling. Cardiovasc Diabetol. 20:1212021. View Article : Google Scholar : PubMed/NCBI | |
|
Qi H, Liu Y, Li S, Chen Y, Li L, Cao Y, E M, Shi P, Song C, Li B and Sun H: Activation of AMPK attenuated cardiac fibrosis by inhibiting CDK2 via p21/p27 and miR-29 family pathways in rats. Mol Ther Nucleic Acids. 8:277–290. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Hinson JT, Chopra A, Lowe A, Sheng CC, Gupta RM, Kuppusamy R, O'Sullivan J, Rowe G, Wakimoto H, Gorham J, et al: Integrative analysis of PRKAG2 cardiomyopathy iPS and microtissue models identifies AMPK as a regulator of metabolism, survival, and fibrosis. Cell Rep. 17:3292–3304. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Tian J, Zhang M, Suo M, Liu D, Wang X, Liu M, Pan J, Jin T and An F: Dapagliflozin alleviates cardiac fibrosis through suppressing EndMT and fibroblast activation via AMPKα/TGF-β/Smad signalling in type 2 diabetic rats. J Cell Mol Med. 25:7642–7659. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Chen X, Yang Q, Bai W, Yao W, Liu L, Xing Y, Meng C, Qi P, Dang Y and Qi X: Dapagliflozin attenuates myocardial fibrosis by inhibiting the TGF-β1/Smad signaling pathway in a normoglycemic rabbit model of chronic heart failure. Front Pharmacol. 13:8731082022. View Article : Google Scholar : PubMed/NCBI | |
|
Hepworth EMW and Hinton SD: Pseudophosphatases as regulators of MAPK signaling. Int J Mol Sci. 22:125952021. View Article : Google Scholar : PubMed/NCBI | |
|
Rose BA, Force T and Wang Y: Mitogen-activated protein kinase signaling in the heart: Angels versus demons in a heart-breaking tale. Physiol Rev. 90:1507–1546. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Xu Z, Sun J, Tong Q, Lin Q, Qian L, Park Y and Zheng Y: The role of ERK1/2 in the development of diabetic cardiomyopathy. Int J Mol Sci. 17:20012016. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang Q, Wang L, Wang S, Cheng H, Xu L, Pei G, Wang Y, Fu C, Jiang Y, He C and Wei Q: Signaling pathways and targeted therapy for myocardial infarction. Signal Transduct Target Ther. 7:782022. View Article : Google Scholar : PubMed/NCBI | |
|
Pearson G, Robinson F, Beers Gibson T, Xu BE, Karandikar M, Berman K and Cobb MH: Mitogen-activated protein (MAP) kinase pathways: Regulation and physiological functions. Endocr Rev. 22:153–183. 2001. View Article : Google Scholar : PubMed/NCBI | |
|
Streicher JM, Ren S, Herschman H and Wang Y: MAPK-activated protein kinase-2 in cardiac hypertrophy and cyclooxygenase-2 regulation in heart. Circ Res. 106:1434–1443. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Liu X, Chen K, Zhuang Y, Huang Y, Sui Y, Zhang Y, Lv L and Zhang G: Paeoniflorin improves pressure overload-induced cardiac remodeling by modulating the MAPK signaling pathway in spontaneously hypertensive rats. Biomed Pharmacother. 111:695–704. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Ren J, Zhang S, Kovacs A, Wang Y and Muslin AJ: Role of p38alpha MAPK in cardiac apoptosis and remodeling after myocardial infarction. J Mol Cell Cardiol. 38:617–623. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Yang N, Zou C, Luo W, Xu D, Wang M, Wang Y, Wu G, Shan P and Liang G: Sclareol attenuates angiotensin II-induced cardiac remodeling and inflammation via inhibiting MAPK signaling. Phytother Res. 37:578–591. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Lin K, Yang N, Luo W, Qian JF, Zhu WW, Ye SJ, Yuan CX, Xu DY, Liang G, Huang WJ and Shan PR: Direct cardio-protection of dapagliflozin against obesity-related cardiomyopathy via NHE1/MAPK signaling. Acta Pharmacol Sin. 43:2624–2635. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Yang H, Rudge DG, Koos JD, Vaidialingam B, Yang HJ and Pavletich NP: mTOR kinase structure, mechanism and regulation. Nature. 497:217–223. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Laplante M and Sabatini DM: mTOR signaling in growth control and disease. Cell. 149:274–293. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Saxton RA and Sabatini DM: mTOR signaling in growth, metabolism, and disease. Cell. 169:361–371. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Gangloff YG, Mueller M, Dann SG, Svoboda P, Sticker M, Spetz JF, Um SH, Brown EJ, Cereghini S, Thomas G and Kozma SC: Disruption of the mouse mTOR gene leads to early postimplantation lethality and prohibits embryonic stem cell development. Mol Cell Biol. 24:9508–9516. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Murakami M, Ichisaka T, Maeda M, Oshiro N, Hara K, Edenhofer F, Kiyama H, Yonezawa K and Yamanaka S: mTOR is essential for growth and proliferation in early mouse embryos and embryonic stem cells. Mol Cell Biol. 24:6710–6718. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Shioi T, McMullen JR, Tarnavski O, Converso K, Sherwood MC, Manning WJ and Izumo S: Rapamycin attenuates load-induced cardiac hypertrophy in mice. Circulation. 107:1664–1670. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Das A, Salloum FN, Filippone SM, Durrant DE, Rokosh G, Bolli R and Kukreja RC: Inhibition of mammalian target of rapamycin protects against reperfusion injury in diabetic heart through STAT3 signaling. Basic Res Cardiol. 110:312015. View Article : Google Scholar : PubMed/NCBI | |
|
Zhao X, Lu S, Nie J, Hu X, Luo W, Wu X, Liu H, Feng Q, Chang Z, Liu Y, et al: Phosphoinositide-dependent kinase 1 and mTORC2 synergistically maintain postnatal heart growth and heart function in mice. Mol Cell Biol. 34:1966–1975. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Xia Y, Wen HY, Young ME, Guthrie PH, Taegtmeyer H and Kellems RE: Mammalian target of rapamycin and protein kinase A signaling mediate the cardiac transcriptional response to glutamine. J Biol Chem. 278:13143–13150. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Sciarretta S, Volpe M and Sadoshima J: Mammalian target of rapamycin signaling in cardiac physiology and disease. Circ Res. 114:549–564. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Moellmann J, Mann PA, Kappel BA, Kahles F, Klinkhammer BM, Boor P, Kramann R, Ghesquiere B, Lebherz C, Marx N and Lehrke M: The sodium-glucose co-transporter-2 inhibitor ertugliflozin modifies the signature of cardiac substrate metabolism and reduces cardiac mTOR signalling, endoplasmic reticulum stress and apoptosis. Diabetes Obes Metab. 24:2263–2272. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Sciarretta S, Forte M, Frati G and Sadoshima J: New insights into the role of mTOR signaling in the cardiovascular system. Circ Res. 122:489–505. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Kim J, Kundu M, Viollet B and Guan KL: AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol. 13:132–141. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Chen L, Liu P, Feng X and Ma C: Salidroside suppressing LPS-induced myocardial injury by inhibiting ROS-mediated PI3K/Akt/mTOR pathway in vitro and in vivo. J Cell Mol Med. 21:3178–3189. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Sun P, Wang Y, Ding Y, Luo J, Zhong J, Xu N, Zhang Y and Xie W: Canagliflozin attenuates lipotoxicity in cardiomyocytes and protects diabetic mouse hearts by inhibiting the mTOR/HIF-1α pathway. iScience. 24:1025212021. View Article : Google Scholar : PubMed/NCBI | |
|
Das S, Aiba T, Rosenberg M, Hessler K, Xiao C, Quintero PA, Ottaviano FG, Knight AC, Graham EL, Bostrom P, et al: Pathological role of serum- and glucocorticoid-regulated kinase 1 in adverse ventricular remodeling. Circulation. 126:2208–2219. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Lang F and Shumilina E: Regulation of ion channels by the serum- and glucocorticoid-inducible kinase SGK1. FASEB J. 27:3–12. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Lee SG, Kim D, Lee JJ, Lee HJ, Moon RK, Lee YJ, Lee SJ, Lee OH, Kim C, Oh J, et al: Dapagliflozin attenuates diabetes-induced diastolic dysfunction and cardiac fibrosis by regulating SGK1 signaling. BMC Med. 20:3092022. View Article : Google Scholar : PubMed/NCBI | |
|
Mascareno E, El-Shafei M, Maulik N, Sato M, Guo Y, Das DK and Siddiqui MA: JAK/STAT signaling is associated with cardiac dysfunction during ischemia and reperfusion. Circulation. 104:325–329. 2001. View Article : Google Scholar : PubMed/NCBI | |
|
Chakraborty D, Šumová B, Mallano T, Chen CW, Distler A, Bergmann C, Ludolph I, Horch RE, Gelse K, Ramming A, et al: Activation of STAT3 integrates common profibrotic pathways to promote fibroblast activation and tissue fibrosis. Nat Commun. 8:11302017. View Article : Google Scholar : PubMed/NCBI | |
|
Sabe SA, Xu CM, Sabra M, Harris DD, Malhotra A, Aboulgheit A, Stanley M, Abid MR and Sellke FW: Canagliflozin improves myocardial perfusion, fibrosis, and function in a swine model of chronic myocardial ischemia. J Am Heart Assoc. 12:e0286232023. View Article : Google Scholar : PubMed/NCBI | |
|
Yu LM, Di WC, Dong X, Li Z, Zhang Y, Xue XD, Xu YL, Zhang J, Xiao X, Han JS, et al: Melatonin protects diabetic heart against ischemia-reperfusion injury, role of membrane receptor-dependent cGMP-PKG activation. Biochim Biophys Acta Mol Basis Dis. 1864:563–578. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Mátyás C, Németh BT, Oláh A, Hidi L, Birtalan E, Kellermayer D, Ruppert M, Korkmaz-Icöz S, Kökény G, Horváth EM, et al: The soluble guanylate cyclase activator cinaciguat prevents cardiac dysfunction in a rat model of type-1 diabetes mellitus. Cardiovasc Diabetol. 14:1452015. View Article : Google Scholar : PubMed/NCBI | |
|
Xue M, Li T, Wang Y, Chang Y, Cheng Y, Lu Y, Liu X, Xu L, Li X, Yu X, et al: Empagliflozin prevents cardiomyopathy via sGC-cGMP-PKG pathway in type 2 diabetes mice. Clin Sci (Lond). 133:1705–1720. 2019. View Article : Google Scholar : PubMed/NCBI |