|
1
|
Chaturvedi VK, Singh A, Dubey SK, Hetta
HF, John J and Singh MP: Molecular mechanistic insight of hepatitis
B virus mediated hepatocellular carcinoma. Microb Pathog.
128:184–194. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Bar-Peled L, Schweitzer LD, Zoncu R and
Sabatini DM: Ragulator Is a GEF for the Rag GTPases that signal
amino acid levels to mTORC1. Cell. 150:1196–1208. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Xiu M, Zeng X, Shan R, Wen W, Li J and Wan
R: The oncogenic role of HBXIP. Biomed Pharmacother.
133:1110452021. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Giguère V: Canonical signaling and nuclear
activity of mTOR-a teamwork effort to regulate metabolism and cell
growth. FEBS J. 285:1572–1588. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Villa E, Sahu U, O'Hara BP, Ali ES, Helmin
KA, Asara JM, Gao P, Singer BD and Ben-Sahra I: mTORC1 stimulates
cell growth through SAM synthesis and m(6)A mRNA-dependent control
of protein synthesis. Mol Cell. 81:2076–2093.e9. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Zhou X, Wang X, Duan J, Sun W, Chen Z, Li
Q, Ou Z, Jiang G, Ren X and Liu S: HBXIP protein overexpression
predicts the poor prognosis of pancreatic ductal adenocarcinomas.
Pathol Res Pract. 215:343–346. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Wang X, Feng Q, Yu H, Zhou X, Shan C,
Zhang Q and Liu S: HBXIP: A potential prognosis biomarker of
colorectal cancer which promotes invasion and migration via
epithelial-mesenchymal transition. Life Sci. 245:1173542020.
View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Piao JJ, Li N, Wang YX, Lin ZH and Liu SP:
HBXIP expression in gastric adenocarcinoma predicts poor prognosis.
Zhonghua Bing Li Xue Za Zhi. 46:88–92. 2017.(In Chinese).
PubMed/NCBI
|
|
9
|
Li N, Wang Y, Che S, Yang Y, Piao J, Liu S
and Lin Z: HBXIP over expression as an independent biomarker for
cervical cancer. Exp Mol Pathol. 102:133–137. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Wang Y, Sun J, Li N, Che S, Jin T, Liu S
and Lin Z: HBXIP overexpression is correlated with the clinical
features and survival outcome of ovarian cancer. J Ovarian Res.
10:262017. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Xia H, Ma L, Li J, Bai H and Wang D:
Elevated HBXIP expression is associated with aggressive phenotype
and poor prognosis in esophageal squamous cell carcinoma. Am J
Cancer Res. 7:2190–2198. 2017.PubMed/NCBI
|
|
12
|
Cheng D, Liang B and Li Y: HBXIP
expression predicts patient prognosis in breast cancer. Med Oncol.
31:2102014. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Guo ZY, Jiang LP and Zhu ZT: High HBXIP
expression is related to poor prognosis in HCC by extensive
database interrogation. Eur Rev Med Pharmacol Sci. 25:6196–6207.
2021.PubMed/NCBI
|
|
14
|
Wang Y, Li N, Che S, Jin T, Piao J, Liu S
and Lin Z: HBXIP suppression reduces cell proliferation and
migration and its overexpression predicts poor prognosis in
non-small-cell lung cancer. Tumour Biol. 39:10104283177096752017.
View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Gao X and Yang L: HBXIP knockdown inhibits
FHL2 to promote cycle arrest and suppress cervical cancer cell
proliferation, invasion and migration. Oncol Lett. 25:1862023.
View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Xu F, Zhu X, Han TAO, You X, Liu F, Ye L,
Zhang X, Wang X and Yao Y: The oncoprotein hepatitis B
X-interacting protein promotes the migration of ovarian cancer
cells through the upregulation of S-phase kinase-associated protein
2 by Sp1. Int J Oncol. 45:255–263. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Meng X and Liu W: The effects of HBXIP on
the biological functions of tongue squamous cell carcinoma cells
and correlation with PI3K/Akt. Transl Cancer Res. 9:3375–3384.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Qiu L, Lu F, Zhang L, Wang G, Geng R and
Miao Y: HBXIP regulates gastric cancer glucose metabolism and
malignancy through PI3K/AKT and p53 signaling. Onco Targets Ther.
13:3359–3374. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Fang X, Tan T, Gao B, Zhao Y, Liu T and
Xia Q: Germacrone regulates HBXIP-Mediated cell cycle, apoptosis
and promotes the formation of autophagosomes to inhibit the
proliferation of gastric cancer cells. Front Oncol. 10:5373222020.
View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Fujii R, Zhu C, Wen Y, Marusawa H,
Bailly-Maitre B, Matsuzawa S, Zhang H, Kim Y, Bennett CF, Jiang W
and Reed JC: HBXIP, cellular target of hepatitis B virus
oncoprotein, is a regulator of centrosome dynamics and cytokinesis.
Cancer Res. 66:9099–9107. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Fei H, Zhou Y, Li R, Yang M, Ma J and Wang
F: HBXIP, a binding protein of HBx, regulates maintenance of the
G2/M phase checkpoint induced by DNA damage and enhances
sensitivity to doxorubicin-induced cytotoxicity. Cell Cycle.
16:468–476. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Li H, Wang Z, Li Y, Fang R, Wang H, Shi H,
Zhang X, Zhang W and Ye L: Hepatitis B X-interacting protein
promotes the formation of the insulin gene-transcribing protein
complex Pdx-1/Neurod1 in animal pancreatic β-cells. J Biol Chem.
293:2053–2065. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Qin Y, Ni P, Zhang Q, Wang X, Du X, Yin Z,
Wang L, Ye L and Chen L: Hbxip is essential for murine
embryogenesis and regulates embryonic stem cell differentiation
through activating mTORC1. Development. 149:dev2005272022.
View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Yonehara R, Nada S, Nakai T, Nakai M,
Kitamura A, Ogawa A, Nakatsumi H, Nakayama KI, Li S, Standley DM,
et al: Structural basis for the assembly of the Ragulator-Rag
GTPase complex. Nat Commun. 8:16252017. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Jiang Y, Wang D, Ren H, Shi Y and Gao Y:
Oncogenic HBXIP enhances ZEB1 through Sp1 to accelerate breast
cancer growth. Thorac Cancer. 9:1664–1670. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Liu BW, Wang TJ, Li LL, Zhang L, Liu YX,
Feng JY, Wu Y, Xu FF, Zhang QS, Bao MZ, et al: Oncoprotein HBXIP
induces PKM2 via transcription factor E2F1 to promote cell
proliferation in ER-positive breast cancer. Acta Pharmacol Sin.
40:530–538. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Haradhvala NJ, Polak P, Stojanov P,
Covington KR, Shinbrot E, Hess JM, Rheinbay E, Kim J, Maruvka YE,
Braunstein LZ, et al: Mutational strand asymmetries in cancer
genomes reveal mechanisms of DNA damage and repair. Cell.
164:538–549. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Smith J, Tho LM, Xu N and Gillespie DA:
The ATM-Chk2 and ATR-Chk1 pathways in DNA damage signaling and
cancer. Adv Cancer Res. 108:73–112. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Holoch D and Moazed D: RNA-mediated
epigenetic regulation of gene expression. Nat Rev Genet. 16:71–84.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Easwaran H, Tsai HC and Baylin SB: Cancer
epigenetics: Tumor heterogeneity, plasticity of stem-like states,
and drug resistance. Mol Cell. 54:716–727. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Pourdehnad M, Truitt M, Siddiqi I, Ducker
G, Shokat K and Ruggero D: Myc and mTOR converge on a common node
in protein synthesis control that confers synthetic lethality in
Myc-driven cancers. Proc Natl Acad Sci USA. 110:11988–11993. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Li Y, Wang Z, Shi H, Li H, Li L, Fang R,
Cai X, Liu B, Zhang X and Ye L: HBXIP and LSD1 Scaffolded by lncRNA
hotair mediate transcriptional activation by c-Myc. Cancer Res.
76:293–304. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Smith J, Sen S, Weeks RJ, Eccles MR and
Chatterjee A: Promoter DNA hypermethylation and paradoxical gene
activation. Trends Cancer. 6:392–406. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Li H, Wang Z, Jiang M, Fang RP, Shi H,
Shen Y, Cai XL, Liu Q, Ye K, Fan SJ, et al: The oncoprotein HBXIP
promotes human breast cancer growth through down-regulating p53 via
miR-18b/MDM2 and pAKT/MDM2 pathways. Acta Pharmacol Sin.
39:1787–1796. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Maruyama T, Kadowaki H, Okamoto N, Nagai
A, Naguro I, Matsuzawa A, Shibuya H, Tanaka K, Murata S, Takeda K,
et al: CHIP-dependent termination of MEKK2 regulates temporal ERK
activation required for proper hyperosmotic response. EMBO J.
29:2501–2514. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Li Y, Zhang Z, Zhou X, Li L, Liu Q, Wang
Z, Bai X, Zhao Y, Shi H, Zhang X and Ye L: The oncoprotein HBXIP
enhances migration of breast cancer cells through increasing
filopodia formation involving MEKK2/ERK1/2/Capn4 signaling. Cancer
Lett. 355:288–296. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Halbeisen RE, Galgano A, Scherrer T and
Gerber AP: Post-transcriptional gene regulation: From genome-wide
studies to principles. Cell Mol Life Sci. 65:798–813. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Sánchez-Vásquez E, Alata Jimenez N,
Vázquez NA and Strobl-Mazzulla PH: Emerging role of dynamic RNA
modifications during animal development. Mech Dev. 154:24–32. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Zhou Y, Yin Z, Hou B, Yu M, Chen R, Jin H
and Jian Z: Expression profiles and prognostic significance of RNA
N6-methyladenosine-related genes in patients with hepatocellular
carcinoma: Evidence from independent datasets. Cancer Manag Res.
11:3921–3931. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Cai X, Wang X, Cao C, Gao Y, Zhang S, Yang
Z, Liu Y, Zhang X, Zhang W and Ye L: HBXIP-elevated
methyltransferase METTL3 promotes the progression of breast cancer
via inhibiting tumor suppressor let-7g. Cancer Lett. 415:11–19.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Yang N, Wang T, Li Q, Han F, Wang Z, Zhu R
and Zhou J: HBXIP drives metabolic reprogramming in hepatocellular
carcinoma cells via METTL3-mediated m6A modification of HIF-1α. J
Cell Physiol. 236:3863–3880. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Yang Z and Jiang X, Li D and Jiang X:
viaHBXIP promotes gastric cancer METTL3-mediated MYC mRNA m6A
modification. Aging (Albany NY). 12:24967–24982. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Fabian MR, Sonenberg N and Filipowicz W:
Regulation of mRNA translation and stability by microRNAs. Annu Rev
Biochem. 79:351–379. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Shukla GC, Singh J and Barik S: MicroRNAs:
Processing, maturation, target recognition and regulatory
functions. Mol Cell Pharmacol. 3:83–92. 2011.PubMed/NCBI
|
|
45
|
Liu F, Zhang W, You X, Liu Y, Li Y, Wang
Z, Wang Y, Zhang X and Ye L: The oncoprotein HBXIP promotes glucose
metabolism reprogramming via downregulating SCO2 and PDHA1 in
breast cancer. Oncotarget. 6:27199–27213. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Jiang Y, Wang D, Ren H, Shi Y and Gao Y:
MiR-145-targeted HBXIP modulates human breast cancer cell
proliferation. Thorac Cancer. 10:71–77. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Zhang W, Lu Z, Kong G, Gao Y, Wang T, Wang
Q, Cai N, Wang H, Liu F, Ye L and Zhang X: Hepatitis B virus X
protein accelerates hepatocarcinogenesis with partner survivin
through modulating miR-520b and HBXIP. Mol Cancer. 13:1282014.
View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Hu XM, Yan XH, Hu YW, Huang JL, Cao SW,
Ren TY, Tang YT, Lin L, Zheng L and Wang Q: miRNA-548p suppresses
hepatitis B virus X protein associated hepatocellular carcinoma by
downregulating oncoprotein hepatitis B x-interacting protein.
Hepatol Res. 46:804–815. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Sebastian-delaCruz M, Gonzalez-Moro I,
Olazagoitia-Garmendia A, Castellanos-Rubio A and Santin I: The role
of lncRNAs in gene expression regulation through mRNA
Stabilization. Noncoding RNA. 7:32021.PubMed/NCBI
|
|
50
|
Zaniani NR, Oroujalian A, Valipour A and
Peymani M: LAMTOR5 expression level is a biomarker for colorectal
cancer and lncRNA LAMTOR5-AS1 predicting miRNA sponging effect. Mol
Biol Rep. 48:6093–6101. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Balasooriya ER, Madhusanka D,
Lopez-Palacios TP, Eastmond RJ, Jayatunge D, Owen JJ, Gashler JS,
Egbert CM, Bulathsinghalage C, Liu L, et al: Integrating clinical
cancer and PTM proteomics data identifies a mechanism of ACK1
kinase activation. Mol Cancer Res. 22:137–151. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Huang L, Wen X, Jin L, Han H and Guo H:
HOOKLESS1 acetylates AUTOPHAGY-RELATED PROTEIN18a to promote
autophagy during nutrient starvation in Arabidopsis. Plant Cell.
36:136–157. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Yin X, Wang X and Komatsu S:
Phosphoproteomics: Protein phosphorylation in regulation of seed
germination and plant growth. Curr Protein Pept Sci. 19:401–412.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Cockram PE, Kist M, Prakash S, Chen SH,
Wertz IE and Vucic D: Ubiquitination in the regulation of
inflammatory cell death and cancer. Cell Death Differ. 28:591–605.
2021. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Pispa J, Mikkonen E, Arpalahti L, Jin C,
Martínez-Fernández C, Cerón J and Holmberg CI: AKIR-1 regulates
proteasome subcellular function in Caenorhabditis elegans.
iScience. 26:1078862023. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Ye L, Zhang W, Jin T, Zhang L, Wang T, Fu
X, Jin T, Zhang W and Ye L: The regulation of acetylation and
stability of HMGA2 via the HBXIP-activated Akt-PCAF pathway in
promotion of esophageal squamous cell carcinoma growth. Nucleic
Acids Res. 48:4858–4876. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Xu FF, Sun HM, Fang RP, Zhang L, Shi H,
Wang X, Fu XL, Li XM, Shi XH, Wu Y, et al: The modulation of PD-L1
induced by the oncogenic HBXIP for breast cancer growth. Acta
Pharmacol Sin. 43:429–445. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Zhang J, Sun B, Ruan X, Hou X, Zhi J, Meng
X, Zheng X and Gao M: Oncoprotein HBXIP promotes tumorigenesis
through MAPK/ERK pathway activation in non-small cell lung cancer.
Cancer Biol Med. 18:105–119. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Min JH, Yang H, Ivan M, Gertler F, Kaelin
WG Jr and Pavletich NP: Structure of an HIF-1alpha-pVHL complex:
Hydroxyproline recognition in signaling. Science. 296:1886–1889.
2002. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Zhou XL, Zhu CY, Wu ZG, Guo X and Zou W:
The oncoprotein HBXIP competitively binds KEAP1 to activate NRF2
and enhance breast cancer cell growth and metastasis. Oncogene.
38:4028–4046. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Bopape M, Tiloke C and Ntsapi C: Moringa
oleifera and Autophagy: Evidence from in vivo studies on
chaperone-mediated autophagy in HepG2 cancer cells. Nutr
Cancer. 75:1822–1847. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Liu B, Wang T, Wang H, Zhang L, Xu F, Fang
R, Li L, Cai X, Wu Y, Zhang W and Ye L: Oncoprotein HBXIP enhances
HOXB13 acetylation and co-activates HOXB13 to confer tamoxifen
resistance in breast cancer. Hematol Oncol. 11:262018. View Article : Google Scholar
|
|
63
|
Li L, Fang R, Liu B, Shi H, Wang Y, Zhang
W, Zhang X and Ye L: Deacetylation of tumor-suppressor MST1 in
Hippo pathway induces its degradation through HBXIP-elevated HDAC6
in promotion of breast cancer growth. Oncogene. 35:4048–4057. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Zhang L, Zhou X, Liu B, Shi X, Li X, Xu F,
Fu X, Wang X, Ye K, Jin T, et al: HBXIP blocks myosin-IIA assembly
by phosphorylating and interacting with NMHC-IIA in breast cancer
metastasis. Acta Pharm Sin B. 13:1053–1070. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Yoneyama M, Kawada K, Gotoh Y, Shiba T and
Ogita K: Endogenous reactive oxygen species are essential for
proliferation of neural stem/progenitor cells. Neurochem Int.
56:740–746. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Freyre-Fonseca V, Delgado-Buenrostro NL,
Gutiérrez-Cirlos EB, Calderón-Torres CM, Cabellos-Avelar T,
Sánchez-Pérez Y, Pinzón E, Torres I, Molina-Jijón E, Zazueta C, et
al: Titanium dioxide nanoparticles impair lung mitochondrial
function. Toxicol Lett. 202:111–119. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Cremers CM and Jakob U: Oxidant sensing by
reversible disulfide bond formation. J Biol Chem. 288:26489–26496.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Galadari S, Rahman A, Pallichankandy S and
Thayyullathil F: Reactive oxygen species and cancer paradox: To
promote or to suppress? Free Radic Biol Med. 104:144–164. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Moldogazieva NT, Lutsenko SV and Terentiev
AA: Reactive oxygen and nitrogen species-induced protein
modifications: Implication in carcinogenesis and anticancer
therapy. Cancer Res. 78:6040–6047. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Zhang S, Wang R, Wang X, Guo X, Du Y, Guo
X, Zong X, Zhu C and Zhou X: HBXIP is a novel regulator of the
unfolded protein response that sustains tamoxifen resistance in ER+
breast cancer. J Biol Chem. 298:1016442022. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Baird L and Yamamoto M: Immunoediting of
KEAP1-NRF2 mutant tumours is required to circumvent NRF2-mediated
immune surveillance. Redox Biol. 67:1029042023. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Zhou X, Li L, Guo X, Zhang C, Du Y, Li T,
Tong K, Zhu C and Wang Z: HBXIP induces anoikis resistance by
forming a reciprocal feedback loop with Nrf2 to maintain redox
homeostasis and stabilize Prdx1 in breast cancer. NPJ Breast
Cancer. 8:72022. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Tang R, Luo J, Zhu X, Miao P, Tang H, Jian
Y, Ruan S, Ling F and Tang M: Recent progress in the effect of
ferroptosis of HSCs on the development of liver fibrosis. Front Mol
Biosci. 10:12588702023. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Zhao C and Dahlman-Wright K: Liver X
receptor in cholesterol metabolism. J Endocrinol. 204:233–240.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Cohen RN, Brzostek S, Kim B, Chorev M,
Wondisford FE and Hollenberg AN: The specificity of interactions
between nuclear hormone receptors and corepressors is mediated by
distinct amino acid sequences within the interacting domains. Mol
Endocrinol. 15:1049–1061. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Zhao Y, Li H, Zhang Y, Li L, Fang R, Li Y,
Liu Q, Zhang W, Qiu L, Liu F, et al: Oncoprotein HBXIP modulates
abnormal lipid metabolism and growth of breast cancer cells by
activating the LXRs/SREBP-1c/FAS signaling cascade. Cancer Res.
76:4696–4707. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Zhang L, Li XM, Shi XH, Ye K, Fu XL, Wang
X, Guo SM, Ma JQ, Xu FF, Sun HM, et al: Sorafenib triggers
ferroptosis via inhibition of HBXIP/SCD axis in hepatocellular
carcinoma. Acta Pharmacol Sin. 44:622–634. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Liu X, Li H, Che N, Zheng Y, Fan W, Li M,
Li X and Xuan Y: HBXIP accelerates glycolysis and promotes cancer
angiogenesis via AKT/mTOR pathway in bladder cancer. Exp Mol
Pathol. 121:1046652021. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Zhang Y, Zhao Y, Li H, Li Y, Cai X, Shen
Y, Shi H, Li L, Liu Q, Zhang X and Ye L: The nuclear import of
oncoprotein hepatitis B X-interacting protein depends on
interacting with c-Fos and phosphorylation of both proteins in
breast cancer cells. J Biol Chem. 288:18961–18974. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Liu S, Li L, Zhang Y, Zhang Y, Zhao Y, You
X, Lin Z, Zhang X and Ye L: The oncoprotein HBXIP uses two pathways
to up-regulate S100A4 in promotion of growth and migration of
breast cancer cells. J Biol Chem. 287:30228–30239. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Liu F, You X, Wang Y, Liu Q, Liu Y, Zhang
S, Chen L, Zhang X and Ye L: The oncoprotein HBXIP enhances
angiogenesis and growth of breast cancer through modulating FGF8
and VEGF. Carcinogenesis. 35:1144–1153. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Clarke HJ, Chambers JE, Liniker E and
Marciniak SJ: Endoplasmic reticulum stress in malignancy. Cancer
Cell. 25:563–573. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Clarke R, Shajahan AN, Wang Y, Tyson JJ,
Riggins RB, Weiner LM, Bauman WT, Xuan J, Zhang B, Facey C, et al:
Endoplasmic reticulum stress, the unfolded protein response, and
gene network modeling in antiestrogen resistant breast cancer. Horm
Mol Biol Clin Investig. 5:35–44. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Meng X, Qi XY, Wang QX and Liu WX: Effect
of HBXIP on biological function and PI3K/Akt signaling pathway of
adenoid cystic carcinoma cell line ACC-M. Shanghai Kou Qiang Yi
Xue. 26:389–394. 2017.(In Chinese). PubMed/NCBI
|
|
85
|
Cai X, Cao C, Li J, Chen F, Zhang S, Liu
B, Zhang W, Zhang X and Ye L: Inflammatory factor TNF-α promotes
the growth of breast cancer via the positive feedback loop of
TNFR1/NF-κB (and/or p38)/p-STAT3/HBXIP/TNFR1. Oncotarget.
8:58338–58352. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Zhuang C, Narayanapillai S, Zhang W, Sham
Y and Xing C: Rapid identification of Keap1-Nrf2 small-molecule
inhibitors through structure-based virtual screening and hit-based
substructure search. J Med Chem. 57:1121–1126. 2014. View Article : Google Scholar : PubMed/NCBI
|