Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
June-2024 Volume 29 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
June-2024 Volume 29 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Molecular and pathophysiological relationship between obesity and chronic inflammation in the manifestation of metabolic dysfunctions and their inflammation‑mediating treatment options (Review)

  • Authors:
    • Fani-Niki Varra
    • Michail Varras
    • Viktoria-Konstantina Varra
    • Panagiotis Theodosis-Nobelos
  • View Affiliations / Copyright

    Affiliations: Department of Pharmacy, School of Health Sciences, Frederick University, Nicosia 1036, Cyprus, Fourth Department of Obstetrics and Gynecology, ‘Elena Venizelou’ General Hospital, Athens 11521, Greece, Department of Pharmacy, School of Health Sciences, University of Patras, Patras 26504, Greece
    Copyright: © Varra et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 95
    |
    Published online on: April 9, 2024
       https://doi.org/10.3892/mmr.2024.13219
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Obesity reaches up to epidemic proportions globally and increases the risk for a wide spectrum of co‑morbidities, including type‑2 diabetes mellitus (T2DM), hypertension, dyslipidemia, cardiovascular diseases, non‑alcoholic fatty liver disease, kidney diseases, respiratory disorders, sleep apnea, musculoskeletal disorders and osteoarthritis, subfertility, psychosocial problems and certain types of cancers. The underlying inflammatory mechanisms interconnecting obesity with metabolic dysfunction are not completely understood. Increased adiposity promotes pro‑inflammatory polarization of macrophages toward the M1 phenotype, in adipose tissue (AT), with subsequent increased production of pro‑inflammatory cytokines and adipokines, inducing therefore an overall, systemic, low‑grade inflammation, which contributes to metabolic syndrome (MetS), insulin resistance (IR) and T2DM. Targeting inflammatory mediators could be alternative therapies to treat obesity, but their safety and efficacy remains to be studied further and confirmed in future clinical trials. The present review highlights the molecular and pathophysiological mechanisms by which the chronic low‑grade inflammation in AT and the production of reactive oxygen species lead to MetS, IR and T2DM. In addition, focus is given on the role of anti‑inflammatory agents, in the resolution of chronic inflammation, through the blockade of chemotactic factors, such as monocytes chemotractant protein‑1, and/or the blockade of pro‑inflammatory mediators, such as IL‑1β, ΤΝF‑α, visfatin, and plasminogen activator inhibitor‑1, and/or the increased synthesis of adipokines, such as adiponectin and apelin, in obesity‑associated metabolic dysfunction. 
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

View References

1 

Sethi JK and Vidal-Puig AJ: Thematic review series: Adipocyte biology. Adipose tissue function and plasticity orchestrate nutritional adaptation. J Lipid Res. 48:1253–1262. 2007. View Article : Google Scholar : PubMed/NCBI

2 

Luo L and Liu M: Adipose tissue in control of metabolism. J Endocrinol. 231:R77–R99. 2016. View Article : Google Scholar : PubMed/NCBI

3 

Jung UJ and Choi MS: Obesity and its metabolic complications: The role of adipokines and the relationship between obesity, inflammation, insulin resistance, dyslipidemia and nonalcoholic fatty liver disease. Int J Mol Sci. 15:6184–6223. 2014. View Article : Google Scholar : PubMed/NCBI

4 

Curat CA, Miranville A, Sengenè C, Diehl M, Tonus C, Busse R and Bouloumié A: From blood monocytes to adipose tissue-resident macrophages: Induction of diapedesis by human mature adipocytes. Diabetes. 53:1285–1292. 2004. View Article : Google Scholar : PubMed/NCBI

5 

Cypess AM, Lehman S, Williams G, Tal I, Rodman D, Goldfine AB, Kuo FC, Palmer EL, Tseng YH, Doria A, et al: Identification and importance of brown adipose tissue in adult humans. N Engl J Med. 360:1509–1517. 2009. View Article : Google Scholar : PubMed/NCBI

6 

Nauli AM and Matin S: Why do men accumulate abdominal visceral fat? Front Physiol. 10:14862019. View Article : Google Scholar : PubMed/NCBI

7 

Kahn CR, Wang G and Lee KY: Altered adipose tissue and adipocyte function in the pathogenesis of metabolic syndrome. J Clin Invest. 129:3990–4000. 2019. View Article : Google Scholar : PubMed/NCBI

8 

Blüher M: Adipose tissue dysfunction in obesity. Exp Clin Endocrinol Diabetes. 117:241–250. 2009. View Article : Google Scholar : PubMed/NCBI

9 

Tan CY and Vidal-Puig A: Adipose tissue expandability: The metabolic problems of obesity may arise from the inability to become more obese. Biochem Soc Trans. 36:935–940. 2008. View Article : Google Scholar : PubMed/NCBI

10 

Sebo ZL and Rodeheffer MS: Assembling the adipose organ: Adipocyte lineage segragation and adipogenesis in vivo. Development. 146:dev1720982019. View Article : Google Scholar : PubMed/NCBI

11 

Lafontan M and Langin D: Lipolysis and lipid modilization in human adipose tissue. Prog Lipid Res. 48:275–297. 2009. View Article : Google Scholar : PubMed/NCBI

12 

Frayn KN: Adipose tissue as a buffer for daily lipid flux. Diabetologia. 45:1201–1210. 2002. View Article : Google Scholar : PubMed/NCBI

13 

Cinti S, Mitchell G, Barbatelli G, Murano I, Ceresi E, Faloia E, Wang S, Fortier M, Greenberg AS and Obin MS: Adipocyte death defines macrophage location and function in adipose tissue of obese mice and humans. J Lipid Res. 46:2347–2355. 2005. View Article : Google Scholar : PubMed/NCBI

14 

Ellulu MS, Patimah I, Khazaai H, Rahmat A and Abed Y: Obesity and inflammation: The linking mechanism and the complications. Arch Med Sci. 13:851–863. 2017. View Article : Google Scholar : PubMed/NCBI

15 

Hotamisligil GS: Inflammation and metabolic disorders. Nature. 444:860–867. 2006. View Article : Google Scholar : PubMed/NCBI

16 

Fantuzzi G: Adipose tissue, adipokines, and inflammation. J Allergy Clin Immunol. 115:911–919. 2005. View Article : Google Scholar : PubMed/NCBI

17 

Weir CB and Jan A: BMI classification percentile and cut off points. StatPearls Treasure Island, FL: StatPearls Publishing; 2020

18 

Marcadenti A and de Abreu-Silva EO: Different adipose tissue depots: Metabolic implications and effects of surgical removal. Endocrinol Nutr. 62:458–464. 2015. View Article : Google Scholar : PubMed/NCBI

19 

Fuster JJ, Ouchi N, Gokce N and Walsh K: Obesity-induced changes in adipose tissue microenvironment and their impact on cardiovascular disease. Circ Res. 118:1786–1807. 2016. View Article : Google Scholar : PubMed/NCBI

20 

Osborn O and Olefsky JM: The cellular and signaling networks linking the immune system and metabolism in disease. Nat Med. 18:363–374. 2012. View Article : Google Scholar : PubMed/NCBI

21 

Gustafson B, Hedjazifar S, Gogg S, Hammarstedt A and Smith U: Insulin resistance and impaired adipogenesis. Trends Endocrinol Metab. 26:193–200. 2015. View Article : Google Scholar : PubMed/NCBI

22 

Kuk JL, Katzmarzyk PT, Nichaman MZ, Church TS, Blair SN and Ross R: Visceral fat in an independent predictor of all-cause mortality in men. Obesity (Silver Spring). 14:336–341. 2006. View Article : Google Scholar : PubMed/NCBI

23 

Klein J, Permana PA, Owecki M, Chaldakov GN, Böhm M, Hausman G, Lapière CM, Atanassova P, Sowiński J, Fasshauer M, et al: What are subcutaneous adipocytes really good for? Exp Dermatol. 16:45–70. 2007. View Article : Google Scholar : PubMed/NCBI

24 

Cameron AJ, Magliano DJ and Soderberg S: A systemic review of the impact of including both waist and hip circumference in risk models for cardiovascular diseases, diabetes and mortality. Obes Rev. 14:86–94. 2013. View Article : Google Scholar : PubMed/NCBI

25 

Koster A, Murphy RA, Eiriksdottir G, Aspelund T, Sigurdsson S, Lang TF, Gudnason V, Launer LJ and Harris TB: Fat distribution and mortality: The AGES-Reykjavik study. Obesity (Silver Spring). 23:893–897. 2015. View Article : Google Scholar : PubMed/NCBI

26 

Arner P, Andersson DP, Thörne A, Wirén M, Hoffstedt J, Näskybd E, Thorell A and Rydén M: Variations in the size of the major omentum are primarily determined by fat cell number. J Clin Endocrinol Metab. 98:E897–E901. 2013. View Article : Google Scholar : PubMed/NCBI

27 

Chait A and den Hartigh LJ: Adipose tissue distribution, inflammation and its metabolic consequences, including diabetes and cardiovascular disease. Front Cardiovasc Med. 25:222020. View Article : Google Scholar : PubMed/NCBI

28 

James WP: Assessing obesity: Are ethnic differences in body mass index and waist classification criteria justified? Obes Rev. 6:179–181. 2005. View Article : Google Scholar : PubMed/NCBI

29 

James WP, Rigby N and Leach R: Obesity and the metabolic syndrome: The stress on society. Ann N Y Acad Sci. 1083:1–10. 2006. View Article : Google Scholar : PubMed/NCBI

30 

El-Sayed AM, Scarborough P and Galea S: Ethnic inequalities in obesity among children and adults in the UK: A systematic review of the literature. Obes Rev. 12:e516–e534. 2011. View Article : Google Scholar : PubMed/NCBI

31 

Barnett AH, Dixon AN, Bellary S, Hanif MW, O'Hare JP, Raymond NT and Kumar S: Type 2 diabetes and cardiovascular risk in the UK south Asian community. Diabetologia. 49:2234–2246. 2006. View Article : Google Scholar : PubMed/NCBI

32 

Misra A and Khurana L: Obesity-related non-communicable diseases: South Asians vs White Caucasians. Int J Obes (Lond). 35:167–187. 2011. View Article : Google Scholar : PubMed/NCBI

33 

Pi-Sunyer X: The medical risks of obesity. Postgrad Med. 121:21–33. 2009. View Article : Google Scholar : PubMed/NCBI

34 

Kyrou I, Randeva HS, Tsigos C, Kaltsas G, Weickert MO, Feingold KR, Anawalt B, Blackman MR, Boyce A, Chrousos G, et al: Clinical problems caused by obesity. Endotext [Internet] South Dartmouth (MA): MDText.com, Inc; 2018

35 

Khanna D, Khanna S, Khanna P, Kahar P and Patel BM: Obesity: A chronic low-grade inflammation and its markers. Cureus. 14:e227112022.PubMed/NCBI

36 

Bobbert T, Rochlitz H, Wegewitz U, Akpulat S, Mai K, Weickert MO, Möhlig M, Pfeiffer AFH and Spranger J: Changes of adiponectin oligomer composition by moderate weight reduction. Diabetes. 54:2712–2719. 2005. View Article : Google Scholar : PubMed/NCBI

37 

Hotamisligil GS, Shargill NS and Spiegelman BM: Adipose expression of tumor necrosis factor-α: Direct role in obesity-linked insulin resistance. Science. 259:87–91. 1993. View Article : Google Scholar : PubMed/NCBI

38 

Mohlig M, Weickert MO, Ghadamgadai E, Machlitt A, Pfüller B, Arafat AM, Pfeiffer AFH and Schöfl C: Adipocyte fatty acid-binding protein is associated with marker of obesity, but is an unlikely link between obesity, insulin resistance and hyperandrogenism in polycystic ovary syndrome women. Eur J Endocrinol. 157:195–200. 2007. View Article : Google Scholar : PubMed/NCBI

39 

Fonseca-Alaniz MH, Takada J, Alonso-Vale MI and Lima FB: Adipose tissue as an endocrine organ: From theory to practice. J Pediatr. 83:192–203. 2007. View Article : Google Scholar : PubMed/NCBI

40 

Maury E and Brichard SM: Adipokine dysregulation, adipose tissue inflammation and metabolic syndrome. Mol Cell Endocrinol. 314:1–16. 2010. View Article : Google Scholar : PubMed/NCBI

41 

Gregor MF and Hotamilsigil GS: Inflammatory mechanisms in obesity. Annu Rev Immunol. 29:415–445. 2011. View Article : Google Scholar : PubMed/NCBI

42 

Weickert MO, Hodges P, Tan BK and Randeva HS: Neuroendocrine and endocrine dysfunction in the hyperinsulinemic PCOS patient: The role of metformin. Minerva Endocrinol. 37:25–40. 2012.PubMed/NCBI

43 

Randeva HS, Tan BK, Weickert MO, Lois K, Nestler JE, Sattar N and Lehnert H: Cardiometabolic aspects of the polycystic ovary syndrome. Endocr Rev. 33:812–841. 2012. View Article : Google Scholar : PubMed/NCBI

44 

Makki K, Froguel P and Wolowczuk I: Adipose tissue in obesity-related inflammation and insulin resistance. Cells, cytokines and chemokines. ISRN Inflamm. 2013:1392392013. View Article : Google Scholar : PubMed/NCBI

45 

Sivakumar K, Bari MF, Adaikalakoteswari A, Guller S, Weickert MO, Randeva HS, Grammatopoulos DK, Bastie CC and Vatish M: Elevated fetal adispin/acylation-stimulating protein (ASP) in obese pregnancy: Novel placental secretion via Hofbauer cells. J Clin Endocrinol Metab. 98:4113–4122. 2013. View Article : Google Scholar : PubMed/NCBI

46 

von Loeffelholz C, Mohlig M, Arafat AM, Isken F, Spranger J, Mai K, Randeva HS, Pfeiffer AFH and Weickert MO: Circulation vaspin is unrelated to insulin sensitivity in a cohort of nondiabetic humans. Eur J Endocrinol. 162:507–513. 2013. View Article : Google Scholar : PubMed/NCBI

47 

Elmasry SA, Al-Azzawi MA, Ghoneim AH, Nasr MY and AboZaid MMN: Role of oxidant-antioxidant imbalance in the pathogenesis of chronic obstructive pulmonary disease. Egypt J Chest Dis Tuberc. 64:813–820. 2015. View Article : Google Scholar

48 

Marseglia L, Manti S, D'Angelo G, Nicotera A, Parisi E, Di Rosa G, Gitto E and Arrigo T: Oxidative stress in obesity: A critical component in human diseases. Int J Mol Sci. 16:378–400. 2015. View Article : Google Scholar

49 

Reilly SM and Saltiel AR: Adapting to obesity with adipose tissue inflammation. Nat Rev Endocrinol. 13:633–643. 2017. View Article : Google Scholar : PubMed/NCBI

50 

Rheinheimer J, de Souza BM, Cardoso NS, Bauer AC and Crispim D: Current role of the NLRP3 inflammasome on obesity and insulin resistance: A systematic review. Metabolism. 74:1–9. 2017. View Article : Google Scholar : PubMed/NCBI

51 

Deshmane SL, Kremley S, Amini S and Sawaya BE: Monocyte chemoattractant protein-1 (MCP-1): An overview. J Interferon Cytokine Res. 29:313–326. 2009. View Article : Google Scholar : PubMed/NCBI

52 

Taylor EB: The complex role of adipokines in obesity, inflammation and autoimmunity. Clin Sci (Lond). 135:731–752. 2021. View Article : Google Scholar : PubMed/NCBI

53 

Matsushima K, Larsen CG, DuBois GC and Oppenheim JJ: Purification and characterization of a novel monocyte chemotactic and activating factor produced by a human myolomonocytic cell line. J Exp Med. 169:1485–1490. 1989. View Article : Google Scholar : PubMed/NCBI

54 

Rollins BJ: Chemokines. Blood. 90:909–928. 1997. View Article : Google Scholar : PubMed/NCBI

55 

Kanda H, Tateya S, Tamori Y, Kotani K, Hiasa K, Kitazawa R, Kitazawa S, Miyachi H, Maeda S, Egashira K and Kasuga M: MCP-1 contributes to macrophage infiltration into adipose tissue, insulin resistance, and hepatic steatosis in obesity. J Clin Invest. 116:1494–1505. 2006. View Article : Google Scholar : PubMed/NCBI

56 

Singh S, Anshita D and Ravichandiran V: MCP-1: Function, regulation, and involvement in disease. Int Immunopharmacol. 101((PtB)): 1075982021. View Article : Google Scholar : PubMed/NCBI

57 

Dietze-Schroeder D, Sell H, Uhlig M, Koener M and Eckel J: Autocrine action of adiponectin on human fat cells prevents the release of insulin resistance-inducing factors. Diabetes. 54:2003–2011. 2005. View Article : Google Scholar : PubMed/NCBI

58 

Christiansen T, Richelsen B and Bruun JM: Monocyte chemoattractant protein-1 is produced in isolated adipocytes, associated with adiposity and reduced after weight loss in morbid obese subjects. Int J Obes (Lond). 29:146–150. 2005. View Article : Google Scholar : PubMed/NCBI

59 

Cancello R, Henegar C, Viguerie N, Taleb S, Poitou C, Rouault C, Coupaye M, Pelloux V, Hugol D, Bouillot JL, et al: Reduction of macrophage infiltration and chemoattractant gene expression changes in white adipose tissue of morbidly obese subjects after surgery-induced weight loss. Diabetes. 54:2277–2286. 2005. View Article : Google Scholar : PubMed/NCBI

60 

Piemonti L, Calori G, Mercalli A, Lattuada G, Monti P, Garancini MP, Constantio F, Ruotolo G, Luzi L and Perseglin G: Fasting plasma leptin, tumor necrosis factor-alpha receptor 2, and monocyte chemoattracting protein 1 concentration in a population of glucose-tolerant and glucose-intolerant women: Impact on cardiovascular mortality. Diabetes Care. 26:2883–2889. 2003. View Article : Google Scholar : PubMed/NCBI

61 

Simeoni E, Hoffman MM, Winkelman BR, Ruiz J, Fleury S, Boehm BO, März W and Vassalli G: Association between the A-2518G polymorphism in the monocyte chemoattractant protein-1 gene and insulin resistance and type 2 diabetes mellitus. Diabetologia. 47:1574–1580. 2004. View Article : Google Scholar : PubMed/NCBI

62 

Herder C, Baumert J, Thorand B, Koenig W, de Jager W, Meisinger C, Illig T, Martin S and Kolb H: Chemokines as risk factors for type 2 diabetes: Results from the MONICA/KORA Augsburg study, 1984–2002. Diabetologia. 49:921–929. 2006. View Article : Google Scholar : PubMed/NCBI

63 

Kim CS, Park HS, Kawada T, Kim JH, Lim D, Hubbard NE, Kwon BS, Rrickson KL and Yu R: Circulating levels of MCP-1 and IL-8 are elevated in human obese subjects and associated with obesity-related parameters. Int J Obes (Lond). 30:1347–1355. 2006. View Article : Google Scholar : PubMed/NCBI

64 

Shimobayashi M, Albert V, Woelnerhanssen B, Frei IC, Weissenberger D, Meyer-Gerpach AC, Clement N, Moes S, Colombi M, Meier JA, et al: Insulin resistance causes inflammation in adipose tissue. J Clin Invest. 128:1538–1550. 2018. View Article : Google Scholar : PubMed/NCBI

65 

Zhu B, Guo X, Xu H, Jiang B, Li H, Wang Y, Yin O, Zhou T, Cai JJ, Glaser S, et al: Adipose tissue inflammation and systemic insulin resistance in mice with diet-induced obesity is possibly associated with disruption of PFKFB3 in hematopoietic cells. Lab Invest. 101:328–340. 2021. View Article : Google Scholar : PubMed/NCBI

66 

Ylä-Herttuala S, Lipton A, Rosenfeld ME, Särkioja T, Yoshimura T, Leonard EJ, Witztum JL and Steinberg D: Expression of monocyte chemoattractant protein 1 in macrophage-rich areas of human and rabbit atherosclerotic lesions. Proc Natl Acad Sci USA. 88:5252–5256. 1991. View Article : Google Scholar : PubMed/NCBI

67 

Arakelyan A, Petrkova J, Hermanova Z, Boyajyan A, Lukl J and Petrek M: Serum levels of the MCP-1 chemokine in patients with ischemic stroke and myocardiac infarction. Mediators Inflamm. 14:175–179. 2005. View Article : Google Scholar : PubMed/NCBI

68 

Sukumar D, Partridge C, Wang X and Shapses SA: The high serum monocyte chemoattractant protein-1 in obesity is influenced by high parathyroid hormone and not adiposity. J Clin Endocrinol Metab. 296:1852–1858. 2011. View Article : Google Scholar : PubMed/NCBI

69 

Takeya M, Yoshimura T, Leonard EJ and Takahashi K: Detection of monocyte chemoattractant protein-1 in human atherosclerotic lesions by an anti-monocyte chemoattractant protein-1 monoclonal antibody. Hum Pathol. 24:534–539. 1993. View Article : Google Scholar : PubMed/NCBI

70 

Gu L, Οkada Y, Clinton SK, Gerard C, Sukhova GK, Libby P and Rollins BJ: Absence of monocyte chemoattractant protein-1 reduces atherosclerosis in low density lipoprotein receptor-defined mice. Mol Cell. 2:275–281. 1998. View Article : Google Scholar : PubMed/NCBI

71 

Boring M, Gosling J, Cleary M and Charo IF: Decreased lesion in CCR2-/- mice reveals a role for chemokines in the initation of atherosclerosis. Nature. 394:894–897. 1998. View Article : Google Scholar : PubMed/NCBI

72 

Deng Y and Scherer PE: Adipokines as novel biomarkers and regulators of the metabolic syndrome. Ann N Y Acad Sci. 1212:E1–E19. 2010. View Article : Google Scholar : PubMed/NCBI

73 

Dutheil F, Gordon BA, Naughton G, Crendal E, Courteix D, Chaplais E, Thivel D, Lac G and Benson AC: Cardiovascular risk of adipokines: A review. J Inter Med Res. 46:2082–2095. 2018. View Article : Google Scholar : PubMed/NCBI

74 

Szumilas K, Szumilas P, Słuczanowska-Głąbowsk S, Zgutka K and Pawlik A: Role of adiponectin in the pathogenesis of Rheumatoid arthritis. Int J Mol Sci. 21:82652020. View Article : Google Scholar : PubMed/NCBI

75 

Adolph TE, Grander C, Grabherr F and Tilg H: Adipokines and non-alcoholic fatty liver disease: Multiple interactions. Int J Mol Sci. 18:16492017. View Article : Google Scholar : PubMed/NCBI

76 

Neumann UH, Chen S, Tam YY, Baker RK, Covey SD, Dullis PP and Kieffer TJ: IGFBP2 is neither sufficient nor necessary for the physiological actions of leptin on glucose homeostasis in male ob/ob mice. Endocrinology. 155:716–725. 2014. View Article : Google Scholar : PubMed/NCBI

77 

Zorena K, Jachimowicz-Duda O, Ślęzak D, Robakowska M and Mrugacz M: Adipokines in obesity. Potential lind to metabolic disorders and chronic complications. Int J Mol Sci. 21:35702020. View Article : Google Scholar : PubMed/NCBI

78 

Kumada M, Kihara S, Ouchi N, Kobayashi H, Okamoto Y, Ohashi K, Maeda K, Nagaretani H, Kishida K, Maeda N, et al: Adiponectin specifically increased tissue inhibitor of metalloproteinase-1 through interleukin-10 expression in human macrophages. Circulation. 109:2046–2049. 2004. View Article : Google Scholar : PubMed/NCBI

79 

Quedraogo R, Wu X, Xu SQ, Fuchsel L, Motoshima H, Mahadev K, Hough K, Scalia R and Goldstein BJ: Adiponectin suppression of high-glucose-induced reactive oxygen species in vascular endothelial cells: Evidence for involvement of a cAMP signaling pathway. Diabetes. 55:1840–1846. 2006. View Article : Google Scholar : PubMed/NCBI

80 

Yuan F, Li YN, Liu YH, Yi B, Tian JW and Liu FY: Adiponectin inhibits the generation of reactive oxygen species induced by high glucose and promotes endothelial NO synthase formation in human mesangial cells. Mol Med Rep. 6:449–453. 2012. View Article : Google Scholar : PubMed/NCBI

81 

Furukawa S, Fujita T, Shimabukuro M, Iwaki M, Yamada Y, Nakajima Y, Nakayama O, Makishima M, Matsuda M and Shimomura I: Increased oxidative stress in obesity and its impact on metabolic syndrome. J Clin Invest. 114:1752–1761. 2004. View Article : Google Scholar : PubMed/NCBI

82 

Castro JR, Grune T and Speckmann B: The two faces of reactive oxygen species (ROS) in adipocyte function and dysfunction. Biol Chem. 397:709–724. 2016. View Article : Google Scholar : PubMed/NCBI

83 

Fujita K, Nishizawa H, Funahashi T, Shimomura I and Shimabukuro M: Systemic oxidative stress is associated with visceral fat accumulation and the metabolic syndrome. Circulation. 70:1437–1442. 2006. View Article : Google Scholar : PubMed/NCBI

84 

Kanazawa I, Yamaguchi T, Yano S, Yamauchi M, Yamamoto M and Sugimoto T: Adiponectin and AMP kinase activator stimulate proliferation, differentiation, and mineralization of osteoblastic MC3T3-E1 cells. BMC Cell Biol. 8:512007. View Article : Google Scholar : PubMed/NCBI

85 

Xie C and Chen Q: Adipokines: New therapeutic target for osteoarthritis? Curr Reumatol Rep. 21:712020.

86 

Gamberi Τ, Μagherini F, Modesti A and Fiaschi T: Adiponectin signaling pathways in liver diseases. Biomedicines. 6:522018. View Article : Google Scholar : PubMed/NCBI

87 

Ouchi N, Kihara S, Arita Y, Nishida M, Matsuyama A, Okamoto Y, Ishigami M, Kuriyama H, Kishida K, Nishizawa H, et al: Adipocyte-derived plasma protein, adiponectin, suppresses lipid accumulation and class A scavenger receptor expression in human monocyte-derived macrophages. Circulation. 103:1057–1063. 2001. View Article : Google Scholar : PubMed/NCBI

88 

Matsuda M, Shimomura I, Sata M, Arita Y, Nishida M, Maeda N, Kumada M, Okamoto Y, Nagaretani H, Nishizawa H, et al: Role of adiponectin in preventing vascular stenosis. The missing link of adipo-vascular axis. J Biol Chem. 277:37487–37491. 2002. View Article : Google Scholar : PubMed/NCBI

89 

Kadowaki T and Yamauchi T: Adiponectin and adiponectin receptors. Endocr Rev. 26:439–451. 2005. View Article : Google Scholar : PubMed/NCBI

90 

Zha N, Wu X and Gao P: Adiponectin and its receptors in diabetic kidney disease: Molecular mechanisms and clinical potential. Endocrinol. 158:2022–2034. 2017. View Article : Google Scholar

91 

Alnaggar ARLR, Sayed M, El-Deena KE, Gomma M and Hamed Y: Evaluation of serum adiponectin levels in diabetic nephropathy. Diabetes Metab Syndr. 13:128–131. 2019. View Article : Google Scholar : PubMed/NCBI

92 

Ouedraogo R, Gong Y, Berzins B, Wu X, Mahadev K, Hough K, Chan L, Goldstein BJ and Scalia R: Adiponectin deficiency increases leukocyte-endothelium interactions via up-regulation of endothelial cell adhesion molecules in vivo. J Clin Invest. 117:1718–1761. 2007. View Article : Google Scholar : PubMed/NCBI

93 

Abella V, Scotece M, Conde J, López V, Lazzaro V, Pino J, Gómez-Rein O and Gualillo O: Adipokines, metabolic syndrome and rheumatic diseases. J Immunol Res. 2014:3437462014. View Article : Google Scholar : PubMed/NCBI

94 

Stefan N and Stumvoll M: Adiponectin-its role in metabolism and beyond. Horm Metab Res. 34:469–474. 2002. View Article : Google Scholar : PubMed/NCBI

95 

Weyer C, Funahashi T, Tanaka S, Hotta K, Matsuzawa Y, Pratley RE and Tataranni PA: Hypoadiponectinemia in obesity and type 2 diabetes: Close association with insulin resistance and hyperinsulinemia. J Clin Endocrinol Metab. 86:1930–1935. 2001. View Article : Google Scholar : PubMed/NCBI

96 

Arita Y, Kihara S, Ouchi N, Takahashi M, Maed K, Miyagawa J, Hotta K, Shimomura I, Nakamura T, Miyaoka K, et al: Paradoxical decrease of an adipose-specific protein, adiponectin, in obesity. Biochem Biophys Res Commun. 257:79–83. 1999. View Article : Google Scholar : PubMed/NCBI

97 

Scherer PE: Adipose tissue. From lipid storage compartment to endocrine organ. Diabetes. 55:1537–1545. 2006. View Article : Google Scholar : PubMed/NCBI

98 

Trujillo ME and Scherer PE: Adipose tissue-derived factors: Impact on health and disease. Endocr Rev. 27:762–778. 2006. View Article : Google Scholar : PubMed/NCBI

99 

Oh DK, Ciaraldi T and Henry RR: Adiponectin in health and disease. Diabetes Obes Metab. 9:282–289. 2007. View Article : Google Scholar : PubMed/NCBI

100 

Li S, Shin HJ, Ding EL and van Dam RM: Adiponectin levels and risk of type 2 diabetes: A systematic review and meta-analysis. JAMA. 302:179–188. 2009. View Article : Google Scholar : PubMed/NCBI

101 

Li C, Cheng H, Adhikari BK, Wang S, Yang N, Liu W, Sun J and Wang Y: The role of apelin-APJ system in diabetes and obesity. Front Endocrinol (Lausanne). 2022:132022.

102 

Al-Mansoori L, Al-Jaber H, Price MS and Elrayess MA: Role of inflammatory cytokines, growth factors and adipokines in adipogenesis and insulin resistance. Inflammation. 45:31–44. 2022. View Article : Google Scholar : PubMed/NCBI

103 

Vykoukal D and Davies MG: Vascular biology of metabolic syndrome. J Vasc Surg. 54:819–831. 2011. View Article : Google Scholar : PubMed/NCBI

104 

Than A, He HL, Chua SH, Xu D, Sun L, Leow MKS and Chen P: Apelin enhances brown adipogenesis and browning of white adipocytes. J Biol Chem. 290:1469–14691. 2015. View Article : Google Scholar

105 

Yamamoto T, Habata Y, Matsumoto Y, Yasuhara Y, Hashimoto T, Hamajyo H, Anayama H, Fujii R, Fuse H, Shintani Y and Mori M: Apelin-transgenic mice exhibit a resistance against diet-induced obesity by increasing vascular mass and mitochondrial biogenesis in skeletal muscle. Biochim Biophys Acta. 1810:853–862. 2011. View Article : Google Scholar : PubMed/NCBI

106 

Mughal A and O'Rourke ST: Vascular effects on apelin: Mechanisms and therapeutic potential. Pharmacol Ther. 190:139–147. 2018. View Article : Google Scholar : PubMed/NCBI

107 

Yamazaki S, Sekiguchi A, Uchiyama A, Fujiwara C, Inoue Y, Yokoyama Y, Ogino S, Torii R, Hosoi M, Akai R, et al: Apelin/APJ signaling suppresses the pressure ulcer formation in cutaneous ischemia-perfusion injury mouse model. Sci Rep. 10:13492020. View Article : Google Scholar : PubMed/NCBI

108 

Attané C, Foussal C, Gonidec SL, Benani A, Daviaud D, Wanecq E, Guzmán-Ruiz R, Dray C, Bezaire V, Rancoule C, et al: Apelin treatment increases complete fatty acid oxidation, mitochondrial oxidative capacity and biogenesis in muscle of insulin-resistant mice. Diabetes. 61:310–320. 2012. View Article : Google Scholar : PubMed/NCBI

109 

Lay SL, Simard G, Martinez MC and Andriantsitohaina R: Oxidative stress and metabolic pathologies: From an adipocentric point of view. Oxid Med Cell Longev. 2014:9085392014.PubMed/NCBI

110 

Kim S, Kim S, Hwang AR, Choi HC, Lee JY and Woo CH: Apelin-13 inhibits methylglyoxal-induced unfolded protein responses and endothelial dysfuction via regulating AMPK pathway. Int J Mol Sci. 21:40692020. View Article : Google Scholar : PubMed/NCBI

111 

Fibbi B, Marroncini G, Naldi L and Peri A: The Yin and Yang effects of the apelinergic system in oxidative stress. Int J Mol Sci. 24:47452023. View Article : Google Scholar : PubMed/NCBI

112 

Zhang Y, Proenca R, Maffei M, Barone M, Leopold L and Friedman JM: Positional cloning of the mouse obes gene and its human homologue. Nature. 372:425–432. 1994. View Article : Google Scholar : PubMed/NCBI

113 

Halaas JL, Gajiwala KS, Maffei M, Cohen SL, Chait BT, Rabinowitz D, Lallone RL, Burley SK and Friedman JM: Weight-reducing effects of the plasma protein encoded by the obese gene. Science. 269:543–546. 1995. View Article : Google Scholar : PubMed/NCBI

114 

Caro JF, Sinha MK, Kolaczynski JW, Zhang PL and Considine RV: Leptin: The tale of an obesity gene. Diabetes. 45:1455–1462. 1996. View Article : Google Scholar : PubMed/NCBI

115 

Fantuzzi G and Faggioni R: Leptin in the regulation of immunity, inflammation and haematopoiesis. J Leukoc Biol. 68:437–446. 2000. View Article : Google Scholar : PubMed/NCBI

116 

Münzberg H and Morrison CD: Structure, production and signaling of leptin. Metabolism. 64:13–23. 2015. View Article : Google Scholar : PubMed/NCBI

117 

Trayhurn P, Duncan JS, Hoggard N and Rayner DV: Regulation of leptin production: A dominant role for the sympathetic nervous system? Proc Nutr Soc. 57:413–419. 1998. View Article : Google Scholar : PubMed/NCBI

118 

Dieguez C, Vazquez MJ, Romero A, Lopez M and Nogueiras R: Hypothalamic control of lipid metabolism: Focus on leptin, ghrelin and melanocortins. Neuroendocrinology. 94:1–11. 2011. View Article : Google Scholar : PubMed/NCBI

119 

Morton GJ and Schwartz MW: Leptin and the central nervous system control of glucose metabolism. Physiol Rev. 91:389–411. 2011. View Article : Google Scholar : PubMed/NCBI

120 

Sahu A: Leptin signaling in the hypothalamus: Emphasis on energy homeostasis and leptin resistance. Front Neuroendocrinol. 24:225–253. 2003. View Article : Google Scholar : PubMed/NCBI

121 

Blaszczak AM, Jalilvand A and Hsueh WA: Adipocytes, innate immunity and obesity: A mini-review. Front Immunol. 12:6507682021. View Article : Google Scholar : PubMed/NCBI

122 

Obradovic M, Sudar-Milovanovic E, Soskic S, Essack M, Arya S, Stewart AJ, Gojobori T and Isenovic ER: Leptin and obesity: Role and clinical implication. Front Endocrinol (Lausanne). 12:5858872021. View Article : Google Scholar : PubMed/NCBI

123 

Fahed G, Aoun L, Zerdan MB, Allam S, Zerdan MB, Bouferraa Y and Assi HI: Metabolic syndrome: Updates on pathophysiology and management in 2021. Int J Mol Sci. 23:7862022. View Article : Google Scholar : PubMed/NCBI

124 

van den Hoek AM, Teusink B, Voshol PJ, Havekes LM, Romijn JA and Piji H: Leptin deficiency per se dictates body composition and insulin action in ob/ob mice. J Neuroendocrinol. 20:120–127. 2008. View Article : Google Scholar : PubMed/NCBI

125 

Zhang H, Xie H, Zhao Q, Xie GQ, Wu XP, Liao EY and Luo XH: Relationships between serum adiponectin, apelin, leptin, resistin, visfatin levels and bone mineral density, and bone biochemical markers in post-menopausal Chinese women. J Endocrinol Invest. 33:707–711. 2010. View Article : Google Scholar : PubMed/NCBI

126 

Aizawa-Abe M, Ogawa Y, Masuzaki H, Ebihara K, Satoh N, Iwai H, Matsuoka N, Hayashi T, Hosoda K, Inoue G, et al: Pathophysiological role of leptin in obesity-related hypertension. J Clin Investig. 105:1243–1252. 2000. View Article : Google Scholar : PubMed/NCBI

127 

Ferri C, Desideri G, Valenti M, Bellini C, Pasin M, Santucci A and De Mattia G: Early up-regulation of endothelial adhesion molecules in obese hypertensive men. Hypertension. 34:568–573. 1999. View Article : Google Scholar : PubMed/NCBI

128 

Hukshorn CJ, Lindeman JH, Toet KH, Saris WH, Eilers PH, Westerterp-Plantenga MS and Kooistra T: Leptin and the proinflammatory state associated with human obesity. J Clin Endocrinol Metab. 89:1773–1778. 2004. View Article : Google Scholar : PubMed/NCBI

129 

Kim JE, Kim JS, Jo MJ, Cho E, Ahn SY, Kwon YJ and Ko GJ: The roles and associated mechanisms of adipokines in development of metabolic syndrome. Molecules. 27:3342022. View Article : Google Scholar : PubMed/NCBI

130 

Romacho T, Valencia I, Ramos-González MR, Vallejo S, López-Esteban M, Lorenzo O, Cannata P, Romero A, Hipólito-Luengo AS, Gómez-Cerezo JF, et al: Visfatin/eNampt induces endothelial dysfunction in vivo: A role for toll-like receptor 4 and NLRP3 inflammasome. Sci Rep. 10:53862020. View Article : Google Scholar : PubMed/NCBI

131 

Toussirot E: Mini review: The contribution of adipokines to joint inflammation in inflammatory rheumatic diseases. Front Endocrinol (Lausanne). 11:6065602020. View Article : Google Scholar : PubMed/NCBI

132 

Catalán V, Gómez-Ambrosi J, Rodríguez A, Ramírez B, Silva C, Rotellar F, Cienfuegos JA, Salvador J and Frühbeck G: Association of increased visfatin/PBEF/NAMPT circulating concentrations and gene expression levels in peripheral blood cells with lipid metabolism and fatty liver in human morbid obesity. Nutr Metab Cardiovasc Dis. 21:245–253. 2011.PubMed/NCBI

133 

Chang YH, Chang DM, Lin KC, Shin SJ and Lee YJ: Visfatin in overweight/obesity, type 2 diabetes mellitus, insulin resistance, metabolic syndrome and cardiovascular diseases: A meta-analysis and systemic review. Diabetes Metab Res Rev. 27:515–527. 2011. View Article : Google Scholar : PubMed/NCBI

134 

Martos-Moreno GA, Kratzch J, Korner A, Barrios V, Hawkins F, Kiess W and Argente J: Serum visfatin and vispin levels in prepubertal childres: Effect of obesity and weitht loss after beharior modifications on their secretion and relationship with glucose metabolism. Int J Obes (Lond). 35:1355–1362. 2011. View Article : Google Scholar : PubMed/NCBI

135 

Olszanecka-Glinianowicz M, Kocełak P, Nylec M, Chudek J and Zahorska-Markiewicz B: Circulating visfatin level and visfatin/insulin ration in obese women with metabolic syndrome. Arch Med Sci. 8:214–218. 2012. View Article : Google Scholar : PubMed/NCBI

136 

de Luis DA, Aller R, Sagrado MG, Conde R, Izaola O and de la Fuente B: Serum visfatin levels and metabolic syndrome criteria in obese female subjects. Diabetes Metab Res Rev. 29:576–581. 2013. View Article : Google Scholar : PubMed/NCBI

137 

Friebe D, Neef M, Kratzch J, Erbs S, Dittrich K, Garten A, Petzold-Qunque S, Blüher S, Reinehr T, Stumvoll M, et al: Leucocytes are a major source of circulating nicotinamide phorsphoribosyltransferase (NAMPT)/pre-B cell colony (PBEF)/visfatin linking obesity and inflammation in humans. Diabetologia. 54:1200–1211. 2011. View Article : Google Scholar : PubMed/NCBI

138 

Kim SR, Bae YH, Bae SK, Choi KS, Yoon KH, Koo TH, Jang HO, Yun Il, Kim KW, Kwon YG, et al: Visfatin enhances ICAM-1 and VCAM-1 expression through ROS-dependent NF-κΒ activation in endothelial cells. Biochim Biophys Acta. 1783:886–895. 2008. View Article : Google Scholar : PubMed/NCBI

139 

Patel SD, Rajala MW, Rossetti L, Scherer PE and Shapiro L: Disulfide-dependent multimeric assembly of resistin family hormones. Science. 304:1154–1158. 2004. View Article : Google Scholar : PubMed/NCBI

140 

Oki K, Yamane K, Kamei N, Nojima H and Kohno N: Circulatin visfatin level is correlated with inflammation, but not with insulin resistance. Clin Endocrinol (Oxf). 67:796–800. 2007. View Article : Google Scholar : PubMed/NCBI

141 

Moschen AR, Kaser A, Enrich B, Mosheimer B, Theurl M, Niederegger H and Tigl H: Visfatin an adipocytokine with proinflammatory and immunomodulating properties. J Immunol. 178:1748–1758. 2007. View Article : Google Scholar : PubMed/NCBI

142 

Krysiak R, Handzlik-Orlik G and Okopien B: The role of adipokines in connective tissue diseases. Eur J Nutr. 51:513–528. 2012. View Article : Google Scholar : PubMed/NCBI

143 

Heo YJ, Choi SE, Jeon JY, Han SJ, Kim DJ, Kang Y, Lee KW and Kim HJ: Visfatin induces inflammation and insulin resistance via the NF-κΒ and STAT3 signaling pathways in hepatocytes. J Diabet Res. 2019:40216232019. View Article : Google Scholar : PubMed/NCBI

144 

Francisco V, Sanz MJ, Real JT, Marques P, Capuozzo M, Eldjoudi DA and Gualillo O: Adipokines in non-alcoholic fatty liver disease: Are we on the road toward new biomarkers and therapeutic targets? Biology (Basel). 11:12372022.PubMed/NCBI

145 

Oita RC, Ferdinando D, Wilson S, Bunce C and Mazzatti DJ: Visfatin induces oxidative stress in differentiated C2C12 myotubes in an Akt- and MAPK-independent, NFκΒ-dependent manner. Pflugers Arch. 459:619–630. 2010. View Article : Google Scholar : PubMed/NCBI

146 

Lee S, Lee HC, Kwon YW, Lee SE, Cho Y, Kim J, Lee S, Kim JY, Lee J, Yang HM, et al: Adenylyl cyclase-associated protein 1 (CAP1) is a receptor for human resistin and mediated inflammatory actions of human monocytes. Cell Metab. 19:484–497. 2014. View Article : Google Scholar : PubMed/NCBI

147 

Li Y, Yang Q, Cai D, Guo H, Fang J, Cui H, Gou L, Deng J, Wang Z and Zuo Z: Resistin, a novel host defence peptide of innate immunity. Front Immunol. 12:6998072021. View Article : Google Scholar : PubMed/NCBI

148 

Kawanami D, Maemura K, Takeda N, Harada T, Nojiri T, Imai Y, Manabe I, Utsunomiya K and Nagai R: Direct reciprocal effects of resistin and adiponectin on vascular endothelial cells: A new insight into adipocytokine-endothelial cell interactions. Biochem Biophys Res Commun. 314:415–419. 2004. View Article : Google Scholar : PubMed/NCBI

149 

Bokarewa M, Nagaev I, Dahlberg L, Smith U and Tarkowski A: Resistin, an adipokine with potent proimflammatory properties. J Immunol. 174:5789–5795. 2005. View Article : Google Scholar : PubMed/NCBI

150 

Agaev I, Bokarewa M, Tarkowski A and Smith U: Human resistin is a systemic immune-derived proinflammatory cytokine targeting both leukocytes and adipocytes. PLoS One. 1:e312006. View Article : Google Scholar : PubMed/NCBI

151 

Ebihara T, Matsumoto H, Matsubara T, Matsuura H, Hirose T, Shimizu K, Ogura H, Kang S, Tanaka T and Shimazu T: Adipocytokine profile reveals resistin forming a prognostic-related cytokine network in the acute phase of sepsis. Shock. 56:718–726. 2021. View Article : Google Scholar : PubMed/NCBI

152 

Heilbronn LK, Rood J, Janderova L, Albu JB, Kelley DE, Ravussin E and Smith SR: Relationship between serum resistin concentrations and insulin resistance in nonobese, obese, and obese diabetic subjects. J Clin Endocrinol Metabol. 89:1844–1848. 2004. View Article : Google Scholar : PubMed/NCBI

153 

Steppan CM, Bailey ST, Bhat S, Brown EJ, Banerjee RR, Wright CM, Patel HR, Ahima RS and Lazar MA: The hormone resistin links obesity to diabetes. Nature. 409:307–312. 2001. View Article : Google Scholar : PubMed/NCBI

154 

Vidal-Puig A and O'Rahilly S: Resistin: A new link between obesity and insulin resistance? Clin Endocrinol (Oxf). 55:437–438. 2001. View Article : Google Scholar : PubMed/NCBI

155 

McTernan CL, McTernan PG, Harte AL, Levick PL, Barnet AH and Kumar S: Resistin, central obesity, and type 2 diabetes. Lancet. 359:46–47. 2002. View Article : Google Scholar : PubMed/NCBI

156 

Wang H, Chu WS, Hemphill C and Elbein SC: Hunan resistin gene: Molecular scanning and evaluation of association with insulin sensitivity and type 2 diabetes in Caucasians. J Clin Endocrinol Metabol. 87:2520–2524. 2002. View Article : Google Scholar : PubMed/NCBI

157 

Osawa H, Yamada K, Onuma H, Murakami A, Ochi M, Kawata H, Nishimiya T, Niiya T, Shimizu I, Nishida W, et al: The G/G genotype of resistin single-nucleotide polymorphism at −420 increases type 2 diabetes mellitus susceptibility by inducing promoter activity through specific binding of Sp1/3. Am J Hum Genet. 75:678–686. 2004. View Article : Google Scholar : PubMed/NCBI

158 

Kielstein JT, Becker B, Graf S, Brabant G, Haller H and Fliser D: Increased resistin blood levels are not associated with insulin resistance in patients with renal disease. Am J Kidney Dis. 42:62–66. 2003. View Article : Google Scholar : PubMed/NCBI

159 

Patel L, Buckels AC, Kinghorn IJ, Mourdock PR, Holbrook JD, Plumpton C, Macphee CH and Smith SA: Resistin is expressed in human macrophages and directly regulated by PPAR gamma activators. Biochem Biophys Res Commun. 300:472–476. 2003. View Article : Google Scholar : PubMed/NCBI

160 

Chen C, Jiang J, Lü JM, Chai H, Wang X, Lin PH and Yao Q: Resistin descreases expression of endothelial nitric oxide synthase through oxidative stress in human coronary artery endothelial cells. Am J Physiol Heart Circ Physiol. 299:H193–H201. 2010. View Article : Google Scholar : PubMed/NCBI

161 

Acquarone E, Monacelli F, Borghi R, Nencioni A and Odetti P: Resistin: A reappraisal. Mech Ageing Dev. 178:46–63. 2019. View Article : Google Scholar : PubMed/NCBI

162 

Iwaki T, Urano T and Umemura K: PAI-1, progress in understanding the clinical problem and its aetiology. Br J Heamatol. 157:291–298. 2012. View Article : Google Scholar

163 

Para I, Albu A and Porojan MD: Adipokines and arterial stiffness in obesity. Medicina (Kaunas). 57:6532021. View Article : Google Scholar : PubMed/NCBI

164 

Mertens I and Van Gaal LF: Obesity, haemostasis and the fibrinolytic system. Obes Rev. 3:85–101. 2002. View Article : Google Scholar : PubMed/NCBI

165 

Juhan-Vague I, Alessi MC, Mavri A and Morange PE: Plasminogen activator inhibitor-1, inflammation, obesity, insulin resistance and vascular risk. J Thromb Haemost. 1:1575–1579. 2003. View Article : Google Scholar : PubMed/NCBI

166 

Tschoner A, Sturm W, Engl J, Kaser S, Laimer M, Laimer E, Klaus A, Patsch JR and Ebenbichler CF: Plasminogen activator inhibitor 1 and visceral obesity during pronounced weight loss after bariatric surgery. Nutr Metab Cardiovasc Dis. 22:340–346. 2012. View Article : Google Scholar : PubMed/NCBI

167 

Khoukaz HB, Ji Y, Braet DJ, Vadali M, Abdelhamid AA, Emal CD, Lawrence DA and Fay WP: Drug targeting of plasminogen activator inhibitor-1 inhibits metabolic dysfunction and atherosclerosis in murine model of metabolic syndrome. Arterioscler Thromb Vasc Biol. 40:1479–1490. 2020. View Article : Google Scholar : PubMed/NCBI

168 

Eitzman DT, Westrick RJ, Xu Z, Tyson J and Grinsburg D: Plasminogen activator inhibitor-1 deficiency protects against atherosclerosis progression in the mouse carotid artery. Blood. 96:4212–4215. 2000. View Article : Google Scholar : PubMed/NCBI

169 

Alessi MC and Juhan-Vague I: PAI-1 and the metabolic syndrome: Links, causes and consequences. Arterioscler Thromb Vasc Biol. 16:2200–2207. 2006. View Article : Google Scholar : PubMed/NCBI

170 

Ma LJ, Mao SL, Taylor KL, Kanjanabuch T, Guan Y, Zhang Y, Brown NJ, Swift LL, McGuinness OP, Wasserman DH, et al: Prevention of obesity and insulin resistance in mice lacking plasminogen activator inhibitor 1. Diabetes. 53:336–346. 2004. View Article : Google Scholar : PubMed/NCBI

171 

Gleeson LE, Sheedy FJ, Palsson-McDermott EM, Triglia D, O'Leary SM, O'Sullivan MP, O'Neill LA and Keane J: Cytting edge: Mycobacterium tuberculosis induces aerobic glycolysis in human alveolar macrophages that is required for control of intracellular bacillary replication. J Immunol. 196:2444–2449. 2016. View Article : Google Scholar : PubMed/NCBI

172 

Shoelson SE, Herrero L and Naaz A: Obesity, inflammation and insulin resistance. Gastroenterology. 132:2169–2180. 2007. View Article : Google Scholar : PubMed/NCBI

173 

Stojsavljević S, Palčić MG, Jukić LV, Duvnjak LS and Duvnjak M: Adipokines and proinflammatory cytokines, the key mediators in the pathogenesis of nonalcoholic fatty liver disease. World J Gastroenterol. 20:18070–18091. 2014. View Article : Google Scholar : PubMed/NCBI

174 

Plomgaard P, Bouzakri K, Krogh-Madsen R, Mittendorfer B, Zierath JR and Pedersen BK: Tumor necrosis factor-alpha induces skeletal muscle insulin resistance in healthy human subjects via inhibition of Akt substrate 160 phosphorylation. Diabetes. 54:2936–2945. 2005. View Article : Google Scholar

175 

Ruan H and Lodish HF: Insulin resistance in adipose tissue: Direct and indirect effects of tumor necrosis factor-α. Cytokine Growth Factor Rev. 14:447–455. 2003. View Article : Google Scholar : PubMed/NCBI

176 

Illei GG and Lipsky PE: Novel, antigen-specific therapeutic approaches to autoimmuneinflammatory diseses. Curr Opin Immunol. 12:712–718. 2000. View Article : Google Scholar : PubMed/NCBI

177 

Chandel NS, Schumacker PT and Arch RH: Reactive oxygen species are downstream products of TRAF-mediated signal trasduction. J Biol Chem. 276:42728–42736. 2001. View Article : Google Scholar : PubMed/NCBI

178 

Micheau O and Tschopp J: Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes. Cell. 114:181–190. 2003. View Article : Google Scholar : PubMed/NCBI

179 

Campbell J, Ciesielski CJ, Hunt AE, Horwood NJ, Beech JT, Hayes LA, Denys A, Feldmann M, Brennan FM and Foxwell BMJ: A novel mechanism for TNF-alpha regulation by p38 MAPK: Involvement of NF-kappa B with implications for therapy in rheumatoid arthritis. J Immunol. 173:6928–6937. 2004. View Article : Google Scholar : PubMed/NCBI

180 

Wang B and Trayhurn P: Acute and prolonged effects of TNF-alpha on the expression and secretion of inflammation-related adipokines by human adipocytes differentiated in culture. Pflugers Arch. 452:418–427. 2006. View Article : Google Scholar : PubMed/NCBI

181 

Rider P, Carmi Y, Guttman O, Braiman A, Cohen I, Voronov E, White MR, Dinarello CA and Apte RN: IL-1α and IL-1β recruit different myeloid cells and promote different stages of sterile inflammation. J Immunol. 187:4835–4843. 2011. View Article : Google Scholar : PubMed/NCBI

182 

Thornberry NA, Bull HG, Calaycay JR, Chapman KT, Howard AD, Kostura MJ, Miller DK, Molineaux SM, Weidner JR and Aunins J: A novel heterodimeric cysteine protease is required for interleukin-1 beta processing in monocytes. Nature. 356:768–774. 1992. View Article : Google Scholar : PubMed/NCBI

183 

Akdis M, Arab A, Altunbulakli C, Azkur K, Costa RA, Crameri R, Duan S, Eiwegger T, Eljaszewicz A, Ferstl R, et al: Interleukins (from IL-1 to IL-38), interferons, transforming growth factor β, and TNF-α: Receptors, functions, and roles in diseases. J Allergy Clin Immunol. 138:984–1010. 2016. View Article : Google Scholar : PubMed/NCBI

184 

Ghabari M, Maragheh SM, Aghazadeh A, Mehrjuyan SR, Hussen BM, Shadbad MA, Dastmalchi N and Safaralizadeh R: Interleukin-1 in obesity-related low-grade inflammation: From molecular mechanisms to therapeutic strategies. Int Immunopharmacol. 96:1077652021. View Article : Google Scholar : PubMed/NCBI

185 

Speaker KJ and Fleshner M: Interleukin-1 beta: A potential link between stress and the development of visceral obesity. BMC Physiol. 12:1–15. 2012. View Article : Google Scholar : PubMed/NCBI

186 

Bruun JM, Pedersen SB, Kristensen K and Richelsen B: Effects of pro-inflammatory cytokines and chemokines on leptin production in human adipose tissue in vitro. Mol Cell Endocrinol. 190:91–99. 2002. View Article : Google Scholar : PubMed/NCBI

187 

Gonzalez RR and Leavis P: Leptin upregulates β3-integrin expression and interleukin-1β upregulates leptin and leptin receptor expression in human endometrial epithelial cell cultures. Endocrine. 16:21–28. 2021. View Article : Google Scholar

188 

Müller G, Ertl J, Gerl M and Preidisch G: Leptin impairs metabolic actions of insulin in isolated rat adipocytes. J Biol Chem. 272:10585–10593. 1997. View Article : Google Scholar : PubMed/NCBI

189 

Moschen AR, Molnar C, Enrich B, Geiger S, Ebenbichler CF and Tilg H: Adipose and liver expression of interleukin (IL)-1 family members in morbid obesity and effects of weight loss. Mol Med. 17:840–845. 2011. View Article : Google Scholar : PubMed/NCBI

190 

Shaul ME, Bennett G, Strissel KJ, Greenberg AS and Obin MS: Dynamic, M2-like remodeling phenotypes of CD11c+ adipose tissue macrophages during high-fat diet-induced obesity in mice. Diabetes. 59:1171–1181. 2010. View Article : Google Scholar : PubMed/NCBI

191 

Schoettl T, Fischer IP and Ussar S: Heterogeneity of adipose tissue in development and metabolic function. J Exp Biol. 221 (Pt Suppl 1):jeb1629582018. View Article : Google Scholar : PubMed/NCBI

192 

Buechler C, Krautbauer S and Eisinger K: Adipose tissue fibrosis. World J Diabetes. 6:548–553. 2015. View Article : Google Scholar : PubMed/NCBI

193 

Shikama Y, Aki N, Hata A, Nishimura M, Oyadomari S and Funaki M: Palmitate-stimulated monocytes induce adhesion molecule expression in endothelial cells via IL-1 signaling pathway. J Cell Physiol. 230:732–742. 2015. View Article : Google Scholar : PubMed/NCBI

194 

Miura K, Kodama Y, Inokuchi S, Scnabl B, Aoyama T, Ohnishi H, Olefsky JM, Brenner DA and Seki E: Toll-like receptor 9 promotes steatohepatitis by induction of interleukin-1beta in mice. Gastroenterology. 139:323–334. 2010. View Article : Google Scholar : PubMed/NCBI

195 

Gao D, Madi M, Ding C, Fok M, Steele T, Ford C, Hunter L and Bing C: Interleukin-1β mediates macrophage-induced impairemnet of insulin signalin in human primary adipocytes. Am J Physiol Endocrinol Metab. 307:E289–E304. 2014. View Article : Google Scholar : PubMed/NCBI

196 

Zhou R, Tardivel A, Thorens B, Choi I and Tschopp J: Thioredoxin-interacting protein links oxidative stress to inflammasome activation. Nat Immunol. 11:136–140. 2010. View Article : Google Scholar : PubMed/NCBI

197 

Calabrese L, Fiocco Z, Satoh TK, Peris K and French LE: Therapeutic potential of targeting interleukin-1 family cytokines in chronic inflammatory skin diseases. Br J Dermatol. 186:925–941. 2022. View Article : Google Scholar : PubMed/NCBI

198 

Maedler K, Sergeev P, Ris F, Oberholzer J, Holler-Jemelka H, Spinas GA, Kaiser N, Halban PA and Donath MY: Glucose-induced beta cell production of IL-1beta contributes to glucotoxicity in human pancreatic islets. J Clin Invest. 110:851–860. 2002. View Article : Google Scholar : PubMed/NCBI

199 

Wang Q, Zhang H, Zhao B and Fei H: IL-1beta caused pancreatic beta-cells apoptosis is mediated in part by endoplasmic reticulum stress via the induction of endoplasmic reticulum Ca2+ release through the c-Jun N-terminal kinase pathway. Mol Cell Biochem. 324:183–190. 2009. View Article : Google Scholar : PubMed/NCBI

200 

Brichory FM, Misek DE, Yim AM, Krause MC, Giordano TJ, Beer DG and Hanash SM: An immune response manifested by the common occurrence of annexins I and II aytoantibodies and high circulating levels of IL-6 in lung cancer. Proc Natl Acad Sci USA. 98:9824–9829. 2001. View Article : Google Scholar : PubMed/NCBI

201 

Scheller J, Chalaris A, Schmidt-Arras D and Rose-John S: The pro- and anti-inflammatory properties of the cytokine interleukin-6. Biochim Biophys Acta. 1813:878–888. 2011. View Article : Google Scholar : PubMed/NCBI

202 

Tanaka T, Narazaki M and Kishimoto T: IL-6 in inflammation, immunity and disease. Cold Spring Harb Perspect Biol. 6:a0162952014. View Article : Google Scholar : PubMed/NCBI

203 

IL6R Genetics Consortium Emerging Risk Factors and Collaboration, . Sarwar N, Butterworth AS, Freitag DF, Gregson J, Willeit P, Gorman DN, Gao P, Saleheen D, Rendon A, et al: Interleukin-6 receptor pathways in coronary heart disease: A collaborative meta-analysis of 82 studies. Lancet. 379:1205–1213. 2012. View Article : Google Scholar : PubMed/NCBI

204 

Elhage R, Clamens S, Besnard S, Mallat Z, Tedgui A, Arnal J, Maret A and Bayard F: Involvement of interleukin-6 in atherosclerosis but not in the prevention of fatty streak formation by 17beta-estradiol in apolipoprotein E-deficient mice. Atherosclerosis. 156:315–320. 2001. View Article : Google Scholar : PubMed/NCBI

205 

Schieffer B, Selle T, Hilfiker A, Hilfiker-Kleiner D, Grote K, Tietge UJF, Trautwein C, Luchtefeld M, Schmittkamp C, Heeneman S, et al: Impact of interleukin-6 on plaque development and morphology in experimental atherosclerosis. Circulation. 110:3493–3500. 2004. View Article : Google Scholar : PubMed/NCBI

206 

Mishra D, Richard JE, Maric I, Porteiro B, Häring M, Kooijman S, Musovic S, Eerola K, López-Ferreras L, Peris E, et al: Parabrachial interleukin-6 reduces body weight and food intake and increases thermogenesis to regulate energy metabolism. Cell Rep. 26:3011–3026. 2019. View Article : Google Scholar : PubMed/NCBI

207 

Rosen ED and Spiegelman BM: What we talk about when we talk about fat. Cell. 156:20–44. 2014. View Article : Google Scholar : PubMed/NCBI

208 

Mohamed-Ali V, Goodrick S, Rawesh A, Katz DR, Miles JM, Yudkin JS, Klein S and Coppack SW: Subcutaneous adipose tissue related interleukin-6, but not tumor necrosis factor-alpha, in vivo. J Clin Endocrinol Metab. 82:4196–4200. 1997. View Article : Google Scholar : PubMed/NCBI

209 

Sopasakis VR, Sandqvist M, Gustafson B, Hammerstedt A, Schmelz M, Yang X, Jansson PA and Smith U: High local concentrations and effects on differentiation implicate interleukin-6 as a paracrine regulator. Obes Res. 12:454–460. 2004. View Article : Google Scholar : PubMed/NCBI

210 

Fernandez-Real JM and Ricart W: Insulin resistance and chronic cardiovascular inflammatory sundrome. Endocr Rev. 24:278–301. 2003. View Article : Google Scholar : PubMed/NCBI

211 

Charles BA, Doumatey A, Huang H, Zhou J, Chen G, Shriner D, Adeyemo A and Rotimi CN: The roles of IL-6, IL-10 and IL-1RA in obesity and insulin resistance in African-Americans. J Clin Endocrinol Metab. 96:E2018–E2022. 2011. View Article : Google Scholar : PubMed/NCBI

212 

Tsigos C, Papanicolaou DA, Kyrou I, Defensor R, Mitsiadis CS and Chrousos GP: Dose-dependent effects of recombinant human interleukin-6 on glucose regulation. J Clin Endocrinol Metab. 82:4167–4170. 1997. View Article : Google Scholar : PubMed/NCBI

213 

Pradhan AD, Manson JE, Rifai N, Buring JE and Ridker PM: C-reactive protein, interleukin 6, and risk of developing type 2 diabetes mellitus. JAMA. 286:327–334. 2001. View Article : Google Scholar : PubMed/NCBI

214 

Bastard JP, Maachi M, van Nhieu JT, Jardel C, Bruckert E, Grimaldi A, Robert JJ, Capeau J and Hainque B: Adipose tissue IL-6 content correlates with resistance to insulin activation of glucose uptake both in vivo and in vitro. J Clin Endocrinol Metab. 87:2084–2089. 2002. View Article : Google Scholar : PubMed/NCBI

215 

Kopp HP, Kopp CW, Festa A, Krzyzanowaska K, Kriwanek S, Minar E, Roka R and Schernthaner G: Impact of weight loss on inflammatory proteins and their association with the insulin resistance syndrome in morbidly obese patients. Arterioscler Throm Vasc Biol. 23:1042–1047. 2003. View Article : Google Scholar : PubMed/NCBI

216 

Xu E, Pereira MMA, Karakasilioti I, Theurich S, Al-Maarri M, Rappl G, Waisman A, Wenderlich FT and Brüning JC: Temporal and tissue-specific requirements for T-lympocyte IL-6 signaling in obesity-associated inflammation and insulin resistance. Nat Commun. 8:148032017. View Article : Google Scholar : PubMed/NCBI

217 

Wondmkum YT: Obesity, insulin resistance, and type 2 diabetes: Associations and therapeutic implications. Diabetes Metab Syndr Obes. 13:3611–3616. 2020. View Article : Google Scholar : PubMed/NCBI

218 

Fu Z, Gilbert ER and Liu D: Regulation of insulin synthesis and secretion and pancreatic Beta-cell dysfunction in diabetes. Curr Diabetes Rev. 9:25–53. 2013. View Article : Google Scholar : PubMed/NCBI

219 

Röder PV, Wu B, Liu Y and Han W: Pancreatic regulation of glucose homeostasis. Exp Mol Med. 48:e2192016. View Article : Google Scholar : PubMed/NCBI

220 

Fazakerley DJ, Krycer JR, Kearney AL, Hocking SL and James DE: Muscle and adipose tissue insulin resistance: Malady without mechanism? J Lipid Res. 60:1720–1732. 2019. View Article : Google Scholar : PubMed/NCBI

221 

Newsholme P and Krause M: Nutritional regulation of insulin secretion: Implications for diabetes. Clin Biochem Rev. 33:35–47. 2012.PubMed/NCBI

222 

Dashty M: A quick look at biochemistry: Carbohydrate metabolism. Clin Biochem. 46:1339–1352. 2013. View Article : Google Scholar : PubMed/NCBI

223 

Samuel VT and Shulman GI: The pathogenesis of insulin resistance: Intergrating signaling pathways and substrate flux. J Clin Invest. 126:12–22. 2016. View Article : Google Scholar : PubMed/NCBI

224 

Taniguchi CM, Emanuelli B and Kahn CR: Critical nodes in signaling pathways: Insights into insulin action. Nat Rev Mol Cell Biol. 7:85–96. 2006. View Article : Google Scholar : PubMed/NCBI

225 

Merry TL, Hedges CP, Masson SW, Laube B, Pöhlmann D, Wueest S, Walsh ME, Arnold M, Langhans W, Konrad D, et al: Partial impairment of insulin receptor expression mimics fasting to prevent diet-induced fatty liver diseasee. Nat Commun. 11:20802020. View Article : Google Scholar : PubMed/NCBI

226 

Shanik MH, Xu Y, Skrha J, Dankner R, Zick Y and Roth J: Insulin resistance and hyperinsulinemia: Is hyperinsulinemia the cart or the horse? Diabetes Car. 31 (Suppl 2):S262–S268. 2008. View Article : Google Scholar : PubMed/NCBI

227 

Braccini L, Ciraolo E, Campa CC, Perino A, Longo DL, Tibolla G, Pregnolato M, Cao Y, Tassone B, Damilano F, et al: PI3K-C2γ is a Rab5 effector selectively controlling endosomal Akt2 activation downstream of insulin signalling. Nat Commun. 6:74002015. View Article : Google Scholar : PubMed/NCBI

228 

Huang X, Liu G, Guo J and Su Z: The PI3K/AKT pathway in obesity and type 2 diabetes. Int J Biol Sci. 14:1483–1496. 2018. View Article : Google Scholar : PubMed/NCBI

229 

Gray SL, Donald C, Jetha A, Covey SD and Kieffer TJ: Hyperinsulinemia precedes insulin resistance in mice lacking pancreatic beta-cell leptin signaling. Endocrinology. 151:4178–4186. 2010. View Article : Google Scholar : PubMed/NCBI

230 

Wild S, Roglic G, Green A, Sicree R and King H: Global prevalence of diabetes: Estimates for the year 2000 and projections for 2030. Diabetes Care. 27:1047–1053. 2004. View Article : Google Scholar : PubMed/NCBI

231 

Smith BW and Adams LA: Nonalcoholic faty liver disease and diabetes mellitus: Pathogenesis and treatment. Nat Rev Endocrinol. 7:456–465. 2011. View Article : Google Scholar : PubMed/NCBI

232 

Willians AJK and Long AE: Following the fate of the failing β-cell: New insights from first-phase insulin responses. Diabetes. 62:3990–3992. 2013. View Article : Google Scholar

233 

Gariani K, Philippe J and Jornayvaz FR: Non-alcoholic fatty liver disease and insulin resistance: From bench to bedside. Diabetes Metab. 39:16–26. 2013. View Article : Google Scholar : PubMed/NCBI

234 

Zhao J, Wu Y, Rong X, Zheng C and Guo J: Anti-lipolysis induced by insulin in diverse pathophysiologic conditions of adipose tissue. Diabetes Metab Syndr Obes. 13:1575–1585. 2020. View Article : Google Scholar : PubMed/NCBI

235 

Griffin ME, Marcucci MJ, Cline GW, Bell K, Barucci N, Lee D, Goodyear LJ, Kraegen EW, White MF and Shulman GI: Free fatty acid-induced insulin resistance is associated with activation of protein kinase C theta and alterations in the insulin signaling cascade. Diabetes. 48:1270–1274. 1999. View Article : Google Scholar : PubMed/NCBI

236 

Boden G and Shulman GI: Free fatty acids in obesity and type 2 diabetes: Defining their role in the development of insulin resistance and beta-cell dysfunction. Eur J Clin Invest. 32:14–23. 2002. View Article : Google Scholar : PubMed/NCBI

237 

Unger RH and Zhou YT: Lipotoxicity of beta-cells in obesity and in other causes of fatty acid spillover. Diabetes. 50 (Suppl 1):S118–S121. 2001. View Article : Google Scholar : PubMed/NCBI

238 

Bugianesi E, Gastaldelli A, Vanni E, Gambino R, Cassader M, Baldi S, Ponti V, Pagano G, Ferranini E and Rizzetto M: Insulin resistance in non-diabetic patients with non-alcoholic fatty liver disease: Sites and mechanisms. Diabeltologia. 48:634–642. 2005. View Article : Google Scholar

239 

Perry RJ, Samuel VT, Petersen KF and Shulman GI: The role of hepatic insulin resistance and type 2 diabetes. Nature. 510:84–91. 2014. View Article : Google Scholar : PubMed/NCBI

240 

Brown MS and Goldstein JL: Selective versus total insulin resistance: A pathogenic paradox. Cell Metab. 7:95–96. 2008. View Article : Google Scholar : PubMed/NCBI

241 

Kim GT, Kim SJ, Park SH, Lee D and Park TS: Hepatic expression of the serine palmitoyltansferase subunit Sptlc2 reduces lipid droplets in the liver by activating VLDL secretion. J Lipid Atheroscler. 9:291–303. 2020. View Article : Google Scholar : PubMed/NCBI

242 

Hall JE, da Silva AA, do Carmo JM, Dubinion J, Hamza S, Munusamy S, Smith G and Stec DE: Obesity-induced hypertension: Role of sympathetic nervous system, leptin, and melanocortins. J Biol Chem. 285:17271–17276. 2010. View Article : Google Scholar : PubMed/NCBI

243 

Weickert MO and Pfeiffer AFH: Signalling mechanisms linking hepatic glucose and lipid metabolism. Diabetologia. 4:1732–1741. 2006. View Article : Google Scholar : PubMed/NCBI

244 

Murakami T, Michelagnoli S, Longhi R, Gianfranceschi G, Pazzucconi F, Calabresi L, Sirtori CR and Franceschini G: Triglycerides are major determinants of cholesterol esterification/transfer and HDL remodeling in human plasma. Arterioscler Thromb Vasc Biol. 15:1819–1828. 1995. View Article : Google Scholar : PubMed/NCBI

245 

Eisenberg S, Gavish D, Oschry Y, Fainaru M and Deckelbaum RJ: Abnormalities in very low, low and high density lipoproteins in hypertriglyceridemia. Reversal toward normal with bezafibrate treatment. J Clin Invest. 74:470–482. 1984. View Article : Google Scholar : PubMed/NCBI

246 

Tripathy D, Mohanty P, Dhindsa S, Syed T, Ghanim H, Aljada A and Dandona P: Elevation of free fatty acids induces inflammation and impairs vascular reactivity in healthy subjects. Diabetes. 52:2882–2887. 2003. View Article : Google Scholar : PubMed/NCBI

247 

Esler M, Rumantir M, Wiesner G, Kaye D, Hastings J and Lambert G: Sympathetic nervous system and insulin resistance from obesity to diabetes. Am J Hypertens. 14((11 Pt 2)): 304S–309S. 2001. View Article : Google Scholar : PubMed/NCBI

248 

Samad F and Ruf W: Inflammation, obesity and thrombosis. Blood. 122:3415–3422. 2013. View Article : Google Scholar : PubMed/NCBI

249 

Ernst E and Resch KL: Fibrinogen as a cardiovascular risk factor: A meta-analysis and review of the literature. Ann Intern Med. 118:956–963. 1993. View Article : Google Scholar : PubMed/NCBI

250 

Kannel WB, Wolf PA, Castelli WP and D'Agostino RB: Fibrionogen and risk of cardiovascular disease. The Framingham study. JAMA. 258:1183–1186. 1987. View Article : Google Scholar : PubMed/NCBI

251 

Nieuwdorp M, Stroes ES, Meijers JC and Buller H: Hypercoagulability in the metabolic syndrome. Curr Opin Pharmacol. 5:155–159. 2005. View Article : Google Scholar : PubMed/NCBI

252 

Raynaud E, Perez-Martin A, Brun JF, Aïssa-Benhaddad A, Fédou C and Mercier J: Atherosclerosis. 150:365–370. 2000. View Article : Google Scholar : PubMed/NCBI

253 

Tabrez S, Jabir NR, Shakil S and Alama MN: Association of plasma fibrinogen level with insulin resistance in angiographically confirmed coronary artery disease patients. Crit Rev Eukaryot Gene Expr. 29:277–285. 2019. View Article : Google Scholar : PubMed/NCBI

254 

Bryk-Wiązania AH and Undas A: Hypofribrinolysis in type 2 diabetes and its clinical implications: From mechanisms to pharmacological modulation. Cardiovasc Diabetol. 20:1912021. View Article : Google Scholar : PubMed/NCBI

255 

Davalos D and Akassoglou K: Fibrinogen as a key regulator of inflammation in disease. Semin Immunopathol. 34:43–62. 2012. View Article : Google Scholar : PubMed/NCBI

256 

Nawaz SS and Siddiqui K: Plasminogen activator inhibitor-1 mediated downregulation of adiponectin in type 2 diabetic patients with metabolic syndrome. Cytokine X. 4:1000642002. View Article : Google Scholar : PubMed/NCBI

257 

Chen R, Yan J, Liu P, Wang Z and Wang C: Plasminogen activator inhibitor links obesity and thrombotic cerebrovascular diseases: The roles of PAI-1 and obesity on stroke. Metab Brain Dis. 32:667–673. 2017. View Article : Google Scholar : PubMed/NCBI

258 

Matsuzawa Y: The metabolic syndrome and adipocytokines. FEBS Lett. 580:2917–2921. 2006. View Article : Google Scholar : PubMed/NCBI

259 

Mertens I, Ballaux D, Funahashi T, Matsuzawa Y, Van der Planken M, Verrijken A, Ruge JB and Gaal LFV: Inverse relationship between plasminogen activator inhibitor-I activity and adiponectin in overweight and obese women. Interrelationship with visceral adipose tissue, insulin resistance, HDL-chol and inflammation. Thromb Haemost. 94:1190–1195. 2005. View Article : Google Scholar : PubMed/NCBI

260 

Shimomura I, Funahashi T, Takahashi M, Maeda K, Kotani K, Nakamura T, Yamashita S, Miura N, Fukuda Y, Takemura K, et al: Enhanced expression of PAI-1 in visceral fat: Possible contributor to vascular disease in obesity. Nat Med. 2:800–803. 1996. View Article : Google Scholar : PubMed/NCBI

261 

Kaji H: Adipose tissue-derived plasminogen activator inhibitor-1 function and regulation. Compr Physiol. 6:1873–1896. 2016. View Article : Google Scholar : PubMed/NCBI

262 

Reaven GM: Banting lecture 1988. Role of insulin resistance in human disease. Diabetes. 37:1595–1607. 1988. View Article : Google Scholar : PubMed/NCBI

263 

Alberti KG, Zimmet P and Shaw J; IDF Edipemiology Task Force Consensus Group, : The metabolic syndrome-a new world-wide definition. Lancet. 366:1059–1062. 2005. View Article : Google Scholar : PubMed/NCBI

264 

Zafar U, Khaliq S, Ahmad HU, Manzoor S and Lone KP: Metabolic syndrome: An update on diagnostic criteria, pathogenesis, and genetic links. Hormones (Athens). 17:299–313. 2018. View Article : Google Scholar : PubMed/NCBI

265 

Spiegelman BM and Flier JS: Obesity and the regulation of energy balance. Cell. 104:531–543. 2001. View Article : Google Scholar : PubMed/NCBI

266 

Mottilo S, Filion KB, Genest J, Joseph L, Pilote L, Poirier P, Rinfret S, Schiffrin EL and Eisenberg MJ: The metabolic syndrome and cardiovascular risk a systematic review and meta-analysis. J Am Coll Cardiol. 56:1113–1132. 2010. View Article : Google Scholar

267 

Weiss R, Bremer AA and Lusting RH: What is metabolic syndrome, and why are children getting it? Ann N Y Acad Sci. 1281:123–140. 2013. View Article : Google Scholar : PubMed/NCBI

268 

Grundy SM: Metabolic syndrome pandemic. Arteroscler Thromb Vasc Biol. 28:629–636. 2008. View Article : Google Scholar : PubMed/NCBI

269 

Ford ES, Li C and Zhao G: Prevalence and correlates of metabolic syndrome based on a harmonious definition among adults in the US. J Diabetes. 2:180–193. 2010. View Article : Google Scholar : PubMed/NCBI

270 

Kahn R, Buse J, Ferrannini E and Stern M: The metabolic syndrome: Time for a critical appraisal. Joint statement from the Americal diabetes association and the European association for the study of diabetes. Diabetologia. 48:1684–1699. 2005. View Article : Google Scholar : PubMed/NCBI

271 

Pi-Sunyer X: The metabolic syndrome: How to approach differing definitions. Med Clin North Am. 91:1025–1040. 2007. View Article : Google Scholar : PubMed/NCBI

272 

Chung G, Jung HS and Kim HJ: Sociodemographic and health characteristics associated with metabolic syndrome in men and women aged ≥50 Years. Metab Sundr Relat Disord. 19:159–166. 2021. View Article : Google Scholar : PubMed/NCBI

273 

Hydrie MZ, Shera AS, Fawwad A, Basit A and Hussain A: Prevalence of metabolic syndrome in urban Pakistan (Karachi): Comparison of newly proposed international diabetes federation and modified adult treatment panel III criteria. Metab Syndr Relat Disord. 7:119–124. 2009. View Article : Google Scholar : PubMed/NCBI

274 

Rosenbaum M, Sy M, Pavlovich K, Leibel RL and Hirsch J: Leptin reverses weight loss-induced changes in regional neural activity responses to visual food stimuli. J Clin Invest. 118:2583–2591. 2008.PubMed/NCBI

275 

Imai SI: Nicotinamide phosphoribosyltrasferase (Nampt): A link between NED biology, metabolism, and disease. Curr Pharm Des. 15:20–28. 2009. View Article : Google Scholar : PubMed/NCBI

276 

Lago F, Dieguez C, Gomez-Reino G and Gulillo O: Adipokines as emerging mediators of immune response and inflammation. Nat Clin Pract Rheumatol. 3:716–724. 2007. View Article : Google Scholar : PubMed/NCBI

277 

Hopps E, Noto D, Caimi G and Averna MR: A novel comoponent of the metabolic syndrome: The oxidative stress. Nutr Metab Cardiovasc Dis. 20:72–77. 2010. View Article : Google Scholar : PubMed/NCBI

278 

Vona R, Gambardella L, Cittadini C, Straface E and Pietraforte D: Biomarkers of oxidative stress in metabolic syndrome and associated dieseases. Oxid Med Cell Longev. 2019:82672342019. View Article : Google Scholar : PubMed/NCBI

279 

Schieber M and Chandel NS: ROS function in redox signaling and oxidative stress. Curr Biol. 24:R453–R462. 2014. View Article : Google Scholar : PubMed/NCBI

280 

Juan CA, de la Lastra JM, Plou FJ and Pérez-Lebeña EP: The chemistry of reactive oxygen species (ROS) revisited: Outlining their role in biological macromolecules (DNA, lipids and proteins) and induced pathologies. Int J Mol Sci. 22:46422021. View Article : Google Scholar : PubMed/NCBI

281 

Grattagliano I, Palmieri VO, Portincasa P, Moschetta A and Palasciano G: Oxidative stress-induced risk factors associated with the metabolic syndrome: A unifying hypothesis. J Nutr Biochem. 19:491–504. 2008. View Article : Google Scholar : PubMed/NCBI

282 

Fernández-Sánchez A, Madrigal-Santillán E, Bautista M, Esquivel-Soto J, Morales-González A, Esquivel-Chirino C, Durante-Montiel I, Sánchez-Rivera G, Valadez-Vega C and Morales-González JA: Inflammation, oxidative stress, and obesity. Int J Mol Sci. 12:3117–3132. 2001. View Article : Google Scholar : PubMed/NCBI

283 

Sena CM, Leadro A, Azul L, Seiça R and Perry G: Vascular oxidative stress: Impact and therapeutic approaches. Front Physiol. 9:16682018. View Article : Google Scholar : PubMed/NCBI

284 

Smirne C, Croce E, Di Benedetoo D, Cantaluppi V, Comi C, Sainaghi PP, Minisini R, Grossini E and Pirisi M: Oxidative stress in non-alchoholic fatty liver disease. Livers. 2:30–76. 2022. View Article : Google Scholar

285 

Field AE, Coakley EH, Must A, Spadano JL, Laird N, Dietz WH, Rimm E and Golditz GA: Imact of overweight on the risk of developing common chronic diseases during a 10-year period. Arch Intern Med. 161:1581–1586. 2001. View Article : Google Scholar : PubMed/NCBI

286 

Rother KI: Diabetes treatment-Bridging the devide. N Engl J Med. 356:1499–1501. 2007. View Article : Google Scholar : PubMed/NCBI

287 

Norhammar A and Schenck-Gustafsson K: Type 2 diabetes and cardiovascular disease in women. Diabetologia. 56:1–9. 2013. View Article : Google Scholar : PubMed/NCBI

288 

Chan JM, Rimm EB, Colditz GA, Stampfer MJ and Willett WC: Obesity, fat distribution, and weight gain as risk factors for clinical diabetes in men. Diabetes Care. 17:961–969. 1994. View Article : Google Scholar : PubMed/NCBI

289 

Colditz GA, Willett WC, Rotnitzky A and Manson JE: Weight gain as a risk factor for clinical diabetes mellitus in women. Ann Intern Med. 122:481–486. 1995. View Article : Google Scholar : PubMed/NCBI

290 

Wannamethee SG and Shaper AG: Weight change and duration of overweight and obesity in the incidence of type 2 diabetes. Diabetes Care. 22:1266–1272. 1999. View Article : Google Scholar : PubMed/NCBI

291 

Schienkiewitz A, Schulz MB, Hoffmann K, Kroke A and Boeing H: Body mass index history and risk of type 2 diabetes: Results from the European Prospective Investigation into cancer nutrition (EPIC)-Potsdam study. Am J Clin Nutr. 84:427–433. 2006. View Article : Google Scholar : PubMed/NCBI

292 

DeFronzo RA: Pathogenesis of type 2 diabetes mellitus. Med Clin North Am. 88:787–835. 2004. View Article : Google Scholar : PubMed/NCBI

293 

Ferrannini E, Gastaldelli A, Miyazaki Y, Matsuda M, Mari A and DeFronzo RA: Beta-cell function in subjects spanning the range from normal glucose tolerance to overt diabetes: A new analysis. J Clin Endocrinol Metab. 90:493–500. 2005. View Article : Google Scholar : PubMed/NCBI

294 

Panenin F, Castantino S and Cosentino F: Insulin resistance, diabetes, and cardiovascular risk. Curr Atheroscler Rep. 16:4192014. View Article : Google Scholar : PubMed/NCBI

295 

Abdul-Ghami MA and DeFronzo RA: Phathophysiology of prediabetes. Curr Diab Rep. 9:193–199. 2009. View Article : Google Scholar : PubMed/NCBI

296 

Reaven GM: Insulin resistance: The link between obesity and cardiovascular disease. Med Clin North Am. 95:875–892. 2011. View Article : Google Scholar : PubMed/NCBI

297 

DeFronzo RA, Ferrannini E and Simonson DC: Fasting hyperglycemia in non-insulin-dependent diabetes mellitus: contributions of excessive hepatic glucose production and impaired tissue glucose uptake. Metabolism. 38:387–395. 1989. View Article : Google Scholar : PubMed/NCBI

298 

Shulman GI, Rothman DL, Jue T, Stein P, DeFronzo RA and Shulman RG: Quatitation of muscle glycogen synthesis in normal subjects and subjects with non-insulin-dependent diabetes by 13C nuclear magnetic resonance spectroscopy. N Engl J Med. 322:223–228. 1990. View Article : Google Scholar : PubMed/NCBI

299 

McGarry JD: Banting lecture 2001: Dysregulation of fatty acid metabolism in the etiology of type 2 diabetes. Diabetes. 51:7–18. 2002. View Article : Google Scholar : PubMed/NCBI

300 

Kashyap S, Belfort R, Gastaldelli A, Pratipanawatr T, Berria R, Pratipanawatr W, Bajaj M, Madarino L, DeFronzo R and Cusi K: A substained increase in plasma free fatty acids impairs insulin secretion in nondiabetic sujects genetically predisposed to develop type 2 diabetes. Diabetes. 52:2461–2474. 2003. View Article : Google Scholar : PubMed/NCBI

301 

Lei XG and Vatamaniuk MZ: Two tales of antioxidant enzymes on β cells and diabetes. Antioxid Redox Signal. 14:489–503. 2011. View Article : Google Scholar : PubMed/NCBI

302 

Krebs M, Krssaak M, Bernroider E, Anderwald C, Brehm A, Meyerspeer M, Nowotny P, Roth E, Waldhäusl W and Roden M: Mechanism of amino acid-induced skeletal muscle insulin resistance in humans. Diabetes. 51:599–605. 2002. View Article : Google Scholar : PubMed/NCBI

303 

Pi-Sunyer FX: The epidemiology of central fat distribution in relation to disease. Nutr Rev. 62((7 Pt2)): S120–S126. 2004. View Article : Google Scholar : PubMed/NCBI

304 

Despres JP: Intra-abdominal obesity: An untreated risk factor for type 2 diabetes and cardiovascular disease. J Endocrinol Invest. 29 (3 Suppl):S77–S82. 2006.

305 

Klein S, Allison DB, Heymsfield SB, Kelley DE, Leibel RL, Nomas C and Kahn R; Association for Weight Management and Obesity Prevention; NASSO, the Obesity Society; American Society for Nutrition, : American Diabetes Association: Waist circumference and cardiometabolic risk: A consensus statement from shaping America's health: Association for weight management and obesity pevention; NAASO, the obesity society; the American society for nutrition; and the American diabetes association. Diabetes Care. 30:1647–1652. 2007. View Article : Google Scholar : PubMed/NCBI

306 

Ashwell M, Gumn P and Gibson S: Waist-to-height is a better screening tool than waist cincumference and BMI for adult cardiometabolic risk factors: Systemic review and meta-analysis. Obes Rev. 13:275–286. 2012. View Article : Google Scholar : PubMed/NCBI

307 

Kouli GM, Panagiotakos DB, Kyrou I, Georgousopoulou EN, Chryoshoou C, Tsigos C, Tousoulis D and Pitsavos C: Visceral adiposity index and 10-year cardiovascular disease incidence. The ATTICA study. Nutr Metab Cardiovasc Dis. 27:881–889. 2017. View Article : Google Scholar : PubMed/NCBI

308 

Weiss R: Fat distribution and storage: How much, where, and how? Eur J Endocrinol. 157 (Suppl 1):S39–S45. 2007. View Article : Google Scholar : PubMed/NCBI

309 

Montague CT and O'Rahilly S: The perils of portliness: Causes and consequences of viscelar adiposity. Diabetes. 49:883–888. 2000. View Article : Google Scholar : PubMed/NCBI

310 

Yang X and Smith U: Adipose tissue distribution and risk of metabolic disease: Does thiazolidinedione-induced adipose tissue redistribution provide a clue to the anwer? Diagetologia. 50:1127–1139. 2007. View Article : Google Scholar : PubMed/NCBI

311 

Peraldi P and Spiegelman B: TNF-α and insulin resistance: Summary and future prospects. Mol Cell Biochem. 182:169–175. 1998. View Article : Google Scholar : PubMed/NCBI

312 

Pickup JC: Inflammation and activated innate immunity in the pathogenesis of type 2 diabetes. Diabetes Care. 27:813–823. 2004. View Article : Google Scholar : PubMed/NCBI

313 

Han CY: Roles of reactive oxygen species on insulin resistance in adipose tissue. Diabetes Metab J. 40:272–279. 2016. View Article : Google Scholar : PubMed/NCBI

314 

Yan LJ: Redox imbalance stress in diabetes mellitus: Role of the polyol pathway. Animal Model Exp Med. 1:7–13. 2018. View Article : Google Scholar : PubMed/NCBI

315 

Dutta BJ, Singh S, Seksaria S, Gupta GD and Singh A: Inside the diabetic brain: Insulin resistance and molecular mechanism associated with cognitive impairment and its possible therapeutic strategies. Pharmacol Res. 182:1063582022. View Article : Google Scholar : PubMed/NCBI

316 

Li H, Ren J, Li Y, Wu Q and Wei J: Oxidative stress: The nexus of obesity and cognitive dysfunction in diabetes. Front Endocrinol (Lausanne). 14:11340252023. View Article : Google Scholar : PubMed/NCBI

317 

Emanuela F, Grazia M, Marco DR, Paola LM, Giorgio F and Marco B: Inflammation as a link between obesity and metabolic syndrome. J Nutr Metab. 2012:4763802012. View Article : Google Scholar : PubMed/NCBI

318 

Böni-Schnetzler M and Meier DT: Islet inflammation in type 2 diabetes. Semin Immunopathol. 41:501–513. 2019. View Article : Google Scholar : PubMed/NCBI

319 

Larsen CN, Faulenbach A, Vaag Α, Vølund A, Ehses JA, Seifert B, Mandrup-Poulsen T and Donath MY: Interleukin-1-receptor antagonist in type 2 diabetes mellitus. N Engl J Med. 356:1517–1526. 2007. View Article : Google Scholar : PubMed/NCBI

320 

Larsen CM, Faulenbach M, Vaag A, Ehses JA, Donath MY and Mandrup-Poulsen T: Sustained effects of interleukin-1 receptor antagonist treatment in type 2 diabetes. Diabetes Care. 32:1663–1668. 2009. View Article : Google Scholar : PubMed/NCBI

321 

Infante M, Padilla N, Alejandro R, Caprio M, Della-Morte D, Fabbri A and Ricordi C: Diabetes-modifying antirheumatic drugs: The roles of DMARDs as glucose-lowering agents. Medicina (Kaunas). 58:5712022. View Article : Google Scholar : PubMed/NCBI

322 

Powers NE, Swartzwelter B, Marchetti C, de Graaf DM, Lerchner A, Schlapschy M, Datar R, Binder U, Edwards CK III, Skerra A and Dinarell CA: PASylation of IL-1 receptor antagonist (IL-1Ra) retains IL-1 blockade and extends its duration in mouse urate crystal-induced peritonitis. J Biol Chem. 295:868–882. 2020. View Article : Google Scholar : PubMed/NCBI

323 

Tegtmeyer K, Atassi G, Zhao J, Maloney NJ and Lio PA: Off-Label studies on anakinra in dermatology: A review. J Dermatolog Treat. 33:73–86. 2022. View Article : Google Scholar : PubMed/NCBI

324 

van Asseldonk EJ, Stienstra R, Koenen TB, Joosten LA, Netea MG and Tack CJ: Treatment with Anakinra improves disposition index but not insulin sensitivity in nondiabetic subjects with the metabolic syndrome: A randomized, double-blind, placebo-controlled study. J Clin Endocrinol Metab. 96:2119–2126. 2011. View Article : Google Scholar : PubMed/NCBI

325 

van Poppel PCM, van Asseldonk EJP, Holst JJ, Vilsbøll T, Netea MG and Tack CJ: The interleukin-1 receptor antagonist anakinra improves first-phase insulin secretion and insulinogenic index in subjects with impaired glucose tolerance. Diabetes Obes Metab. 16:1269–1273. 2014. View Article : Google Scholar : PubMed/NCBI

326 

Cucak H, Hansen G, Vrang N, Skarsfeldt T, Steiness E and Jelsing J: The IL-1β receptor antagonist SER140 postpones the onset of diabetes in female nonobese diabetic mice. J Diabetes Res. 2016:74846012016. View Article : Google Scholar : PubMed/NCBI

327 

Cavelti-Weder C, Babians-Brunner A, Keller C, Stahel MA, Kurz-Levin M, Zayed H, Solinger AM, Mandrup-Poulsen T, Dinarello CA and Donath MY: Effects of gevokizumab on glycemia and inflammatory markers in type 2 diabetes. Diabetes Care. 35:1654–1662. 2012. View Article : Google Scholar : PubMed/NCBI

328 

Rissanen A, Howard CP, Botha J and Thuren T; Global Investigators, : Effects of anti-IL-1β antibody (canakinumab) on insulin secretion rates in impaired glucose tolerance or type 2 diabetes: Results of a randomized placebo-controlled trial. Diabetes Obes Metab. 14:1088–1096. 2012. View Article : Google Scholar : PubMed/NCBI

329 

Hensen J, Howard CP, Walter V and Thuren T: Impact of interleukin-1β antibody (canakinumab) on glycemic indicators in patients with type 2 diabetes mellitus: Results of secondary endpoints from a randomized, placebo-controlled trial. Diabetes Metab. 39:524–531. 2013. View Article : Google Scholar : PubMed/NCBI

330 

Ridker PM, Howard CP, Walter V, Everett B, Libby P, Hensen J and Thuren T; on the behalf of CANTOS Pilot Investigative Group, : Effects of Interleukin-1β Inhibition with Canakinumab on Hemoglobin A1c, Lipids, C-Reactive Protein, Interleukin-6, and Fibrinogen: A Phase IIb Randomized, Placebo-Controlled Trial. Circulation. 126:2739–2748. 2012. View Article : Google Scholar : PubMed/NCBI

331 

Choudhury RP, Birks JS, Manii V, Biasiolli L, Robson MD, L'Allier PL, Gingras MA, Alie N, McLaughlin MA, Basson CT, et al: Artherial effects of canakinumab in patients with atherosclerosis and type 2 diabetes or glucose intolerance. J Am Coll Cardiol. 68:1769–1780. 2016. View Article : Google Scholar : PubMed/NCBI

332 

Noe A, Howard C, Thuren T, Taylor A and Skerjanec A: Pharmacokinetic and pharmacodynamics characteristics of single-dose canakinumab in patients with type 2 diabetes mellitus. Clin Ther. 36:1625–1637. 2014. View Article : Google Scholar : PubMed/NCBI

333 

Sloan-Lancaster J, Abu-Raddad E, Polzer J, Miller JW, Schere JC, De Gaetano A, Berg JK and Landschulz WH: Double blind, randomized study evaluating the glycemic and anti-inflammatory effects of subcutaneous LY2189102, a neutralizing IL-1 antibody, in patients with type 2 diabetes. Diabetes Care. 36:2239–2246. 2013. View Article : Google Scholar : PubMed/NCBI

334 

Everett BM, Donath MY, Pradhan AD, Thuren T, Pais P, Nicolau JC, Glynn RJ, Libby P and Ridker PM: Anti-inflimmatory therapy with canakinumad for the prevention and management of diabetes. J Am Coll Cardiol. 71:2392–2401. 2018. View Article : Google Scholar : PubMed/NCBI

335 

Olson NC, Callas PW, Hanley AJG, Festa A, Haffner SM, Wagenknecht LE and Tracy RP: Circulating levels of TNF-α are associated with impaired glucose tolerance, increased insulin resistance, and ethnicity: The insulin resistance atherosclerosis study. J Clin Endocrinol Metab. 97:1032–1040. 2012. View Article : Google Scholar : PubMed/NCBI

336 

Wascher TC, Lindeman JHN, Sourij H, Kooistra T, Pacini G and Roden M: Chronic TNF-α neutralization does not improve insulin resistance or endothelial function in ‘healthy’ men with metabolic syndrome. Mol Med. 17:189–193. 2011. View Article : Google Scholar : PubMed/NCBI

337 

van den Oever IAM, Baniaamam M, Simsek S, Raterman HG, van Denderen JC, van Eijk IC, Peters MJL, van der Horst-Bruinsma IE, Smulders YM and Nurmohamed MT: The effect of anti-TNF treatment on body composition and insulin resistance in patients with rheumatoid arthritis. Rheumatol Int. 41:319–328. 2021. View Article : Google Scholar : PubMed/NCBI

338 

Kiortsis DN, Mavridis AK, Vasakos S, Nikas SN and Drosos AA: Effects of infliximab treatment on insulin resistance in patients with rheumatoid arthritis and ankylosing spondylitis. Ann Rheum Dis. 64:765–766. 2005. View Article : Google Scholar : PubMed/NCBI

339 

Gonzalez-Gay MA, De Matias JM, Gonzalez-Juanatey C, Garcia-Porrua G, Sanchez-Andrade A, Martin J and Llorca J: Anti-tumor necrosis factor-alpha blockade improves insulin resistance in patients with rheumatoid arthritis. Clin Exp Rheumatol. 24:83–86. 2006.PubMed/NCBI

340 

Haida KS, Bertachini G, Tavoni T, Guilhermetti M, Loures MR and Bazotte RB: Infliximab treatment prevents hyperglycemia and the intensification of hepatic gluconeogenesis in an animal model of high fat diet-induced liver glucose overproduction. Braz Arch Biol Technol. 55:389–393. 2012. View Article : Google Scholar

341 

Méndez-García LA, Trejo-Millán F, Martínez-Reyes CP, Majarrez-Reyna AN, Esquivel-Velázquez M, Melendez-Mier G, Islas-Andrade S, Rojas-Bernbé A, Kzhyshkowska J and Escobedo G: Infliximab ameriorates tumor necrosis factor-alpha-induced insulin resistance by attenuating PTP1B activation in 3T3L1 adipocytes in vitro. Scan J Immunol. 88:e127162018. View Article : Google Scholar : PubMed/NCBI

342 

Abdelhamid YA, Elyamany MF, Al-Shorbagy MY and Badary OA: Effects of TNF-α antagonist infliximad on fructose-induced metabolic syndrome in rats. Hum Exp Toxicol. 40:801–811. 2021. View Article : Google Scholar : PubMed/NCBI

343 

Bernstein LE, Berry J, Kim S, Canavan B and Grinspoon SK: Effects of etanercept in patients with the metabolic syndrome. Arch Intern Med. 166:902–908. 2006. View Article : Google Scholar : PubMed/NCBI

344 

Lo J, Bernstein LE, Canavan B, Torriani M, Jackson MB, Ahima RS and Grinspoon SK: Effects of TNF-alpha neutralization on adipocytokines and skeletal muscle adiposity in the metabolic syndrome. Am J Physiol Endocrinol Metabol. 293:E102–E109. 2007. View Article : Google Scholar : PubMed/NCBI

345 

Bravo C, Cataldo LR, Galgani J, Parada J and Santos JL: Leptin/Adiponectin ratios using either total or high molecular weight adiponectin as biomarkers of systemic insulin sensitivity in normoglycemic women. Diabetes Res. 2017:90310792017.PubMed/NCBI

346 

Stanley TL, Zanni MV, Johnsen S, Rasheed S, Makimura H, Lee H, Khor VK, Ahima RS and Grinspoon SK: TNF-α antagonism with etanercept decreases glucose and increases the proportion of high molecular weight adiponectin in obese subjects with features of the metabolic syndrome. J Clin Endocrinol Metab. 96:E146–E150. 2011. View Article : Google Scholar : PubMed/NCBI

347 

Paquot N, Castillo MJ, Lefèbvre PJ and Scheen AJ: No increased insulin sensitivity after a single intravenous administration of a recombinant human tumor necrosis factor receptor: Fc fusion protein in obese insulin-resistant patients. J Clin Endocrinol Metab. 85:1316–1319. 2000. View Article : Google Scholar : PubMed/NCBI

348 

Dominguez H, Storgaard H, Rask-Madsen C, Hermann TS, Ihlemann N, Nielsen DB, Spohr C, Kober L, Vaag A and Torp-Pedersen C: Metabolic and vascular effects of tumor necrosis factor-α blockade with etanercept in obese patients with type 2 diabetes. J Vasc Res. 42:517–525. 2005. View Article : Google Scholar : PubMed/NCBI

349 

Ronti T, Lupattelli G and Mannarino E: The endocrine function of adipose tissue: An update. Clin Endocrinol (Oxf). 64:355–365. 2006. View Article : Google Scholar : PubMed/NCBI

350 

Hu D, Russell RD, Remash D, Greenaway T, Rattigan S, Squibb KA, Jones G, Ross RM, Roberts CK, Premilovac D, et al: Are the metabolic benefits of resistance in type 2 diabetes linked to improvement in adipose tissue microvascular blood flow? Am J Physiol Endocrinol Metab. 315:E1242–E1250. 2018. View Article : Google Scholar : PubMed/NCBI

351 

Ruscitti P, Berardicurti O, Cipriani P and Giacomelli R; TRACK Study Group, : Benefits of anakinra versus TNF inhibitors in rheumatoid arthritis and type 2 diabetes: Long-term findings from participants furtherly followed-up in the TRACK study, a multicentre, open-label, randomized, controlled trial. Clin Exp Rheumatol. 39:403–406. 2021. View Article : Google Scholar : PubMed/NCBI

352 

Ramos-Zavala MG, Gonzalez-Ortiz M, Martinez-Abundis E, Robles-Cervantes JA, Gonzalez-Lopez R and Santiago-Hernandez NJ: Effect of diacerein on insulin secretion and metabolic control in drug-naïve patients with type 2 diabetes. Diabetes Care. 34:1591–1594. 2011. View Article : Google Scholar : PubMed/NCBI

353 

Cardoso CRL, Leite NC, Carlos FO, Loureiro AA, Viegas BB and Salles GF: Efficacy and safety of diacerein in patients with inadequately controlled type 2 diabetes: A randomized controlled trial. Diabetes Care. 40:1356–1363. 2017. View Article : Google Scholar : PubMed/NCBI

354 

Tres GS, Fuchs SC, Piovesan F, Koehler-Santos P, Pereira FD, Camey S, Lisboa HK and Moreira LB: Effect of diacerein on metabolic control and inflammatory markers in patients with type 2 diabetes using antidiabetic agents: A randomized controlled trial. J Diabetes Res. 2018:42465212018. View Article : Google Scholar : PubMed/NCBI

355 

Jangsiripornpakorn J, Srisuk S, Chailurkit L, Nimitphong H, Saetung S and Ongphiphadhanakul B: The glucose-lowering effect of low-dose diacerein and its responsiveness metabolic markers in uncontrolled diabetes. BMC Res Notes. 15:912022. View Article : Google Scholar : PubMed/NCBI

356 

Piovesan F, Tres GS, Moreira LB, Andrades ME, Lisboa HK and Fucks SC: Effects of diacerein on renal function and inflammatory cytokines in participants with type 2 diabetes mellitus and chronic kidney disease: A randomized controlled trial. PLoS One. 12:e01865542017. View Article : Google Scholar : PubMed/NCBI

357 

Di Prospero NA, Artis E, Andrade-Gordon P, Johnson DL, Vaccaro N, Xi L and Rothenberg P: CCR2 antagonism in patients with type 2 diabetes mellitus: A randomized, placebo-controlled study. Diabetes Obes Metab. 16:1055–1064. 2014. View Article : Google Scholar : PubMed/NCBI

358 

Mulder P, van den Hoek AM and Kleemann R: The CCR2 inhibitor propagermanium attenuates diet-induced insulin resistance, adipose tissue inflammation and non-alcoholic steatohepatitis. PLoS One. 12:e01697402017. View Article : Google Scholar : PubMed/NCBI

359 

Huh JH, Kim HM, Lee ES, Kwon MH, Lee BR, Ko HJ and Chung CH: Dual CCR2/5 antagonist attenuates obesity-induced insulin resistance by regulating macrophage recruitment and M1/M2 status. Obesity (Silver Spring). 26:378–386. 2018. View Article : Google Scholar : PubMed/NCBI

360 

Tuttle KR, Brosius FC III, Adler SG, Kretzler M, Mehta RL, Tumlin JA, Tanaka Y, Haneda M, Liu J, Silk ME, et al: JAK1/JAK2 inhibition by baricitinib in diabetic kidney disease: Results from a phase 2 randomized controlled clinical trial. Nephrol Dial Transplant. 33:1950–1959. 2018. View Article : Google Scholar : PubMed/NCBI

361 

Faghihimani E, Amnorroaya A, Rezvanian H, Adibi P, Ismail-Beigi F and Amini M: Salsalate improves glycemic control in patients with newly diagnosed type 2 diabetes. Acta Diabetol. 50:537–543. 2013. View Article : Google Scholar : PubMed/NCBI

362 

Goldfine AB, Fonseca V, Jablonski KA, Chen YD, Tipton L, Staten MA and Steven E; Targeting Inflammation Using Salsalate in Type 2 Diabetes Study Team, : Salicylate (Salsalate) in patients with type 2 diabetes: A randomized trial. Ann Intern Med. 159:1–12. 2013. View Article : Google Scholar : PubMed/NCBI

363 

Li D, Zhong J, Zhang Q and Zhang J: Effects of anti-inflammatory therapies on glycemic control in type 2 diabetes mellitus. Front Immunol. 14:11251162023. View Article : Google Scholar : PubMed/NCBI

364 

Raimondo MG, Biggioggero M, Crotti C, Becciolini A and Favalli EG: Profile of sarilumab and its potential in the treatment of rheumatoid arthritis. Drug Design Dev Ther. 11:1593–1603. 2017. View Article : Google Scholar : PubMed/NCBI

365 

Klinder A, Waletzko-Hellwig J, Sellin ML, Seyfarth-Sehlke A, Wolfien M, Prehn F, Bader R and Jonitz-Heincke A: Effects of the interleukin-6 receptor blocker sarilumab on metabolic activity and differentiation capacity of primary human osteoblasts. Pharmaceutics. 14:13902022. View Article : Google Scholar : PubMed/NCBI

366 

Genovese MC, Burmester GR, Hagino O, Thangavelu K, Iglesias-Rodriguez M, John GT, González-Gay MA, Mandrup-Poulsen T and Fleischmann R: Interleukin-6 receptor blockade or TNFα inhibition for reducing glycaemia in patients with RA and diabetes: Post hoc analyses of three randomised, controlled trials. Arthritis Res Ther. 22:2062020. View Article : Google Scholar : PubMed/NCBI

367 

Drutskaya MS, Efimou GA, Kruglou AA and Nedospasou SA: Can we design a better anti-cytokine therapy? Semin Arthritis and Rhematism. 49:S39–S42. 2019.PubMed/NCBI

368 

Nosenko MA, Atretkhany KSN, Mokhonov VV, Vasilenko EA, Kruglov AA, Tillib SV, Drutskaya MS and Nedospasov SA: Moduatation of bioavailability of proinflammatory cytokines produced by myeloid cells. Semin Arthritis Rheum. 49:S39–S42. 2019. View Article : Google Scholar : PubMed/NCBI

369 

Velikova TV, Kabakchieva PP, Assyov YS and Georgiev TA: Targeting inflammatory cytokines to improve type 2 diabetes control. Biomed Res Int. 2021:72974192021. View Article : Google Scholar : PubMed/NCBI

370 

Achari A and Jain SK: Adiponectin, a therapeutic target for obesity, diabetes, and endothelial dysfunction. Int J Mol Sci. 18:13212017. View Article : Google Scholar : PubMed/NCBI

371 

Yamauchi T, Kamon J, Waki H, Terauchi Y, Kubota N, Hara K, Mori Y, Ide T, Murakami K, Tsuboyama-Kasaoka T, et al: The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. Nat Med. 7:941–946. 2001. View Article : Google Scholar : PubMed/NCBI

372 

Combs TP, Wagner JA, Berger J, Doebber T, Wang WJ, Zhang BB, Tanen M, Berg AH, O'Rahilly S, Savage DB, et al: Induction of adipocyte complement-related protein of 30 kilodaltons by PPRgamma agonists: A potential mechanism of insulin sensitization. Endocrinology. 143:998–1007. 2002. View Article : Google Scholar : PubMed/NCBI

373 

Kolak M, Yki-Järvinen H, Kannisto K, Tiikkainen M, Hamsten A, Eriksson P and Fisher RM: Effects of chronic rosiglitazone therapy on gene expression in human adipose tissue in vivo in patients with type 2 diabetes. J Clin Endocrinol Metab. 92:720–724. 2007. View Article : Google Scholar : PubMed/NCBI

374 

Peraldi P, Xu M and Spiegelman BM: Thiazolidinediones block tumor necrosis factor-alpha-incuded inhibition of insulin signaling. J Clin Invest. 100:1863–1869. 1997. View Article : Google Scholar : PubMed/NCBI

375 

Wolf AM, Wolf D, Rumpold H, Enrich B and Tilg H: Adiponectin induces the anti-inflammatory cytokines IL-10 and IL-1RA in human leukocytes. Biochem Biophys Res Commun. 323:630–635. 2004. View Article : Google Scholar : PubMed/NCBI

376 

Mosser DM and Zhang X: Interleukin-10: New perspectives on an old cytokine. Immunol Rev. 226:205–218. 2008. View Article : Google Scholar : PubMed/NCBI

377 

Maclsaac RJ and Jerum G: Clinical indications for thiazolidinediones. Aust Prescr. 27:70–74. 2004. View Article : Google Scholar

378 

Quinn CE, Hamilton PK, Lockhart CJ and McVeigh GE: Thiazolidinediones: Effects on insulin resistance and the cardiovascular system. Br J Pharmacol. 153:636–645. 2008. View Article : Google Scholar : PubMed/NCBI

379 

Graham DJ, Green L, Senior JR and Nourjah P: Troglitazone-induced liver failure: A case study. Am J Med. 114:299–306. 2003. View Article : Google Scholar : PubMed/NCBI

380 

Tuccori M, Filion KB, Yin H, Yu OH, Platt RW and Azoulay L: Pioglitazone use and risk of bladder cancer: Population based cohort study. BMJ. 352:i15412016. View Article : Google Scholar : PubMed/NCBI

381 

Aronoff S, Rosenblatt S, Braithwaite S, Egan JW, Mathisen AL and Schneider RL: Pioglitazone hydrochloride monotherapy improves glycemic control in the treatment of patients with type 2 diabetes: A 6-month randomized placebo-controlled dose-response study. The pioglitazone 001 study group. Diabetes Care. 23:1605–1611. 2000. View Article : Google Scholar : PubMed/NCBI

382 

Mudaliar S, Chang AR and Henry RR: Thiazolidinediones, peripheral edema, and type 2 diabetes: Incidence, pathophysiology, and clinical implications. Endocr Pract. 9:406–416. 2003. View Article : Google Scholar : PubMed/NCBI

383 

Arnold SV, Inzucchi SE, Echouffo-Tcheugui JB, Tang F, Lam CSP, Sperling LS and Kosiborod M: Understanding contemporary use of thiazolidinediones. Cir Heart Fail. 12:e0058552019. View Article : Google Scholar : PubMed/NCBI

384 

Ferris FL III and Patz A: Macular edema. A complication of diabetic retinopathy. Surv Ophthalmol. 28:452–461. 1984. View Article : Google Scholar : PubMed/NCBI

385 

Ryan EH Jr, Han DP, Ramsay RC, Cantrill HL, Bennett SR, Dev S and Williams DF: Diabetic macular edema associated with glitazone use. Retina. 26:562–570. 2006. View Article : Google Scholar : PubMed/NCBI

386 

Vestergaard P: Discrepacies in bone mineral density and fracture risk in patients with type 1 and type 2 diabetes-a meta-analysis. Osteoporos Int. 18:427–444. 2007. View Article : Google Scholar : PubMed/NCBI

387 

Fonseca V: Effect of thiazolidinediones on body weight in patients with diabetes mellitus. Am J Med. 115:42–48. 2003. View Article : Google Scholar

388 

Ko KD, Kim KK and Lee KR: Does weight gain associated with thiazolidinedione use negatively affect cardiometabolic health? J Obes Metab Syndr. 26:102–106. 2017. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Varra F, Varras M, Varra V and Theodosis-Nobelos P: Molecular and pathophysiological relationship between obesity and chronic inflammation in the manifestation of metabolic dysfunctions and their inflammation‑mediating treatment options (Review). Mol Med Rep 29: 95, 2024.
APA
Varra, F., Varras, M., Varra, V., & Theodosis-Nobelos, P. (2024). Molecular and pathophysiological relationship between obesity and chronic inflammation in the manifestation of metabolic dysfunctions and their inflammation‑mediating treatment options (Review). Molecular Medicine Reports, 29, 95. https://doi.org/10.3892/mmr.2024.13219
MLA
Varra, F., Varras, M., Varra, V., Theodosis-Nobelos, P."Molecular and pathophysiological relationship between obesity and chronic inflammation in the manifestation of metabolic dysfunctions and their inflammation‑mediating treatment options (Review)". Molecular Medicine Reports 29.6 (2024): 95.
Chicago
Varra, F., Varras, M., Varra, V., Theodosis-Nobelos, P."Molecular and pathophysiological relationship between obesity and chronic inflammation in the manifestation of metabolic dysfunctions and their inflammation‑mediating treatment options (Review)". Molecular Medicine Reports 29, no. 6 (2024): 95. https://doi.org/10.3892/mmr.2024.13219
Copy and paste a formatted citation
x
Spandidos Publications style
Varra F, Varras M, Varra V and Theodosis-Nobelos P: Molecular and pathophysiological relationship between obesity and chronic inflammation in the manifestation of metabolic dysfunctions and their inflammation‑mediating treatment options (Review). Mol Med Rep 29: 95, 2024.
APA
Varra, F., Varras, M., Varra, V., & Theodosis-Nobelos, P. (2024). Molecular and pathophysiological relationship between obesity and chronic inflammation in the manifestation of metabolic dysfunctions and their inflammation‑mediating treatment options (Review). Molecular Medicine Reports, 29, 95. https://doi.org/10.3892/mmr.2024.13219
MLA
Varra, F., Varras, M., Varra, V., Theodosis-Nobelos, P."Molecular and pathophysiological relationship between obesity and chronic inflammation in the manifestation of metabolic dysfunctions and their inflammation‑mediating treatment options (Review)". Molecular Medicine Reports 29.6 (2024): 95.
Chicago
Varra, F., Varras, M., Varra, V., Theodosis-Nobelos, P."Molecular and pathophysiological relationship between obesity and chronic inflammation in the manifestation of metabolic dysfunctions and their inflammation‑mediating treatment options (Review)". Molecular Medicine Reports 29, no. 6 (2024): 95. https://doi.org/10.3892/mmr.2024.13219
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team