|
1
|
Bartel DP: Metazoan MicroRNAs. Cell.
173:20–51. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Matsuyama H and Suzuki HI: Systems and
synthetic microRNA biology: From biogenesis to disease
pathogenesis. Int J Mol Sci. 21:1322019. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Mohr AM and Mott JL: Overview of microRNA
biology. Semin Liver Dis. 35:3–11. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Thamotharan S, Chu A, Kempf K, Janzen C,
Grogan T, Elashoff DA and Devaskar SU: Differential microRNA
expression in human placentas of term intra-uterine growth
restriction that regulates target genes mediating angiogenesis and
amino acid transport. PLoS One. 12:e01764932017. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Lucas T, Schäfer F, Müller P, Eming SA,
Heckel A and Dimmeler S: Light-inducible antimiR-92a as a
therapeutic strategy to promote skin repair in healing-impaired
diabetic mice. Nat Commun. 8:151622017. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Siomi H and Siomi MC: Posttranscriptional
regulation of microRNA biogenesis in animals. Mol Cell. 38:323–332.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Karreth FA, Tay Y, Perna D, Ala U, Tan SM,
Rust AG, DeNicola G, Webster KA, Weiss D, Perez-Mancera PA, et al:
In vivo identification of tumor-suppressive PTEN ceRNAs in an
oncogenic BRAF-induced mouse model of melanoma. Cell. 147:382–395.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Vegter EL, van der Meer P, de Windt LJ,
Pinto YM and Voors AA: MicroRNAs in heart failure: From biomarker
to target for therapy. Eur J Heart Fail. 18:457–468. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Jung H, Kim JS, Lee KH, Tizaoui K,
Terrazzino S, Cargnin S, Smith L, Koyanagi A, Jacob L, Li H, et al:
Roles of microRNAs in inflammatory bowel disease. Int J Biol Sci.
17:2112–2123. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Weidner J, Bartel S, Kılıç A, Zissler UM,
Renz H, Schwarze J, Schmidt-Weber CB, Maes T, Rebane A,
Krauss-Etschmann S and Rådinger M: Spotlight on microRNAs in
allergy and asthma. Allergy. 76:1661–1678. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Rodriguez A, Griffiths-Jones S, Ashurst JL
and Bradley A: Identification of mammalian microRNA host genes and
transcription units. Genome Res. 14:1902–1910. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Lee Y, Jeon K, Lee JT, Kim S and Kim VN:
MicroRNA maturation: Stepwise processing and subcellular
localization. EMBO J. 21:4663–4670. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Lee Y, Kim M, Han J, Yeom KH, Lee S, Baek
SH and Kim VN: MicroRNA genes are transcribed by RNA polymerase II.
EMBO J. 23:4051–4060. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Nguyen TA, Jo MH, Choi YG, Park J, Kwon
SC, Hohng S, Kim VN and Woo JS: Functional anatomy of the human
microprocessor. Cell. 161:1374–1387. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J,
Lee J, Provost P, Rådmark O, Kim S and Kim VN: The nuclear RNase
III Drosha initiates microRNA processing. Nature. 425:415–419.
2003. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Ha M and Kim VN: Regulation of microRNA
biogenesis. Nature reviews. Nat Rev Mol Cell Biol. 15:509–524.
2014. View
Article : Google Scholar : PubMed/NCBI
|
|
17
|
Iwasaki S, Kobayashi M, Yoda M, Sakaguchi
Y, Katsuma S, Suzuki T and Tomari Y: Hsc70/Hsp90 chaperone
machinery mediates ATP-dependent RISC loading of small RNA
duplexes. Mol Cell. 39:292–299. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Frank F, Sonenberg N and Nagar B:
Structural basis for 5′-nucleotide base-specific recognition of
guide RNA by human AGO2. Nature. 465:818–822. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Suzuki HI, Katsura A, Yasuda T, Ueno T,
Mano H, Sugimoto K and Miyazono K: Small-RNA asymmetry is directly
driven by mammalian Argonautes. Nat Struct Mol. 22:512–521. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Khvorova A, Reynolds A and Jayasena SD:
Functional siRNAs and miRNAs exhibit strand bias. Cell.
115:209–216. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Schwarz DS, Hutvágner G, Du T, Xu Z,
Aronin N and Zamore PD: Asymmetry in the assembly of the RNAi
enzyme complex. Cell. 115:199–208. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Chiang HR, Schoenfeld LW, Ruby JG, Auyeung
VC, Spies N, Baek D, Johnston WK, Russ C, Luo S, Babiarz JE, et al:
Mammalian microRNAs: Experimental evaluation of novel and
previously annotated genes. Genes Dev. 24:992–1009. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Giraldez AJ, Mishima Y, Rihel J, Grocock
RJ, Van Dongen S, Inoue K, Enright AJ and Schier AF: Zebrafish
MiR-430 promotes deadenylation and clearance of maternal mRNAs.
Science. 312:75–79. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Baek D, Villen J, Shin C, Camargo FD, Gygi
SP and Bartel DP: The impact of microRNAs on protein output.
Nature. 455:64–71. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Selbach M, Schwanhäusser B, Thierfelder N,
Fang Z, Khanin R and Rajewsky N: Widespread changes in protein
synthesis induced by microRNAs. Nature. 455:58–63. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Landgraf P, Rusu M, Sheridan R, Sewer A,
Iovino N, Aravin A, Pfeffer S, Rice A, Kamphorst AO, Landthaler M,
et al: A mammalian microRNA expression atlas based on small RNA
library sequencing. Cell. 129:1401–1414. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Dragomir MP, Knutsen E and Calin GA:
SnapShot: Unconventional miRNA functions. Cell. 174:1038–1038.e1.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Neubauer K and Zieger B: Endothelial cells
and coagulation. Cell Tissue Res. 387:391–398. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Krüger-Genge A, Blocki A, Franke RP and
Jung F: Vascular endothelial cell biology: An update. Int J Mol
Sci. 20:44112019. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Di Nisio M, van Es N and Büller HR: Deep
vein thrombosis and pulmonary embolism. Lancet. 388:3060–3073.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Juchem G, Weiss DR, Knott M, Senftl A,
Förch S, Fischlein T, Kreuzer E, Reichart B, Laufer S and Nees S:
Regulation of coronary venular barrier function by blood borne
inflammatory mediators and pharmacological tools: Insights from
novel microvascular wall models. Am J Physiol Heart Circ Physiol.
302:H567–H581. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Moncada S, Gryglewski R, Bunting S and
Vane JR: An enzyme isolated from arteries transforms prostaglandin
endoperoxides to an unstable substance that inhibits platelet
aggregation. Nature. 263:663–665. 1976. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Moncada S, Higgs EA and Vane JR: Human
arterial and venous tissues generate prostacyclin (prostaglandin
x), a potent inhibitor of platelet aggregation. Lancet. 1:18–20.
1977. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Cines DB, Pollak ES, Buck CA, Loscalzo J,
Zimmerman GA, McEver RP, Pober JS, Wick TM, Konkle BA, Schwartz BS,
et al: Endothelial cells in physiology and in the pathophysiology
of vascular disorders. Blood. 91:3527–3561. 1998.PubMed/NCBI
|
|
35
|
Panza JA, Quyyumi AA, Brush JE Jr and
Epstein SE: Abnormal endothelium-dependent vascular relaxation in
patients with essential hypertension. N Engl J Med. 323:22–27.
1990. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Marti CN, Gheorghiade M, Kalogeropoulos
AP, Georgiopoulou VV, Quyyumi AA and Butler J: Endothelial
dysfunction, arterial stiffness, and heart failure. J Am Coll
Cardiol. 60:1455–1469. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Radomski MW, Palmer RM and Moncada S:
Endogenous nitric oxide inhibits human platelet adhesion to
vascular endothelium. Lancet. 2:1057–1058. 1987. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Deaglio S and Robson SC: Ectonucleotidases
as regulators of purinergic signaling in thrombosis, inflammation,
and immunity. Adv Pharmacol. 61:301–332. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Marcus AJ, Safier LB, Hajjar KA, Ullman
HL, Islam N, Broekman MJ and Eiroa AM: Inhibition of platelet
function by an aspirin-insensitive endothelial cell ADPase.
Thromboregulation by endothelial cells. J Clin Invest.
88:1690–1696. 1991. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Fuentes E and Palomo I: Extracellular ATP
metabolism on vascular endothelial cells: A pathway with
pro-thrombotic and anti-thrombotic molecules. Vascul Pharmacol.
75:1–6. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Esmon CT: Structure and functions of the
endothelial cell protein C receptor. Crit Care Med. 32 (Suppl
5):S298–S301. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Giri H, Panicker SR, Cai X, Biswas I,
Weiler H and Rezaie AR: Thrombomodulin is essential for maintaining
quiescence in vascular endothelial cells. Proc Natl Acad Sci USA.
118:e20222481182021. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Iba T and Levy JH: Inflammation and
thrombosis: Roles of neutrophils, platelets and endothelial cells
and their interactions in thrombus formation during sepsis. J
Thromb Haemost. 16:231–241. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Griffin JH, Evatt B, Zimmerman TS, Kleiss
AJ and Wideman C: Deficiency of protein C in congenital thrombotic
disease. J Clin Invest. 68:1370–1373. 1981. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Ofosu FA, Modi GJ, Smith LM, Cerskus AL,
Hirsh J and Blajchman MA: Heparan sulfate and dermatan sulfate
inhibit the generation of thrombin activity in plasma by
complementary pathways. Blood. 64:742–747. 1984. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Mann KG, Butenas S and Brummel K: The
dynamics of thrombin formation. Arterioscler Thromb Vasc Biol.
23:17–25. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Loskutoff DJ and Edgington TE: Synthesis
of a fibrinolytic activator and inhibitor by endothelial cells.
Proc Natl Acad Sci USA. 74:3903–3907. 1977. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Huber D, Cramer EM, Kaufmann JE, Meda P,
Massé JM, Kruithof EK and Vischer UM: Tissue-type plasminogen
activator (t-PA) is stored in Weibel-Palade bodies in human
endothelial cells both in vitro and in vivo. Blood. 99:3637–3645.
2002. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Henderson SJ, Weitz JI and Kim PY:
Fibrinolysis: Strategies to enhance the treatment of acute ischemic
stroke. J Thromb Haemost. 16:1932–1940. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Levi M and van der Poll T: Coagulation and
sepsis. Thromb Res. 149:38–44. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Levi M and van der Poll T: Inflammation
and coagulation. Crit Care Med. 38 (Suppl 2):S26–S34. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Mackman N, Tilley RE and Key NS: Role of
the extrinsic pathway of blood coagulation in hemostasis and
thrombosis. Arterioscler Thromb Vasc Biol. 27:1687–1693. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Zelaya H, Rothmeier AS and Ruf W: Tissue
factor at the crossroad of coagulation and cell signaling. J Thromb
Haemost. 16:1941–1952. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Sun LL, Li WD, Lei FR and Li XQ: The
regulatory role of microRNAs in angiogenesis-related diseases. J
Cell Mol Med. 22:4568–4587. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Zhou DM, Sun LL, Zhu J, Chen B, Li XQ and
Li WD: MiR-9 promotes angiogenesis of endothelial progenitor cell
to facilitate thrombi recanalization via targeting TRPM7 through
PI3K/Akt/autophagy pathway. J Cell Mol Med. 24:4624–4632. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Wang J, Xu X, Li P, Zhang B and Zhang J:
HDAC3 protects against atherosclerosis through inhibition of
inflammation via the microRNA-19b/PPARγ/NF-κB axis.
Atherosclerosis. 323:1–12. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Yu J, Jin Y, Xu C, Fang C, Zhang Z, Chen L
and Xu G: Downregulation of miR-125a-5p promotes endothelial
progenitor cell migration and angiogenesis and alleviates deep vein
thrombosis in mice via upregulation of MCL-1. Mol Biotechnol.
65:1664–1678. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Zhu J, Sun LL, Li WD and Li XQ:
Clarification of the role of miR-9 in the angiogenesis, migration,
and autophagy of endothelial progenitor cells through RNA sequence
analysis. Cell Transplant. 29:9636897209639362020. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Liang HZ, Li SF, Zhang F, Wu MY, Li CL,
Song JX, Lee C and Chen H: Effect of endothelial microparticles
induced by hypoxia on migration and angiogenesis of human umbilical
vein endothelial cells by delivering MicroRNA-19b. Chin Med J
(Engl). 131:2726–2733. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Lou Z, Ma H, Li X, Zhang F, Du K and Wang
B: Hsa_circ_0001020 accelerates the lower extremity deep vein
thrombosis via sponging miR-29c-3p to promote MDM2 expression.
Thromb Res. 211:38–48. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Meng Q, Wang W, Yu X, Li W, Kong L, Qian
A, Li C and Li X: Upregulation of MicroRNA-126 contributes to
endothelial progenitor cell function in deep vein thrombosis via
its target PIK3R2. J Cell Biochem. 116:1613–1623. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Zhang W, Chen P, Zong H, Ding Y and Yan R:
MiR-143-3p targets ATG2B to inhibit autophagy and promote
endothelial progenitor cells tube formation in deep vein
thrombosis. Tissue Cell. 67:1014532020. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Wang W, Zhu X, Du X, Xu A, Yuan X, Zhan Y,
Liu M and Wang S: MiR-150 promotes angiogensis and proliferation of
endothelial progenitor cells in deep venous thrombosis by targeting
SRCIN1. Microvasc Res. 123:35–41. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Du X, Hu N, Yu H, Hong L, Ran F, Huang D,
Zhou M, Li C and Li X: miR-150 regulates endothelial progenitor
cell differentiation via Akt and promotes thrombus resolution. Stem
Cell Res Ther. 11:3542020. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Wang W, Li C, Li W, Kong L, Qian A, Hu N,
Meng Q and Li X: MiR-150 enhances the motility of EPCs in vitro and
promotes EPCs homing and thrombus resolving in vivo. Thromb Res.
133:590–598. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Sun LL, Xiao L, Du XL, Hong L, Li CL, Jiao
J, Li WD and Li XQ: MiR-205 promotes endothelial progenitor cell
angiogenesis and deep vein thrombosis recanalization and resolution
by targeting PTEN to regulate Akt/autophagy pathway and MMP2
expression. J Cell Mol Med. 23:8493–8504. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Ai P, Shen B, Pan H, Chen K, Zheng J and
Liu F: MiR-411 suppressed vein wall fibrosis by downregulating
MMP-2 via targeting HIF-1α. J Thromb Thrombolysis. 45:264–273.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Li WD, Zhou DM, Sun LL, Xiao L, Liu Z,
Zhou M, Wang WB and Li XQ: LncRNA WTAPP1 promotes migration and
angiogenesis of endothelial progenitor cells via MMP1 through
MicroRNA 3120 and Akt/PI3K/autophagy pathways. Stem Cells.
36:1863–1874. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Li Z and Ni J: Role of microRNA-26a in the
diagnosis of lower extremity deep vein thrombosis in patients with
bone trauma. Exp Ther Med. 14:5069–5074. 2017.PubMed/NCBI
|
|
70
|
Sun S, Chai S, Zhang F and Lu L:
Overexpressed microRNA-103a-3p inhibits acute lower-extremity deep
venous thrombosis via inhibition of CXCL12. IUBMB Life. 72:492–504.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Lu J, Fang Q and Ge X: Role and mechanism
of mir-5189-3p in deep vein thrombosis of lower extremities. Ann
Vasc Surg. 77:288–295. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Qin JZ, Wang SJ and Xia C: microRNAs
regulate nitric oxide release from endothelial cells by targeting
NOS3. J Thromb Thrombolysis. 46:275–282. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Yang B and Zhang Z: Suppression of long
intergenic non-protein coding RNA 1123 constrains lower extremity
deep vein thrombosis via microRNA-125a-3p to target interleukin 1
receptor type 1. Bioengineered. 13:13452–13461. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Ou M, Hao S, Chen J, Zhao S, Cui S and Tu
J: Downregulation of interleukin-6 and C-reactive protein underlies
a novel inhibitory role of microRNA-136-5p in acute lower extremity
deep vein thrombosis. Aging (Albany NY). 12:21076–21090. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Du X, Hong L, Sun L, Sang H, Qian A, Li W,
Zhuang H, Liang H, Song D, Li C, et al: miR-21 induces endothelial
progenitor cells proliferation and angiogenesis via targeting FASLG
and is a potential prognostic marker in deep venous thrombosis. J
Transl Med. 17:2702019. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Wang W, Yuan X, Xu A, Zhu X, Zhan Y, Wang
S and Liu M: Human cancer cells suppress behaviors of endothelial
progenitor cells through miR-21 targeting IL6R. Microvasc Res.
120:21–28. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Mo J, Zhang D and Yang R: MicroRNA-195
regulates proliferation, migration, angiogenesis and autophagy of
endothelial progenitor cells by targeting GABARAPL1. Biosci Rep.
36:e003962016. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Ding M, Chi G, Li F, Wang B, Shao C and
Song W: Up-regulated miR-204-5p promoted the migration, invasion,
and angiogenesis of endothelial progenitor cells to enhance the
thrombolysis of rats with deep venous thrombosis by targeting
SPRED1. Exp Cell Res. 411:1129852022. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Pan Z, Zhang Y, Li C, Yin Y, Liu R, Zheng
G, Fan W, Zhang Q, Song Z, Guo Z, et al: MiR-296-5p ameliorates
deep venous thrombosis by inactivating S100A4. Exp Biol Med
(Maywood). 246:2259–2268. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Pan Z, Chen Q, Ding H and Li H:
MicroRNA-342-3p loaded by human umbilical cord mesenchymal stem
cells-derived exosomes attenuates deep vein thrombosis by
downregulating EDNRA. J Thromb Thrombolysis. 54:411–419. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Yang X, Song Y, Sun Y, Wang M and Xiang Y:
Down-regulation of miR-361-5p promotes the viability, migration and
tube formation of endothelial progenitor cells via targeting FGF1.
Biosci Rep. 40:BSR202005572020. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Li HQ, Pan ZY, Yang Z, Zhang DB and Chen
Q: Overexpression of MicroRNA-122 resists oxidative stress-induced
human umbilical vascular endothelial cell injury by inhibition of
p53. Biomed Res Int. 2020:97916082020.PubMed/NCBI
|
|
83
|
He X, Liu Y, Li Y and Wu K: Long
non-coding RNA crnde promotes deep vein thrombosis by sequestering
miR-181a-5p away from thrombogenic Pcyox1l. Thromb J. 21:442023.
View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Jin J, Wang C, Ouyang Y and Zhang D:
Elevated miR-195-5p expression in deep vein thrombosis and
mechanism of action in the regulation of vascular endothelial cell
physiology. Exp Ther Med. 18:4617–4624. 2019.PubMed/NCBI
|
|
85
|
Li Y, Ge J, Yin Y, Yang R, Kong J and Gu
J: Upregulated miR-206 aggravates deep vein thrombosis by
regulating GJA1-mediated autophagy of endothelial progenitor cells.
Cardiovasc Ther. 2022:99663062022. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Zhang Y, Zhang Z, Wei R, Miao X, Sun S,
Liang G, Chu C, Zhao L, Zhu X, Guo Q, et al: IL (interleukin)-6
contributes to deep vein thrombosis and is negatively regulated by
miR-338-5p. Arterioscler Thromb Vasc Biol. 40:323–334. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Wang H, Lin S, Yang Y, Zhao M, Li X and
Zhang L: Significant role of long non-coding RNA MALAT1 in deep
vein thrombosis via the regulation of vascular endothelial cell
physiology through the microRNA-383-5p/BCL2L11 axis. Bioengineered.
13:13728–13738. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Wang P, Dai J and Li D: Peripheral blood
levels of miR-448 and SIRT1 in patients with deep venous thrombosis
and their relationship. Clin Lab. 68:2022. View Article : Google Scholar
|
|
89
|
Kong L, Hu N, Du X, Wang W, Chen H, Li W,
Wei S, Zhuang H, Li X and Li C: Upregulation of miR-483-3p
contributes to endothelial progenitor cells dysfunction in deep
vein thrombosis patients via SRF. J Transl Med. 14:232016.
View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Zhu X, Chen B and Xu H: By modulating
miR-525-5p/Bax axis, LINC00659 promotes vascular endothelial cell
apoptosis. Immun Inflamm Dis. 11:e7642023. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Kong L, Du X, Hu N, Li W, Wang W, Wei S,
Zhuang H, Li X and Li C: Downregulation of let-7e-5p contributes to
endothelial progenitor cell dysfunction in deep vein thrombosis via
targeting FASLG. Thromb Res. 138:30–36. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Mulder FI, Horváth-Puhó E, van Es N, van
Laarhoven HWM, Pedersen L, Moik F, Ay C, Büller HR and Sørensen HT:
Venous thromboembolism in cancer patients: A population-based
cohort study. Blood. 137:1959–1969. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Tavares V, Neto BV, Marques IS, Assis J,
Pereira D and Medeiros R: Cancer-associated thrombosis: What about
microRNAs targeting the tissue factor coagulation pathway? Biochim
Biophys Acta Rev Cancer. 1879:1890532024. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Lazar S and Goldfinger LE: Platelet
microparticles and miRNA transfer in cancer progression: Many
targets, modes of action, and effects across cancer stages. Front
Cardiovasc Med. 5:132018. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Liu S, Guo W, Shi J, Li N, Yu X, Xue J, Fu
X, Chu K, Lu C, Zhao J, et al: MicroRNA-135a contributes to the
development of portal vein tumor thrombus by promoting metastasis
in hepatocellular carcinoma. J Hepatol. 56:389–396. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Oto J, Navarro S, Larsen AC, Solmoirago
MJ, Plana E, Hervás D, Fernández-Pardo Á, España F, Kristensen SR,
Thorlacius-Ussing O and Medina P: MicroRNAs and neutrophil
activation markers predict venous thrombosis in pancreatic ductal
adenocarcinoma and distal extrahepatic cholangiocarcinoma. Int J
Mol Sci. 21:8402020. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Anijs RJS, Laghmani EH, Ünlü B, Kiełbasa
SM, Mei H, Cannegieter SC, Klok FA, Kuppen PJK, Versteeg HH and
Buijs JT: Tumor-expressed microRNAs associated with venous
thromboembolism in colorectal cancer. Res Pract Thromb Haemost.
6:e127492022. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Morelli VM, Snir O, Hindberg KD, Hveem K,
Brækkan SK and Hansen JB: High microRNA-145 plasma levels are
associated with decreased risk of future incident venous
thromboembolism-The HUNT study. Blood. blood.2023022285. 2024.(Epub
ahead of print). View Article : Google Scholar
|
|
99
|
Anijs RJS, Nguyen YN, Cannegieter SC,
Versteeg HH and Buijs JT: MicroRNAs as prognostic biomarkers for
(cancer-associated) venous thromboembolism. J Thromb Haemost.
21:7–17. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Feng Y, Lei B, Zhang H, Niu L, Li X, Luo X
and Zhang F: Long noncoding RNA TUG1 induces angiogenesis of
endothelial progenitor cells and dissolution of deep vein
thrombosis. Thromb J. 20:542022. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Kuhnert F, Mancuso MR, Hampton J,
Stankunas K, Asano T, Chen CZ and Kuo CJ: Attribution of vascular
phenotypes of the murine Egfl7 locus to the microRNA miR-126.
Development. 135:3989–3993. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Feng Y, Lei B, Zhang H, Niu L, Li X, Luo X
and Zhang F: MicroRNA-136-5p from endothelial progenitor
cells-released extracellular vesicles mediates TXNIP to promote the
dissolution of deep venous thrombosis. Shock. 57:714–721. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Jin QQ, Sun JH, Du QX, Lu XJ, Zhu XY, Fan
HL, Hölscher C and Wang YY: Integrating microRNA and messenger RNA
expression profiles in a rat model of deep vein thrombosis. Int J
Mol Med. 40:1019–1028. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Edelstein LC, McKenzie SE, Shaw C,
Holinstat MA, Kunapuli SP and Bray PF: MicroRNAs in platelet
production and activation. J Thromb Haemost. 11 (Suppl
1):S340–S350. 2013. View Article : Google Scholar
|
|
105
|
Jankowska KI, Sauna ZE and Atreya CD: Role
of microRNAs in hemophilia and thrombosis in humans. Int J Mol Sci.
21:35982020. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Hembrom AA, Srivastava S, Garg I and Kumar
B: MicroRNAs in venous thrombo-embolism. Clin Chim Acta. 504:66–72.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Marques-Rocha JL, Samblas M, Milagro FI,
Bressan J, Martínez JA and Marti A: Noncoding RNAs, cytokines, and
inflammation-related diseases. FASEB J. 29:3595–3611. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Wang X, Sundquist K, Elf JL, Strandberg K,
Svensson PJ, Hedelius A, Palmer K, Memon AA, Sundquist J and Zöller
B: Diagnostic potential of plasma microRNA signatures in patients
with deep-vein thrombosis. Thromb Haemost. 116:328–336. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Monguió-Tortajada M, Gálvez-Montón C,
Bayes-Genis A, Roura S and Borràs FE: Extracellular vesicle
isolation methods: Rising impact of size-exclusion chromatography.
Cell Mol Life Sci. 76:2369–2382. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Felekkis K and Papaneophytou C: Challenges
in using circulating Micro-RNAs as biomarkers for cardiovascular
diseases. Int J Mol Sci. 21:5612020. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
He Y, Lin J, Kong D, Huang M, Xu C, Kim
TK, Etheridge A, Luo Y, Ding Y and Wang K: Current state of
circulating MicroRNAs as cancer biomarkers. Clin Chem.
61:1138–1155. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Ban E and Song EJ: Considerations and
suggestions for the reliable analysis of miRNA in plasma using
qRT-PCR. Genes (Basel). 13:3282022. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Masubuchi T, Endo M, Iizuka R, Iguchi A,
Yoon DH, Sekiguchi T, Qi H, Iinuma R, Miyazono Y, Shoji S, et al:
Construction of integrated gene logic-chip. Nat Nanotechnol.
13:933–940. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Andrews WJ, Brown ED, Dellett M, Hogg RE
and Simpson DA: Rapid quantification of microRNAs in plasma using a
fast real-time PCR system. Biotechniques. 58:244–252. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Chandrasekaran AR, Punnoose JA, Zhou L,
Dey P, Dey BK and Halvorsen K: DNA nanotechnology approaches for
microRNA detection and diagnosis. Nucleic Acids Res.
47:10489–10505. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Qin J, Liang H, Shi D, Dai J, Xu Z, Chen
D, Chen X and Jiang Q: A panel of microRNAs as a new biomarkers for
the detection of deep vein thrombosis. J Thromb Thrombolysis.
39:215–221. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Xu L, Ji C, Miao X, Ge J, Li F and Xu C:
Combination of circulating miR-125a-5p, miR-223-3p and D-dimer as a
novel biomarker for deep vein thrombosis. Am J Med Sci.
364:601–611. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Xie X, Liu C, Lin W, Zhan B, Dong C, Song
Z, Wang S, Qi Y, Wang J and Gu Z: Deep vein thrombosis is
accurately predicted by comprehensive analysis of the levels of
microRNA-96 and plasma D-dimer. Exp Ther Med. 12:1896–1900. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Jiang Z, Ma J, Wang Q, Wu F, Ping J and
Ming L: Combination of circulating miRNA-320a/b and D-dimer
improves diagnostic accuracy in deep vein thrombosis patients. Med
Sci Monit. 24:2031–2037. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Sun LL, Liu Z, Ran F, Huang D, Zhang M, Li
XQ and Li WD: Non-coding RNAs regulating endothelial progenitor
cells for venous thrombosis: Promising therapy and innovation. Stem
Cell Res Ther. 15:72024. View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Gareri C, De Rosa S and Indolfi C:
MicroRNAs for restenosis and thrombosis after vascular injury. Circ
Res. 118:1170–1184. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Lu Y, Thavarajah T, Gu W, Cai J and Xu Q:
Impact of miRNA in atherosclerosis. Arterioscler Thromb Vasc Biol.
38:e159–e170. 2018. View Article : Google Scholar : PubMed/NCBI
|