Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
June-2024 Volume 29 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
June-2024 Volume 29 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Advances in microRNA regulation of deep vein thrombosis through venous vascular endothelial cells (Review)

  • Authors:
    • Chucun Fang
    • Feng Huang
    • Mengting Yao
    • Zilong Wang
    • Jiacheng Ma
    • Dongwen Wu
    • Tianting Guo
    • Fei Zhang
    • Jianwen Mo
  • View Affiliations / Copyright

    Affiliations: The First Clinical Medical College, Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China, College of Nursing, Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China, Department of Orthopedics, Ganzhou Municipal Hospital, Ganzhou, Jiangxi 341000, P.R. China, Department of Orthopedics, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
    Copyright: © Fang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 96
    |
    Published online on: April 9, 2024
       https://doi.org/10.3892/mmr.2024.13220
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Deep vein thrombosis (DVT) is a prevalent clinical venous thrombotic condition that often manifests independently or in conjunction with other ailments. Thrombi have the propensity to dislodge into the circulatory system, giving rise to complications such as pulmonary embolism, thereby posing a significant risk to the patient. Virchow proposed that blood stagnation, alterations in the vessel wall and hypercoagulation are primary factors contributing to the development of venous thrombosis. Vascular endothelial cells (VECs) constitute the initial barrier to the vascular wall and are a focal point of ongoing research. These cells exert diverse stimulatory effects on the bloodstream and secrete various regulatory factors that uphold the dynamic equilibrium between the coagulation and anticoagulation processes. MicroRNAs (miRNAs) represent a class of non‑coding RNAs present in eukaryotes, characterized by significant genetic and evolutionary conservation and displaying high spatiotemporal expression specificity. Typically ranging from 20 to 25 bases in length, miRNAs can influence downstream gene transcription through RNA interference or by binding to specific mRNA sites. Consequently, advancements in understanding the molecular mechanisms of miRNAs, including their functionalities, involve modulation of vascular‑associated processes such as cell proliferation, differentiation, secretion of inflammatory factors, migration, apoptosis and vascular remodeling regeneration. miRNAs play a substantial role in DVT formation via venous VECs. In the present review, the distinct functions of various miRNAs in endothelial cells are outlined and recent progress in comprehending their role in the pathogenesis and clinical application of DVT is elucidated.
View Figures

Figure 1

View References

1 

Bartel DP: Metazoan MicroRNAs. Cell. 173:20–51. 2018. View Article : Google Scholar : PubMed/NCBI

2 

Matsuyama H and Suzuki HI: Systems and synthetic microRNA biology: From biogenesis to disease pathogenesis. Int J Mol Sci. 21:1322019. View Article : Google Scholar : PubMed/NCBI

3 

Mohr AM and Mott JL: Overview of microRNA biology. Semin Liver Dis. 35:3–11. 2015. View Article : Google Scholar : PubMed/NCBI

4 

Thamotharan S, Chu A, Kempf K, Janzen C, Grogan T, Elashoff DA and Devaskar SU: Differential microRNA expression in human placentas of term intra-uterine growth restriction that regulates target genes mediating angiogenesis and amino acid transport. PLoS One. 12:e01764932017. View Article : Google Scholar : PubMed/NCBI

5 

Lucas T, Schäfer F, Müller P, Eming SA, Heckel A and Dimmeler S: Light-inducible antimiR-92a as a therapeutic strategy to promote skin repair in healing-impaired diabetic mice. Nat Commun. 8:151622017. View Article : Google Scholar : PubMed/NCBI

6 

Siomi H and Siomi MC: Posttranscriptional regulation of microRNA biogenesis in animals. Mol Cell. 38:323–332. 2010. View Article : Google Scholar : PubMed/NCBI

7 

Karreth FA, Tay Y, Perna D, Ala U, Tan SM, Rust AG, DeNicola G, Webster KA, Weiss D, Perez-Mancera PA, et al: In vivo identification of tumor-suppressive PTEN ceRNAs in an oncogenic BRAF-induced mouse model of melanoma. Cell. 147:382–395. 2011. View Article : Google Scholar : PubMed/NCBI

8 

Vegter EL, van der Meer P, de Windt LJ, Pinto YM and Voors AA: MicroRNAs in heart failure: From biomarker to target for therapy. Eur J Heart Fail. 18:457–468. 2016. View Article : Google Scholar : PubMed/NCBI

9 

Jung H, Kim JS, Lee KH, Tizaoui K, Terrazzino S, Cargnin S, Smith L, Koyanagi A, Jacob L, Li H, et al: Roles of microRNAs in inflammatory bowel disease. Int J Biol Sci. 17:2112–2123. 2021. View Article : Google Scholar : PubMed/NCBI

10 

Weidner J, Bartel S, Kılıç A, Zissler UM, Renz H, Schwarze J, Schmidt-Weber CB, Maes T, Rebane A, Krauss-Etschmann S and Rådinger M: Spotlight on microRNAs in allergy and asthma. Allergy. 76:1661–1678. 2021. View Article : Google Scholar : PubMed/NCBI

11 

Rodriguez A, Griffiths-Jones S, Ashurst JL and Bradley A: Identification of mammalian microRNA host genes and transcription units. Genome Res. 14:1902–1910. 2004. View Article : Google Scholar : PubMed/NCBI

12 

Lee Y, Jeon K, Lee JT, Kim S and Kim VN: MicroRNA maturation: Stepwise processing and subcellular localization. EMBO J. 21:4663–4670. 2002. View Article : Google Scholar : PubMed/NCBI

13 

Lee Y, Kim M, Han J, Yeom KH, Lee S, Baek SH and Kim VN: MicroRNA genes are transcribed by RNA polymerase II. EMBO J. 23:4051–4060. 2004. View Article : Google Scholar : PubMed/NCBI

14 

Nguyen TA, Jo MH, Choi YG, Park J, Kwon SC, Hohng S, Kim VN and Woo JS: Functional anatomy of the human microprocessor. Cell. 161:1374–1387. 2015. View Article : Google Scholar : PubMed/NCBI

15 

Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J, Lee J, Provost P, Rådmark O, Kim S and Kim VN: The nuclear RNase III Drosha initiates microRNA processing. Nature. 425:415–419. 2003. View Article : Google Scholar : PubMed/NCBI

16 

Ha M and Kim VN: Regulation of microRNA biogenesis. Nature reviews. Nat Rev Mol Cell Biol. 15:509–524. 2014. View Article : Google Scholar : PubMed/NCBI

17 

Iwasaki S, Kobayashi M, Yoda M, Sakaguchi Y, Katsuma S, Suzuki T and Tomari Y: Hsc70/Hsp90 chaperone machinery mediates ATP-dependent RISC loading of small RNA duplexes. Mol Cell. 39:292–299. 2010. View Article : Google Scholar : PubMed/NCBI

18 

Frank F, Sonenberg N and Nagar B: Structural basis for 5′-nucleotide base-specific recognition of guide RNA by human AGO2. Nature. 465:818–822. 2010. View Article : Google Scholar : PubMed/NCBI

19 

Suzuki HI, Katsura A, Yasuda T, Ueno T, Mano H, Sugimoto K and Miyazono K: Small-RNA asymmetry is directly driven by mammalian Argonautes. Nat Struct Mol. 22:512–521. 2015. View Article : Google Scholar : PubMed/NCBI

20 

Khvorova A, Reynolds A and Jayasena SD: Functional siRNAs and miRNAs exhibit strand bias. Cell. 115:209–216. 2003. View Article : Google Scholar : PubMed/NCBI

21 

Schwarz DS, Hutvágner G, Du T, Xu Z, Aronin N and Zamore PD: Asymmetry in the assembly of the RNAi enzyme complex. Cell. 115:199–208. 2003. View Article : Google Scholar : PubMed/NCBI

22 

Chiang HR, Schoenfeld LW, Ruby JG, Auyeung VC, Spies N, Baek D, Johnston WK, Russ C, Luo S, Babiarz JE, et al: Mammalian microRNAs: Experimental evaluation of novel and previously annotated genes. Genes Dev. 24:992–1009. 2010. View Article : Google Scholar : PubMed/NCBI

23 

Giraldez AJ, Mishima Y, Rihel J, Grocock RJ, Van Dongen S, Inoue K, Enright AJ and Schier AF: Zebrafish MiR-430 promotes deadenylation and clearance of maternal mRNAs. Science. 312:75–79. 2006. View Article : Google Scholar : PubMed/NCBI

24 

Baek D, Villen J, Shin C, Camargo FD, Gygi SP and Bartel DP: The impact of microRNAs on protein output. Nature. 455:64–71. 2008. View Article : Google Scholar : PubMed/NCBI

25 

Selbach M, Schwanhäusser B, Thierfelder N, Fang Z, Khanin R and Rajewsky N: Widespread changes in protein synthesis induced by microRNAs. Nature. 455:58–63. 2008. View Article : Google Scholar : PubMed/NCBI

26 

Landgraf P, Rusu M, Sheridan R, Sewer A, Iovino N, Aravin A, Pfeffer S, Rice A, Kamphorst AO, Landthaler M, et al: A mammalian microRNA expression atlas based on small RNA library sequencing. Cell. 129:1401–1414. 2007. View Article : Google Scholar : PubMed/NCBI

27 

Dragomir MP, Knutsen E and Calin GA: SnapShot: Unconventional miRNA functions. Cell. 174:1038–1038.e1. 2018. View Article : Google Scholar : PubMed/NCBI

28 

Neubauer K and Zieger B: Endothelial cells and coagulation. Cell Tissue Res. 387:391–398. 2022. View Article : Google Scholar : PubMed/NCBI

29 

Krüger-Genge A, Blocki A, Franke RP and Jung F: Vascular endothelial cell biology: An update. Int J Mol Sci. 20:44112019. View Article : Google Scholar : PubMed/NCBI

30 

Di Nisio M, van Es N and Büller HR: Deep vein thrombosis and pulmonary embolism. Lancet. 388:3060–3073. 2016. View Article : Google Scholar : PubMed/NCBI

31 

Juchem G, Weiss DR, Knott M, Senftl A, Förch S, Fischlein T, Kreuzer E, Reichart B, Laufer S and Nees S: Regulation of coronary venular barrier function by blood borne inflammatory mediators and pharmacological tools: Insights from novel microvascular wall models. Am J Physiol Heart Circ Physiol. 302:H567–H581. 2012. View Article : Google Scholar : PubMed/NCBI

32 

Moncada S, Gryglewski R, Bunting S and Vane JR: An enzyme isolated from arteries transforms prostaglandin endoperoxides to an unstable substance that inhibits platelet aggregation. Nature. 263:663–665. 1976. View Article : Google Scholar : PubMed/NCBI

33 

Moncada S, Higgs EA and Vane JR: Human arterial and venous tissues generate prostacyclin (prostaglandin x), a potent inhibitor of platelet aggregation. Lancet. 1:18–20. 1977. View Article : Google Scholar : PubMed/NCBI

34 

Cines DB, Pollak ES, Buck CA, Loscalzo J, Zimmerman GA, McEver RP, Pober JS, Wick TM, Konkle BA, Schwartz BS, et al: Endothelial cells in physiology and in the pathophysiology of vascular disorders. Blood. 91:3527–3561. 1998.PubMed/NCBI

35 

Panza JA, Quyyumi AA, Brush JE Jr and Epstein SE: Abnormal endothelium-dependent vascular relaxation in patients with essential hypertension. N Engl J Med. 323:22–27. 1990. View Article : Google Scholar : PubMed/NCBI

36 

Marti CN, Gheorghiade M, Kalogeropoulos AP, Georgiopoulou VV, Quyyumi AA and Butler J: Endothelial dysfunction, arterial stiffness, and heart failure. J Am Coll Cardiol. 60:1455–1469. 2012. View Article : Google Scholar : PubMed/NCBI

37 

Radomski MW, Palmer RM and Moncada S: Endogenous nitric oxide inhibits human platelet adhesion to vascular endothelium. Lancet. 2:1057–1058. 1987. View Article : Google Scholar : PubMed/NCBI

38 

Deaglio S and Robson SC: Ectonucleotidases as regulators of purinergic signaling in thrombosis, inflammation, and immunity. Adv Pharmacol. 61:301–332. 2011. View Article : Google Scholar : PubMed/NCBI

39 

Marcus AJ, Safier LB, Hajjar KA, Ullman HL, Islam N, Broekman MJ and Eiroa AM: Inhibition of platelet function by an aspirin-insensitive endothelial cell ADPase. Thromboregulation by endothelial cells. J Clin Invest. 88:1690–1696. 1991. View Article : Google Scholar : PubMed/NCBI

40 

Fuentes E and Palomo I: Extracellular ATP metabolism on vascular endothelial cells: A pathway with pro-thrombotic and anti-thrombotic molecules. Vascul Pharmacol. 75:1–6. 2015. View Article : Google Scholar : PubMed/NCBI

41 

Esmon CT: Structure and functions of the endothelial cell protein C receptor. Crit Care Med. 32 (Suppl 5):S298–S301. 2004. View Article : Google Scholar : PubMed/NCBI

42 

Giri H, Panicker SR, Cai X, Biswas I, Weiler H and Rezaie AR: Thrombomodulin is essential for maintaining quiescence in vascular endothelial cells. Proc Natl Acad Sci USA. 118:e20222481182021. View Article : Google Scholar : PubMed/NCBI

43 

Iba T and Levy JH: Inflammation and thrombosis: Roles of neutrophils, platelets and endothelial cells and their interactions in thrombus formation during sepsis. J Thromb Haemost. 16:231–241. 2018. View Article : Google Scholar : PubMed/NCBI

44 

Griffin JH, Evatt B, Zimmerman TS, Kleiss AJ and Wideman C: Deficiency of protein C in congenital thrombotic disease. J Clin Invest. 68:1370–1373. 1981. View Article : Google Scholar : PubMed/NCBI

45 

Ofosu FA, Modi GJ, Smith LM, Cerskus AL, Hirsh J and Blajchman MA: Heparan sulfate and dermatan sulfate inhibit the generation of thrombin activity in plasma by complementary pathways. Blood. 64:742–747. 1984. View Article : Google Scholar : PubMed/NCBI

46 

Mann KG, Butenas S and Brummel K: The dynamics of thrombin formation. Arterioscler Thromb Vasc Biol. 23:17–25. 2003. View Article : Google Scholar : PubMed/NCBI

47 

Loskutoff DJ and Edgington TE: Synthesis of a fibrinolytic activator and inhibitor by endothelial cells. Proc Natl Acad Sci USA. 74:3903–3907. 1977. View Article : Google Scholar : PubMed/NCBI

48 

Huber D, Cramer EM, Kaufmann JE, Meda P, Massé JM, Kruithof EK and Vischer UM: Tissue-type plasminogen activator (t-PA) is stored in Weibel-Palade bodies in human endothelial cells both in vitro and in vivo. Blood. 99:3637–3645. 2002. View Article : Google Scholar : PubMed/NCBI

49 

Henderson SJ, Weitz JI and Kim PY: Fibrinolysis: Strategies to enhance the treatment of acute ischemic stroke. J Thromb Haemost. 16:1932–1940. 2018. View Article : Google Scholar : PubMed/NCBI

50 

Levi M and van der Poll T: Coagulation and sepsis. Thromb Res. 149:38–44. 2017. View Article : Google Scholar : PubMed/NCBI

51 

Levi M and van der Poll T: Inflammation and coagulation. Crit Care Med. 38 (Suppl 2):S26–S34. 2010. View Article : Google Scholar : PubMed/NCBI

52 

Mackman N, Tilley RE and Key NS: Role of the extrinsic pathway of blood coagulation in hemostasis and thrombosis. Arterioscler Thromb Vasc Biol. 27:1687–1693. 2007. View Article : Google Scholar : PubMed/NCBI

53 

Zelaya H, Rothmeier AS and Ruf W: Tissue factor at the crossroad of coagulation and cell signaling. J Thromb Haemost. 16:1941–1952. 2018. View Article : Google Scholar : PubMed/NCBI

54 

Sun LL, Li WD, Lei FR and Li XQ: The regulatory role of microRNAs in angiogenesis-related diseases. J Cell Mol Med. 22:4568–4587. 2018. View Article : Google Scholar : PubMed/NCBI

55 

Zhou DM, Sun LL, Zhu J, Chen B, Li XQ and Li WD: MiR-9 promotes angiogenesis of endothelial progenitor cell to facilitate thrombi recanalization via targeting TRPM7 through PI3K/Akt/autophagy pathway. J Cell Mol Med. 24:4624–4632. 2020. View Article : Google Scholar : PubMed/NCBI

56 

Wang J, Xu X, Li P, Zhang B and Zhang J: HDAC3 protects against atherosclerosis through inhibition of inflammation via the microRNA-19b/PPARγ/NF-κB axis. Atherosclerosis. 323:1–12. 2021. View Article : Google Scholar : PubMed/NCBI

57 

Yu J, Jin Y, Xu C, Fang C, Zhang Z, Chen L and Xu G: Downregulation of miR-125a-5p promotes endothelial progenitor cell migration and angiogenesis and alleviates deep vein thrombosis in mice via upregulation of MCL-1. Mol Biotechnol. 65:1664–1678. 2023. View Article : Google Scholar : PubMed/NCBI

58 

Zhu J, Sun LL, Li WD and Li XQ: Clarification of the role of miR-9 in the angiogenesis, migration, and autophagy of endothelial progenitor cells through RNA sequence analysis. Cell Transplant. 29:9636897209639362020. View Article : Google Scholar : PubMed/NCBI

59 

Liang HZ, Li SF, Zhang F, Wu MY, Li CL, Song JX, Lee C and Chen H: Effect of endothelial microparticles induced by hypoxia on migration and angiogenesis of human umbilical vein endothelial cells by delivering MicroRNA-19b. Chin Med J (Engl). 131:2726–2733. 2018. View Article : Google Scholar : PubMed/NCBI

60 

Lou Z, Ma H, Li X, Zhang F, Du K and Wang B: Hsa_circ_0001020 accelerates the lower extremity deep vein thrombosis via sponging miR-29c-3p to promote MDM2 expression. Thromb Res. 211:38–48. 2022. View Article : Google Scholar : PubMed/NCBI

61 

Meng Q, Wang W, Yu X, Li W, Kong L, Qian A, Li C and Li X: Upregulation of MicroRNA-126 contributes to endothelial progenitor cell function in deep vein thrombosis via its target PIK3R2. J Cell Biochem. 116:1613–1623. 2015. View Article : Google Scholar : PubMed/NCBI

62 

Zhang W, Chen P, Zong H, Ding Y and Yan R: MiR-143-3p targets ATG2B to inhibit autophagy and promote endothelial progenitor cells tube formation in deep vein thrombosis. Tissue Cell. 67:1014532020. View Article : Google Scholar : PubMed/NCBI

63 

Wang W, Zhu X, Du X, Xu A, Yuan X, Zhan Y, Liu M and Wang S: MiR-150 promotes angiogensis and proliferation of endothelial progenitor cells in deep venous thrombosis by targeting SRCIN1. Microvasc Res. 123:35–41. 2019. View Article : Google Scholar : PubMed/NCBI

64 

Du X, Hu N, Yu H, Hong L, Ran F, Huang D, Zhou M, Li C and Li X: miR-150 regulates endothelial progenitor cell differentiation via Akt and promotes thrombus resolution. Stem Cell Res Ther. 11:3542020. View Article : Google Scholar : PubMed/NCBI

65 

Wang W, Li C, Li W, Kong L, Qian A, Hu N, Meng Q and Li X: MiR-150 enhances the motility of EPCs in vitro and promotes EPCs homing and thrombus resolving in vivo. Thromb Res. 133:590–598. 2014. View Article : Google Scholar : PubMed/NCBI

66 

Sun LL, Xiao L, Du XL, Hong L, Li CL, Jiao J, Li WD and Li XQ: MiR-205 promotes endothelial progenitor cell angiogenesis and deep vein thrombosis recanalization and resolution by targeting PTEN to regulate Akt/autophagy pathway and MMP2 expression. J Cell Mol Med. 23:8493–8504. 2019. View Article : Google Scholar : PubMed/NCBI

67 

Ai P, Shen B, Pan H, Chen K, Zheng J and Liu F: MiR-411 suppressed vein wall fibrosis by downregulating MMP-2 via targeting HIF-1α. J Thromb Thrombolysis. 45:264–273. 2018. View Article : Google Scholar : PubMed/NCBI

68 

Li WD, Zhou DM, Sun LL, Xiao L, Liu Z, Zhou M, Wang WB and Li XQ: LncRNA WTAPP1 promotes migration and angiogenesis of endothelial progenitor cells via MMP1 through MicroRNA 3120 and Akt/PI3K/autophagy pathways. Stem Cells. 36:1863–1874. 2018. View Article : Google Scholar : PubMed/NCBI

69 

Li Z and Ni J: Role of microRNA-26a in the diagnosis of lower extremity deep vein thrombosis in patients with bone trauma. Exp Ther Med. 14:5069–5074. 2017.PubMed/NCBI

70 

Sun S, Chai S, Zhang F and Lu L: Overexpressed microRNA-103a-3p inhibits acute lower-extremity deep venous thrombosis via inhibition of CXCL12. IUBMB Life. 72:492–504. 2020. View Article : Google Scholar : PubMed/NCBI

71 

Lu J, Fang Q and Ge X: Role and mechanism of mir-5189-3p in deep vein thrombosis of lower extremities. Ann Vasc Surg. 77:288–295. 2021. View Article : Google Scholar : PubMed/NCBI

72 

Qin JZ, Wang SJ and Xia C: microRNAs regulate nitric oxide release from endothelial cells by targeting NOS3. J Thromb Thrombolysis. 46:275–282. 2018. View Article : Google Scholar : PubMed/NCBI

73 

Yang B and Zhang Z: Suppression of long intergenic non-protein coding RNA 1123 constrains lower extremity deep vein thrombosis via microRNA-125a-3p to target interleukin 1 receptor type 1. Bioengineered. 13:13452–13461. 2022. View Article : Google Scholar : PubMed/NCBI

74 

Ou M, Hao S, Chen J, Zhao S, Cui S and Tu J: Downregulation of interleukin-6 and C-reactive protein underlies a novel inhibitory role of microRNA-136-5p in acute lower extremity deep vein thrombosis. Aging (Albany NY). 12:21076–21090. 2020. View Article : Google Scholar : PubMed/NCBI

75 

Du X, Hong L, Sun L, Sang H, Qian A, Li W, Zhuang H, Liang H, Song D, Li C, et al: miR-21 induces endothelial progenitor cells proliferation and angiogenesis via targeting FASLG and is a potential prognostic marker in deep venous thrombosis. J Transl Med. 17:2702019. View Article : Google Scholar : PubMed/NCBI

76 

Wang W, Yuan X, Xu A, Zhu X, Zhan Y, Wang S and Liu M: Human cancer cells suppress behaviors of endothelial progenitor cells through miR-21 targeting IL6R. Microvasc Res. 120:21–28. 2018. View Article : Google Scholar : PubMed/NCBI

77 

Mo J, Zhang D and Yang R: MicroRNA-195 regulates proliferation, migration, angiogenesis and autophagy of endothelial progenitor cells by targeting GABARAPL1. Biosci Rep. 36:e003962016. View Article : Google Scholar : PubMed/NCBI

78 

Ding M, Chi G, Li F, Wang B, Shao C and Song W: Up-regulated miR-204-5p promoted the migration, invasion, and angiogenesis of endothelial progenitor cells to enhance the thrombolysis of rats with deep venous thrombosis by targeting SPRED1. Exp Cell Res. 411:1129852022. View Article : Google Scholar : PubMed/NCBI

79 

Pan Z, Zhang Y, Li C, Yin Y, Liu R, Zheng G, Fan W, Zhang Q, Song Z, Guo Z, et al: MiR-296-5p ameliorates deep venous thrombosis by inactivating S100A4. Exp Biol Med (Maywood). 246:2259–2268. 2021. View Article : Google Scholar : PubMed/NCBI

80 

Pan Z, Chen Q, Ding H and Li H: MicroRNA-342-3p loaded by human umbilical cord mesenchymal stem cells-derived exosomes attenuates deep vein thrombosis by downregulating EDNRA. J Thromb Thrombolysis. 54:411–419. 2022. View Article : Google Scholar : PubMed/NCBI

81 

Yang X, Song Y, Sun Y, Wang M and Xiang Y: Down-regulation of miR-361-5p promotes the viability, migration and tube formation of endothelial progenitor cells via targeting FGF1. Biosci Rep. 40:BSR202005572020. View Article : Google Scholar : PubMed/NCBI

82 

Li HQ, Pan ZY, Yang Z, Zhang DB and Chen Q: Overexpression of MicroRNA-122 resists oxidative stress-induced human umbilical vascular endothelial cell injury by inhibition of p53. Biomed Res Int. 2020:97916082020.PubMed/NCBI

83 

He X, Liu Y, Li Y and Wu K: Long non-coding RNA crnde promotes deep vein thrombosis by sequestering miR-181a-5p away from thrombogenic Pcyox1l. Thromb J. 21:442023. View Article : Google Scholar : PubMed/NCBI

84 

Jin J, Wang C, Ouyang Y and Zhang D: Elevated miR-195-5p expression in deep vein thrombosis and mechanism of action in the regulation of vascular endothelial cell physiology. Exp Ther Med. 18:4617–4624. 2019.PubMed/NCBI

85 

Li Y, Ge J, Yin Y, Yang R, Kong J and Gu J: Upregulated miR-206 aggravates deep vein thrombosis by regulating GJA1-mediated autophagy of endothelial progenitor cells. Cardiovasc Ther. 2022:99663062022. View Article : Google Scholar : PubMed/NCBI

86 

Zhang Y, Zhang Z, Wei R, Miao X, Sun S, Liang G, Chu C, Zhao L, Zhu X, Guo Q, et al: IL (interleukin)-6 contributes to deep vein thrombosis and is negatively regulated by miR-338-5p. Arterioscler Thromb Vasc Biol. 40:323–334. 2020. View Article : Google Scholar : PubMed/NCBI

87 

Wang H, Lin S, Yang Y, Zhao M, Li X and Zhang L: Significant role of long non-coding RNA MALAT1 in deep vein thrombosis via the regulation of vascular endothelial cell physiology through the microRNA-383-5p/BCL2L11 axis. Bioengineered. 13:13728–13738. 2022. View Article : Google Scholar : PubMed/NCBI

88 

Wang P, Dai J and Li D: Peripheral blood levels of miR-448 and SIRT1 in patients with deep venous thrombosis and their relationship. Clin Lab. 68:2022. View Article : Google Scholar

89 

Kong L, Hu N, Du X, Wang W, Chen H, Li W, Wei S, Zhuang H, Li X and Li C: Upregulation of miR-483-3p contributes to endothelial progenitor cells dysfunction in deep vein thrombosis patients via SRF. J Transl Med. 14:232016. View Article : Google Scholar : PubMed/NCBI

90 

Zhu X, Chen B and Xu H: By modulating miR-525-5p/Bax axis, LINC00659 promotes vascular endothelial cell apoptosis. Immun Inflamm Dis. 11:e7642023. View Article : Google Scholar : PubMed/NCBI

91 

Kong L, Du X, Hu N, Li W, Wang W, Wei S, Zhuang H, Li X and Li C: Downregulation of let-7e-5p contributes to endothelial progenitor cell dysfunction in deep vein thrombosis via targeting FASLG. Thromb Res. 138:30–36. 2016. View Article : Google Scholar : PubMed/NCBI

92 

Mulder FI, Horváth-Puhó E, van Es N, van Laarhoven HWM, Pedersen L, Moik F, Ay C, Büller HR and Sørensen HT: Venous thromboembolism in cancer patients: A population-based cohort study. Blood. 137:1959–1969. 2021. View Article : Google Scholar : PubMed/NCBI

93 

Tavares V, Neto BV, Marques IS, Assis J, Pereira D and Medeiros R: Cancer-associated thrombosis: What about microRNAs targeting the tissue factor coagulation pathway? Biochim Biophys Acta Rev Cancer. 1879:1890532024. View Article : Google Scholar : PubMed/NCBI

94 

Lazar S and Goldfinger LE: Platelet microparticles and miRNA transfer in cancer progression: Many targets, modes of action, and effects across cancer stages. Front Cardiovasc Med. 5:132018. View Article : Google Scholar : PubMed/NCBI

95 

Liu S, Guo W, Shi J, Li N, Yu X, Xue J, Fu X, Chu K, Lu C, Zhao J, et al: MicroRNA-135a contributes to the development of portal vein tumor thrombus by promoting metastasis in hepatocellular carcinoma. J Hepatol. 56:389–396. 2012. View Article : Google Scholar : PubMed/NCBI

96 

Oto J, Navarro S, Larsen AC, Solmoirago MJ, Plana E, Hervás D, Fernández-Pardo Á, España F, Kristensen SR, Thorlacius-Ussing O and Medina P: MicroRNAs and neutrophil activation markers predict venous thrombosis in pancreatic ductal adenocarcinoma and distal extrahepatic cholangiocarcinoma. Int J Mol Sci. 21:8402020. View Article : Google Scholar : PubMed/NCBI

97 

Anijs RJS, Laghmani EH, Ünlü B, Kiełbasa SM, Mei H, Cannegieter SC, Klok FA, Kuppen PJK, Versteeg HH and Buijs JT: Tumor-expressed microRNAs associated with venous thromboembolism in colorectal cancer. Res Pract Thromb Haemost. 6:e127492022. View Article : Google Scholar : PubMed/NCBI

98 

Morelli VM, Snir O, Hindberg KD, Hveem K, Brækkan SK and Hansen JB: High microRNA-145 plasma levels are associated with decreased risk of future incident venous thromboembolism-The HUNT study. Blood. blood.2023022285. 2024.(Epub ahead of print). View Article : Google Scholar

99 

Anijs RJS, Nguyen YN, Cannegieter SC, Versteeg HH and Buijs JT: MicroRNAs as prognostic biomarkers for (cancer-associated) venous thromboembolism. J Thromb Haemost. 21:7–17. 2023. View Article : Google Scholar : PubMed/NCBI

100 

Feng Y, Lei B, Zhang H, Niu L, Li X, Luo X and Zhang F: Long noncoding RNA TUG1 induces angiogenesis of endothelial progenitor cells and dissolution of deep vein thrombosis. Thromb J. 20:542022. View Article : Google Scholar : PubMed/NCBI

101 

Kuhnert F, Mancuso MR, Hampton J, Stankunas K, Asano T, Chen CZ and Kuo CJ: Attribution of vascular phenotypes of the murine Egfl7 locus to the microRNA miR-126. Development. 135:3989–3993. 2008. View Article : Google Scholar : PubMed/NCBI

102 

Feng Y, Lei B, Zhang H, Niu L, Li X, Luo X and Zhang F: MicroRNA-136-5p from endothelial progenitor cells-released extracellular vesicles mediates TXNIP to promote the dissolution of deep venous thrombosis. Shock. 57:714–721. 2022. View Article : Google Scholar : PubMed/NCBI

103 

Jin QQ, Sun JH, Du QX, Lu XJ, Zhu XY, Fan HL, Hölscher C and Wang YY: Integrating microRNA and messenger RNA expression profiles in a rat model of deep vein thrombosis. Int J Mol Med. 40:1019–1028. 2017. View Article : Google Scholar : PubMed/NCBI

104 

Edelstein LC, McKenzie SE, Shaw C, Holinstat MA, Kunapuli SP and Bray PF: MicroRNAs in platelet production and activation. J Thromb Haemost. 11 (Suppl 1):S340–S350. 2013. View Article : Google Scholar

105 

Jankowska KI, Sauna ZE and Atreya CD: Role of microRNAs in hemophilia and thrombosis in humans. Int J Mol Sci. 21:35982020. View Article : Google Scholar : PubMed/NCBI

106 

Hembrom AA, Srivastava S, Garg I and Kumar B: MicroRNAs in venous thrombo-embolism. Clin Chim Acta. 504:66–72. 2020. View Article : Google Scholar : PubMed/NCBI

107 

Marques-Rocha JL, Samblas M, Milagro FI, Bressan J, Martínez JA and Marti A: Noncoding RNAs, cytokines, and inflammation-related diseases. FASEB J. 29:3595–3611. 2015. View Article : Google Scholar : PubMed/NCBI

108 

Wang X, Sundquist K, Elf JL, Strandberg K, Svensson PJ, Hedelius A, Palmer K, Memon AA, Sundquist J and Zöller B: Diagnostic potential of plasma microRNA signatures in patients with deep-vein thrombosis. Thromb Haemost. 116:328–336. 2016. View Article : Google Scholar : PubMed/NCBI

109 

Monguió-Tortajada M, Gálvez-Montón C, Bayes-Genis A, Roura S and Borràs FE: Extracellular vesicle isolation methods: Rising impact of size-exclusion chromatography. Cell Mol Life Sci. 76:2369–2382. 2019. View Article : Google Scholar : PubMed/NCBI

110 

Felekkis K and Papaneophytou C: Challenges in using circulating Micro-RNAs as biomarkers for cardiovascular diseases. Int J Mol Sci. 21:5612020. View Article : Google Scholar : PubMed/NCBI

111 

He Y, Lin J, Kong D, Huang M, Xu C, Kim TK, Etheridge A, Luo Y, Ding Y and Wang K: Current state of circulating MicroRNAs as cancer biomarkers. Clin Chem. 61:1138–1155. 2015. View Article : Google Scholar : PubMed/NCBI

112 

Ban E and Song EJ: Considerations and suggestions for the reliable analysis of miRNA in plasma using qRT-PCR. Genes (Basel). 13:3282022. View Article : Google Scholar : PubMed/NCBI

113 

Masubuchi T, Endo M, Iizuka R, Iguchi A, Yoon DH, Sekiguchi T, Qi H, Iinuma R, Miyazono Y, Shoji S, et al: Construction of integrated gene logic-chip. Nat Nanotechnol. 13:933–940. 2018. View Article : Google Scholar : PubMed/NCBI

114 

Andrews WJ, Brown ED, Dellett M, Hogg RE and Simpson DA: Rapid quantification of microRNAs in plasma using a fast real-time PCR system. Biotechniques. 58:244–252. 2015. View Article : Google Scholar : PubMed/NCBI

115 

Chandrasekaran AR, Punnoose JA, Zhou L, Dey P, Dey BK and Halvorsen K: DNA nanotechnology approaches for microRNA detection and diagnosis. Nucleic Acids Res. 47:10489–10505. 2019. View Article : Google Scholar : PubMed/NCBI

116 

Qin J, Liang H, Shi D, Dai J, Xu Z, Chen D, Chen X and Jiang Q: A panel of microRNAs as a new biomarkers for the detection of deep vein thrombosis. J Thromb Thrombolysis. 39:215–221. 2015. View Article : Google Scholar : PubMed/NCBI

117 

Xu L, Ji C, Miao X, Ge J, Li F and Xu C: Combination of circulating miR-125a-5p, miR-223-3p and D-dimer as a novel biomarker for deep vein thrombosis. Am J Med Sci. 364:601–611. 2022. View Article : Google Scholar : PubMed/NCBI

118 

Xie X, Liu C, Lin W, Zhan B, Dong C, Song Z, Wang S, Qi Y, Wang J and Gu Z: Deep vein thrombosis is accurately predicted by comprehensive analysis of the levels of microRNA-96 and plasma D-dimer. Exp Ther Med. 12:1896–1900. 2016. View Article : Google Scholar : PubMed/NCBI

119 

Jiang Z, Ma J, Wang Q, Wu F, Ping J and Ming L: Combination of circulating miRNA-320a/b and D-dimer improves diagnostic accuracy in deep vein thrombosis patients. Med Sci Monit. 24:2031–2037. 2018. View Article : Google Scholar : PubMed/NCBI

120 

Sun LL, Liu Z, Ran F, Huang D, Zhang M, Li XQ and Li WD: Non-coding RNAs regulating endothelial progenitor cells for venous thrombosis: Promising therapy and innovation. Stem Cell Res Ther. 15:72024. View Article : Google Scholar : PubMed/NCBI

121 

Gareri C, De Rosa S and Indolfi C: MicroRNAs for restenosis and thrombosis after vascular injury. Circ Res. 118:1170–1184. 2016. View Article : Google Scholar : PubMed/NCBI

122 

Lu Y, Thavarajah T, Gu W, Cai J and Xu Q: Impact of miRNA in atherosclerosis. Arterioscler Thromb Vasc Biol. 38:e159–e170. 2018. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Fang C, Huang F, Yao M, Wang Z, Ma J, Wu D, Guo T, Zhang F and Mo J: Advances in microRNA regulation of deep vein thrombosis through venous vascular endothelial cells (Review). Mol Med Rep 29: 96, 2024.
APA
Fang, C., Huang, F., Yao, M., Wang, Z., Ma, J., Wu, D. ... Mo, J. (2024). Advances in microRNA regulation of deep vein thrombosis through venous vascular endothelial cells (Review). Molecular Medicine Reports, 29, 96. https://doi.org/10.3892/mmr.2024.13220
MLA
Fang, C., Huang, F., Yao, M., Wang, Z., Ma, J., Wu, D., Guo, T., Zhang, F., Mo, J."Advances in microRNA regulation of deep vein thrombosis through venous vascular endothelial cells (Review)". Molecular Medicine Reports 29.6 (2024): 96.
Chicago
Fang, C., Huang, F., Yao, M., Wang, Z., Ma, J., Wu, D., Guo, T., Zhang, F., Mo, J."Advances in microRNA regulation of deep vein thrombosis through venous vascular endothelial cells (Review)". Molecular Medicine Reports 29, no. 6 (2024): 96. https://doi.org/10.3892/mmr.2024.13220
Copy and paste a formatted citation
x
Spandidos Publications style
Fang C, Huang F, Yao M, Wang Z, Ma J, Wu D, Guo T, Zhang F and Mo J: Advances in microRNA regulation of deep vein thrombosis through venous vascular endothelial cells (Review). Mol Med Rep 29: 96, 2024.
APA
Fang, C., Huang, F., Yao, M., Wang, Z., Ma, J., Wu, D. ... Mo, J. (2024). Advances in microRNA regulation of deep vein thrombosis through venous vascular endothelial cells (Review). Molecular Medicine Reports, 29, 96. https://doi.org/10.3892/mmr.2024.13220
MLA
Fang, C., Huang, F., Yao, M., Wang, Z., Ma, J., Wu, D., Guo, T., Zhang, F., Mo, J."Advances in microRNA regulation of deep vein thrombosis through venous vascular endothelial cells (Review)". Molecular Medicine Reports 29.6 (2024): 96.
Chicago
Fang, C., Huang, F., Yao, M., Wang, Z., Ma, J., Wu, D., Guo, T., Zhang, F., Mo, J."Advances in microRNA regulation of deep vein thrombosis through venous vascular endothelial cells (Review)". Molecular Medicine Reports 29, no. 6 (2024): 96. https://doi.org/10.3892/mmr.2024.13220
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team