Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
June-2024 Volume 29 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
June-2024 Volume 29 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Chromatin looping links gene expression to the assembly of transcription factories (Review)

  • Authors:
    • Bruno Perillo
    • Antimo Migliaccio
    • Gabriella Castoria
  • View Affiliations / Copyright

    Affiliations: Institute for Experimental Endocrinology and Oncology, C.N.R., I‑80131 Naples, Italy, Department of Precision Medicine, Unicampania ‘L. Vanvitelli’, I‑80138 Naples, Italy
    Copyright: © Perillo et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 97
    |
    Published online on: April 9, 2024
       https://doi.org/10.3892/mmr.2024.13221
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Genes are not randomly dispersed within the nuclear space, instead they occupy precise sites either with respect to the nuclear lamina as well as to each other. This observation stands at the basis of the today well accepted concept of nuclear territories where any chromosome shows reproducible spatial connections with a selection of others in a general picture that meets a functional criterion where genes that answer the same stimuli are grouped in the same sites. In fact, transcription is not visible widely dispersed throughout the nucleus but is gathered in several ‘granules’, called transcription factories that accommodates ~10 genes concurrently transcribed. This dynamic behavior of chromosomes is allowed by changes in chromatin plasticity that are governed by several classes of proteins that either modify its building or induce post‑translational modifications in the protein component of nucleosomes, triggering formation of chromosome loops that modify the location of specific sites along the DNA strand. For example, transcription associated to nuclear receptors benefits of the generation of nuclear ROS that induce nicks following activation of the DNA repair apparatus that enhance helix unfolding and chromosome bridging. In the present review, the role that protocols facing elucidation of chromosome architecture are playing and will play in the near future were highlighted in order to investigate composition of the transcription factories assembled in response of a specific trigger: The estrogen‑sensitive transcription was cited but the authors are convinced that the same portrait will be observed with a multitude of (if not all) other stimuli.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

View References

1 

Fritz AJ, Sehgal N, Piss A, Xu J and Berezney R: Chromosome territories and the global regulation of the genome. Genes Chromosomes Cancer. 58:407–426. 2019. View Article : Google Scholar : PubMed/NCBI

2 

Rajapakse I, Perlman MD, Scalzo D, Kooperberg C, Groudine M and Kosak ST: The emergence of lineage-specific chromosomal topologies from coordinate gene regulation. Proc Natl Acad Sci USA. 106:6679–6684. 2009. View Article : Google Scholar : PubMed/NCBI

3 

Cremer T, Cremer M, Dietzel S, Müller S, Solovei I and Fakan S: Chromosome territories-a functional nuclear landscape. Curr Opin Cell Biol. 18:307–316. 2006. View Article : Google Scholar : PubMed/NCBI

4 

Chuang CH, Carpenter AE, Fuchsova B, Johnson T, de Lanerolle P and Belmont AS: Long-range directional movement of an interphase chromosome site. Curr Biol. 18:825–831. 2006. View Article : Google Scholar : PubMed/NCBI

5 

Xu M and Cook PR: Similar active genes cluster in specialized transcription factories. J Cell Biol. 181:615–623. 2008. View Article : Google Scholar : PubMed/NCBI

6 

Sutherland H and Bickmore WA: Transcription factories: Gene expression in unions? Nat Rev Genet. 10:457–466. 2009. View Article : Google Scholar : PubMed/NCBI

7 

Pombo A, Hollinshead M and Cook PR: Bridging the resolution gap: Imaging the same transcription factories in cryosections by light and electron microscopy. J Histochem Cytochem. 47:471–480. 1999. View Article : Google Scholar : PubMed/NCBI

8 

Faro-Trindade I and Cook PR: A conserved organization of transcription during embryonic stem cell differentiation and in cells with high C value. Mol Biol Cell. 17:2910–2920. 2006. View Article : Google Scholar : PubMed/NCBI

9 

de Laat W and Grosveld F: Spatial organization of gene expression: The active chromatin hub. Chromosome Res. 11:447–459. 2003. View Article : Google Scholar : PubMed/NCBI

10 

Papantonis A and Cook PR: Transcription factories: Genome organization and gene regulation. Chem Rev. 13:8683–8705. 2013. View Article : Google Scholar : PubMed/NCBI

11 

Osborne CS, Chakalova L, Brown KE, Carter D, Horton A, Debrand E, Goyenechea B, Mitchell JA, Lopes S, Reik W and Fraser P: Active genes dynamically colocalize to shared sites of ongoing transcription. Nat Genet. 36:1065–1071. 2004. View Article : Google Scholar : PubMed/NCBI

12 

Faro-Trindade I and Cook PR: Transcription factories: Structures conserved during differentiation and evolution. Biochem Soc Trans. 34:1133–1137. 2006. View Article : Google Scholar : PubMed/NCBI

13 

Larkin JD, Cook PR and Papantonis A: Dynamic reconfiguration of long human genes during one transcription cycle. Mol Cell Biol. 32:2738–2747. 2012. View Article : Google Scholar : PubMed/NCBI

14 

Mahy NL, Perry PE and Bickmore WA: Gene density and transcription influence the localization of chromatin outside of chromosome territories detectable by FISH. J Cell Biol. 159:753–763. 2002. View Article : Google Scholar : PubMed/NCBI

15 

Chambeyron S and Bickmore WA: Chromatin decondensation and nuclear reorganization of the HoxB locus upon induction of transcription. Genes Dev. 18:1119–1130. 2004. View Article : Google Scholar : PubMed/NCBI

16 

Krivega I and Dean A: Enhancer and promoter interactions-long distance calls. Curr Opin Genet Dev. 22:1–7. 2012. View Article : Google Scholar

17 

Stadhouders R, Thongjuea S, Andrieu-Soler C, Palstra RJ, Bryne JC, van den Heuvel A, Stevens M, de Boer E, Kockx C, van der Sloot A, et al: Dynamic long-range chromatin interactions control Myb proto-oncogene transcription during erythroid development. EMBO J. 31:986–999. 2012. View Article : Google Scholar : PubMed/NCBI

18 

Kagey MH, Newman JJ, Bilodeau S, Zhan Y, Orlando DA, van Berkum NL, Ebmeier CC, Goossens J, Rahl PB, Levine SS, et al: Mediator and cohesion connect gene expression and chromatin architecture. Nature. 467:430–435. 2010. View Article : Google Scholar : PubMed/NCBI

19 

Zhou Q, Yu M, Tirado-Magallanes M, Li B, Kong L, Guo M, Tan ZH, Lee S, Chai L, Numata A, et al: ZNF143 mediates CTCF-bound promoter-enhancer loops required for murine hematopoietic stem and progenitor cell function. Nat Commun. 12:432021. View Article : Google Scholar : PubMed/NCBI

20 

Weintraub AS, Li CH, Zamudio AV, Sigova AA, Hannett NM, Day DS, Abraham BJ, Cohen MA, Nabet B, Buckley DL, et al: YY1 is a structural regulator of enhancer-promoter loops. Cell. 171:1573–1588. 2017. View Article : Google Scholar : PubMed/NCBI

21 

Jiao W, Chen Y, Song H, Li D, Mei H, Yang F, Fang E, Wang X, Huang K, Zheng L and Tong Q: HPSE enhancer RNA promotes cancer progression through driving chromatin looping and regulating hnRNPU/p300/EGR1/HPSE axis. Oncogene. 36:2728–2745. 2018. View Article : Google Scholar : PubMed/NCBI

22 

Hsieh CL, Fei T, Chen Y, Li T, Gao Y, Wang X, Sun T, Sweeney CJ, Lee GS, Chen S, et al: Enhancer RNAs participate in androgen receptor-driven looping that selectively enhances gene activation. Proc Natl Acad Sci USA. 111:7319–7324. 2014. View Article : Google Scholar : PubMed/NCBI

23 

Tan SH, Leong WZ, Ngoc PCT, Tan TK, Bertulfo FC, Lim MC, An O, Li Z, Yeoh AEJ, Fullwood MJ, et al: The enhancer RNA ARIEL activates the oncogenic transcriptional program in T-cell acute lymphoblastic leukemia. Blood. 134:239–251. 2019. View Article : Google Scholar : PubMed/NCBI

24 

He X, Khan AU, Cheng H, Pappas DL Jr, Hampsey M and Moore CL: Functional interactions between the transcription and the mRNA 3′ end processing machineries mediated by Ssu72 and Sub1. Genes Dev. 17:1030–1042. 2003. View Article : Google Scholar : PubMed/NCBI

25 

Deng W, Lee J, Wang H, Miller J, Reik A, Gregory PD, Dean A and Blobel GA: Controlling long-range genomic interactions at a native locus by targeted tethering of a looping factor. Cell. 149:1233–1244. 2012. View Article : Google Scholar : PubMed/NCBI

26 

Chubb JR and Bickmore WA: Considering nuclear compartmentalization in the light of nuclear dynamics. Cell. 112:403–406. 2003. View Article : Google Scholar : PubMed/NCBI

27 

Chubb JR, Boyle S, Perry P and Bickmore WA: Chromatin motion is constrained by association with nuclear compartments in human cells. Curr Biol. 12:439–445. 2002. View Article : Google Scholar : PubMed/NCBI

28 

Meshorer E, Yellajoshula D, George E, Scambler PJ, Brown DT and Misteli T: Hyper-dynamic plasticity of chromatin proteins in pluripotent embryonic stem cells. Dev Cell. 10:105–116. 2006. View Article : Google Scholar : PubMed/NCBI

29 

Turner BM: Open chromatin and hypertranscription in embryonic stem cells. Cell Stem Cell. 2:408–410. 2008. View Article : Google Scholar : PubMed/NCBI

30 

Chang HH, Hemberg M, Barahona M, Ingber DE and Huang S: Transcriptome-wide noise controls lineage choice in mammalian progenitor cells. Nature. 453:544–547. 2008. View Article : Google Scholar : PubMed/NCBI

31 

Guelen L, Pagie L, Brasset E, Meuleman W, Faza MB, Talhout W, Eussen BH, de Klein A, Wesels L, de Laat W and van Steensel B: Domain organization of human chromosomes revealed by mapping of nuclear lamina interactions. Nature. 453:948–951. 2008. View Article : Google Scholar : PubMed/NCBI

32 

Solovei I, Kreysing M, Lanctôt C, Kösem S, Peichl L, Cremer T, Guck J and Joffe B: Nuclear architecture of rod photoreceptor cells adapts to vision in mammalian evolution. Cell. 137:356–368. 2009. View Article : Google Scholar : PubMed/NCBI

33 

Nitzsche A, Paszkowski-Rogacz M, Matarese F, Janssen-Megens EM, Hubner NC, Schulz H, de Vries I, Ding L, Huebner N, Mann M, et al: RAD21 cooperates with pluripotency transcription factors in the maintenance of embryonic stem cell identity. PLoS One. 6:e194702011. View Article : Google Scholar : PubMed/NCBI

34 

Bertolini JA, Favaro R, Zhu Y, Pagin M, Ngan CY, Wong CH, Tjong H, Vermunt MW, Martynoga B, Barone C, et al: Mapping the global chromatin connectivity network for Sox2 function in neural stem cell maintenance. Cell Stem Cell. 24:462–476. 2019. View Article : Google Scholar : PubMed/NCBI

35 

Drissen R, Palstra RJ, Gillemans N, Splinter E, Grosveld F, Philipsen S and de Laat W: The active spatial organization of the beta-globin locus requires the transcription factor EKLF. Genes Dev. 18:2485–2490. 2004. View Article : Google Scholar : PubMed/NCBI

36 

Magli A, Baik J, Pota P, Cordero CO, Kwak IY, Garry DJ, Love PE, Dynlacht BD and Perlingeiro RCR: Pax3 cooperates with Ldb1 to direct local chromosome architecture during myogenic lineage specification. Nat Commun. 10:23162019. View Article : Google Scholar : PubMed/NCBI

37 

Dall'Agnese A, Caputo L, Nicoletti C, di Iulio J, Schmitt A, Gatto S, Diao Y, Ye Z, Forcato M, Perera R, et al: Transcription factor-directed re-wiring of chromatin architecture for somatic cell nuclear reprogramming toward trans-differentiation. Mol Cell. 76:453–472. 2019. View Article : Google Scholar : PubMed/NCBI

38 

Johanson TM, Lun ATL, Coughlan HD, Tan T, Smyth GK, Nutt SL and Allan RS: Transcription-factor-mediated supervision of global genome architecture maintains B cell identity. Nat Immunol. 19:1257–1264. 2018. View Article : Google Scholar : PubMed/NCBI

39 

Sołtys K and Ozyhar A: Transcription regulators and membrane less organelles challenges to investigate them. Int J Mol Sci. 22:127582021. View Article : Google Scholar : PubMed/NCBI

40 

Shrinivas K, Sabari BR, Coffey EL, Klein IA, Boija A, Zamudio AV, Schuijers J, Hannett NM, Sharp PA, Young RA and Chakraborty AK: Enhancer features that drive formation of transcriptional condensates. Mol Cell. 75:549–561.e7. 2019. View Article : Google Scholar : PubMed/NCBI

41 

Pederson T: The nucleolus. Cold Spring Harbor Perspect Biol. 3:a0003682011. View Article : Google Scholar

42 

Gondor A and Ohlsson R: Chromosome crosstalk in three dimensions. Nature. 461:212–217. 2009. View Article : Google Scholar : PubMed/NCBI

43 

Pujadas E and Feinberg AP: Regulated noise in the epigenetic landscape of development and disease. Cell. 148:1123–1131. 2012. View Article : Google Scholar : PubMed/NCBI

44 

Osborne CS, Chakalova L, Mitchell JA, Horton A, Wood AL, Bolland DJ, Corcoran AE and Fraser P: Myc dynamically and preferentially relocates to a transcription factory occupied by Igh. PLoS Biol. 5:e1922007. View Article : Google Scholar : PubMed/NCBI

45 

Misteli T: Higher-order genome organization in human disease. Cold Spring Harb Perspect Biol. 2:a0007942010. View Article : Google Scholar : PubMed/NCBI

46 

Kohwi-Shigematsu T, Poterlowicz K, Ordinario E, Han HJ, Botchkarev V and Kohwi Y: Genome organizing function of SATB1 in tumor progression. Semin Cancer Biol. 23:72–79. 2013. View Article : Google Scholar : PubMed/NCBI

47 

Wijchers PJ and de Laat W: Genome organization influences partner selection for chromosomal rearrangements. Trends Genet. 27:63–71. 2011. View Article : Google Scholar : PubMed/NCBI

48 

De S and Michor F: DNA replication timing and long-range DNA interactions predict mutational landscapes of cancer genomes. Nat Biotechnol. 29:1103–1108. 2011. View Article : Google Scholar : PubMed/NCBI

49 

Fudenberg G, Getz G, Meyerson M and Mirny LA: High order chromatin architecture shapes the landscape of chromosomal alterations in cancer. Nat Biotechnol. 29:1109–1113. 2011. View Article : Google Scholar : PubMed/NCBI

50 

Strahl BD and Allis CD: The language of covalent histone modifications. Nature. 403:41–45. 2000. View Article : Google Scholar : PubMed/NCBI

51 

Berger SL: The complex language of chromatin regulation during transcription. Nature. 447:407–412. 2007. View Article : Google Scholar : PubMed/NCBI

52 

Kouzarides T: Chromatin modifications and their functions. Cell. 128:693–705. 2007. View Article : Google Scholar : PubMed/NCBI

53 

Peters AH, Kubicek S, Mechtler K, O'Sullivan RJ, Derijck AAH, Perez-Burgos L, Kohlmaier A, Opravil S, Tachibana M, Shinkai Y, et al: Partitioning and plasticity of repressive histone methylation states in mammalian chromatin. Mol Cell. 12:1577–1589. 2003. View Article : Google Scholar : PubMed/NCBI

54 

Rice JC, Briggs SD, Ueberheide B, Barber CM, Shabanowitz J, Hunt DF, Shinkai Y and Allis CD: Histone methyltransferases direct different degrees of methylation to define distinct chromatin domains. Mol Cell. 12:1591–1598. 2003. View Article : Google Scholar : PubMed/NCBI

55 

Closs PAC, Christensen J, Agger K and Helin K: Erasing the methyl mark: Histone demethylases at the center of cellular differentiation and disease. Genes Dev. 22:1115–1140. 2008. View Article : Google Scholar : PubMed/NCBI

56 

Perillo B, Ombra MN, Bertoni A, Cuozzo C, Sacchetti S, Sasso A, Chiariotti L, Malorni A, Abbondanza C and Avvedimento EV: DNA oxidation as triggered by H3K9me2 demethylation drives estrogen-induced gene expression. Science. 319:202–206. 2008. View Article : Google Scholar : PubMed/NCBI

57 

Papantonis A and Cook PR: Genome architecture and the role of transcription. Curr Opin Cell Biol. 22:271–276. 2010. View Article : Google Scholar : PubMed/NCBI

58 

Dekker J, Rippe K, Dekker M and Kleckner N: Capturing chromosome conformation. Science. 295:1306–1311. 2002. View Article : Google Scholar : PubMed/NCBI

59 

Simonis M, Kooren J and de Laat W: An evaluation of 3C-based methods to capture DNA interactions. Nat Methods. 4:895–901. 2007. View Article : Google Scholar : PubMed/NCBI

60 

Murrell A, Heeson S and Reik W: Interaction between differentially methylated regions partitions the imprinted genes Igf2 and H19 into parent-specific chromatin loops. Nat Genet. 36:889–893. 2004. View Article : Google Scholar : PubMed/NCBI

61 

Gheldof N, Smith EM, Tabuchi TM, Koch CM, Dunham I, Stamatoyannopoulos JA and Dekker J: Cell-type-specific long-range looping interactions identify distant regulatory elements of the CFTR gene. Nucleic Acids Res. 38:4325–4336. 2010. View Article : Google Scholar : PubMed/NCBI

62 

Dekker J, Marti-Renom MA and Mirny LA: Exploring the three-dimensional organization of genomes: Interpreting chromatin interaction data. Nat Rev Genet. 14:390–403. 2013. View Article : Google Scholar : PubMed/NCBI

63 

O'Sullivan JM, Tan-Wong SM, Morillon A, Lee B, Coles J, Mellor J and Proudfoot NJ: Gene loops juxtapose promoters and terminators in yeast. Nat Genet. 36:1014–1018. 2004. View Article : Google Scholar : PubMed/NCBI

64 

Bentley DL: Rules of engagement: Co-transcriptional recruitment of pre-mRNA processing factors. Curr Opin Cell Biol. 17:251–256. 2005. View Article : Google Scholar : PubMed/NCBI

65 

Déjardin J and Kingston RE: Purification of proteins associated with specific genomic loci. Cell. 136:175–186. 2009. View Article : Google Scholar : PubMed/NCBI

66 

Abbondanza C, De Rosa C, Ombra MN, Aceto F, Medici N, Altucci L, Moncharmont B, Puca GA, Porcellini A, Avvedimento EV and Perillo B: Highlighting chromosome loops in DNA-picked chromatin (DPC). Epigenetics. 6:979–986. 2011. View Article : Google Scholar : PubMed/NCBI

67 

Bolzer A, Kreth G, Solovei I, Koehler D, Sarakoglu K, Fauth C, Muller S, Eils R, Cremer C, Speicher MR and Cremer T: Three-dimensional maps of all chromosomes in human male fibroblast nuclei and prometaphase rosettes. PLoS Biol. 3:e1572005. View Article : Google Scholar : PubMed/NCBI

68 

Han J, Zhang Z and Wang K: 3C and 3C-based techniques: The powerful tools for spatial genome organization deciphering. Mol Cytogen. 9:11–21. 2018.

69 

Simonis M, Klous P, Splinter E, Moshkin Y, Willemsen R, de Wit E, van Steensel B and de Laat W: Nuclear organization of active and inactive chromatin domains uncovered by chromosome conformation capture-on-chip (4C). Nat Genet. 38:1348–1354. 2006. View Article : Google Scholar : PubMed/NCBI

70 

Wurtele H and Chartrand P: Genome-wide scanning of HoxB1-associated loci in mouse ES cells using an open-ended chromosome conformation capture methodology. Chromosome Res. 14:477–495. 2006. View Article : Google Scholar : PubMed/NCBI

71 

Zhao Z, Tavoosidana G, Sjölinder M, Göndör A, Mariano P, Wang S, Kanduri C, Lezcano M, Sandhu KS, Singh U, et al: Circular chromosome conformation capture (4C) uncovers extensive networks of epigenetically regulated intra- and interchromosomal interactions. Nat Genet. 38:1341–1347. 2006. View Article : Google Scholar : PubMed/NCBI

72 

van de Werken HJ, Landan G, Holwerda SJ, Hoichman M, Klous P, Chachik R, Splinter E, Valdes-Quezada C, Oz Y, Bouwman BAM, et al: Robust 4C-seq data analysis to screen for regulatory DNA interactions. Nat Methods. 9:969–972. 2012. View Article : Google Scholar : PubMed/NCBI

73 

Symmons O, Pan L, Remeseiro S, Aktas T, Klein F, Huber W and Spitz F: The Shh topological domain facilitates the action of remote enhancers reducing the effects of genomic distances. Dev Cell. 5:529–543. 2016. View Article : Google Scholar : PubMed/NCBI

74 

Tomasetto C, Rockel N, Mattei MG, Fujita R and Rio MC: The gene encoding the human spasmolytic protein (SML1/hSP) is in 21q physically linked to the homologous breast cancer marker gene BCEI/pS2. Genomics. 13:1328–1330. 1992. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Perillo B, Migliaccio A and Castoria G: Chromatin looping links gene expression to the assembly of transcription factories (Review). Mol Med Rep 29: 97, 2024.
APA
Perillo, B., Migliaccio, A., & Castoria, G. (2024). Chromatin looping links gene expression to the assembly of transcription factories (Review). Molecular Medicine Reports, 29, 97. https://doi.org/10.3892/mmr.2024.13221
MLA
Perillo, B., Migliaccio, A., Castoria, G."Chromatin looping links gene expression to the assembly of transcription factories (Review)". Molecular Medicine Reports 29.6 (2024): 97.
Chicago
Perillo, B., Migliaccio, A., Castoria, G."Chromatin looping links gene expression to the assembly of transcription factories (Review)". Molecular Medicine Reports 29, no. 6 (2024): 97. https://doi.org/10.3892/mmr.2024.13221
Copy and paste a formatted citation
x
Spandidos Publications style
Perillo B, Migliaccio A and Castoria G: Chromatin looping links gene expression to the assembly of transcription factories (Review). Mol Med Rep 29: 97, 2024.
APA
Perillo, B., Migliaccio, A., & Castoria, G. (2024). Chromatin looping links gene expression to the assembly of transcription factories (Review). Molecular Medicine Reports, 29, 97. https://doi.org/10.3892/mmr.2024.13221
MLA
Perillo, B., Migliaccio, A., Castoria, G."Chromatin looping links gene expression to the assembly of transcription factories (Review)". Molecular Medicine Reports 29.6 (2024): 97.
Chicago
Perillo, B., Migliaccio, A., Castoria, G."Chromatin looping links gene expression to the assembly of transcription factories (Review)". Molecular Medicine Reports 29, no. 6 (2024): 97. https://doi.org/10.3892/mmr.2024.13221
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team