Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
June-2024 Volume 29 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
June-2024 Volume 29 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

MicroRNA‑mediated regulation of muscular atrophy: Exploring molecular pathways and therapeutics (Review)

  • Authors:
    • Woohyeong Jung
    • Uijin Juang
    • Suhwan Gwon
    • Hounggiang Nguyen
    • Qingzhi Huang
    • Soohyeon Lee
    • Beomwoo Lee
    • So-Hee Kwon
    • Seon-Hwan Kim
    • Jongsun Park
  • View Affiliations / Copyright

    Affiliations: Department of Pharmacology, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea, College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon 21983, Republic of Korea, Department of Neurosurgery, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
    Copyright: © Jung et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 98
    |
    Published online on: April 9, 2024
       https://doi.org/10.3892/mmr.2024.13222
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Muscular atrophy, which results in loss of muscle mass and strength, is a significant concern for patients with various diseases. It is crucial to comprehend the molecular mechanisms underlying this condition to devise targeted treatments. MicroRNAs (miRNAs) have emerged as key regulators of gene expression, serving vital roles in numerous cellular processes, including the maintenance of muscle stability. An intricate network of miRNAs finely regulates gene expression, influencing pathways related to muscle protein production, and muscle breakdown and regeneration. Dysregulation of specific miRNAs has been linked to the development of muscular atrophy, affecting important signaling pathways including the protein kinase B/mTOR and ubiquitin‑proteasome systems. The present review summarizes recent work on miRNA patterns associated with muscular atrophy under various physiological and pathological conditions, elucidating its intricate regulatory networks. In conclusion, the present review lays a foundation for the development of novel treatment options for individuals affected by muscular atrophy, and explores other regulatory pathways, such as autophagy and inflammatory signaling, to ensure a comprehensive overview of the multifarious nature of muscular atrophy. The objective of the present review was to elucidate the complex molecular pathways involved in muscular atrophy, and to facilitate the development of innovative and specific therapeutic strategies for the prevention or reversal of muscular atrophy in diverse clinical scenarios.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

View References

1 

Duan K, Gao X and Zhu D: The clinical relevance and mechanism of skeletal muscle wasting. Clin Nutr. 40:27–37. 2021. View Article : Google Scholar : PubMed/NCBI

2 

Larsson L, Degens H, Li M, Salviati L, Lee YI, Thompson W, Kirkland JL and Sandri M: Sarcopenia: Aging-Related loss of muscle mass and function. Physiol Rev. 99:427–511. 2019. View Article : Google Scholar : PubMed/NCBI

3 

Damluji AA, Alfaraidhy M, AlHajri N, Rohant NN, Kumar M, Al Malouf C, Bahrainy S, Ji Kwak M, Batchelor WB, Forman DE, et al: Sarcopenia and cardiovascular diseases. Circulation. 147:1534–1553. 2023. View Article : Google Scholar : PubMed/NCBI

4 

Nishio H, Niba ETE, Saito T, Okamoto K, Takeshima Y and Awano H: Spinal muscular atrophy: The past, present, and future of diagnosis and treatment. Int J Mol Sci. 24:119392023. View Article : Google Scholar : PubMed/NCBI

5 

O'Brien J, Hayder H, Zayed Y and Peng C: Overview of MicroRNA biogenesis, mechanisms of actions, and circulation. Front Endocrinol (Lausanne). 9:4022018. View Article : Google Scholar : PubMed/NCBI

6 

Gebert LFR and MacRae IJ: Regulation of microRNA function in animals. Nat Rev Mol Cell Biol. 20:21–37. 2019. View Article : Google Scholar : PubMed/NCBI

7 

Brzeszczynska J, Brzeszczynski F, Hamilton DF, McGregor R and Simpson AHRW: Role of microRNA in muscle regeneration and diseases related to muscle dysfunction in atrophy, cachexia, osteoporosis, and osteoarthritis. Bone Joint Res. 9:798–807. 2020. View Article : Google Scholar : PubMed/NCBI

8 

De Paepe B: Progressive skeletal muscle atrophy in muscular dystrophies: A role for toll-like receptor-signaling in disease pathogenesis. Int J Mol Sci. 21:44402020. View Article : Google Scholar : PubMed/NCBI

9 

Vo TT, Kong G, Kim C, Juang U, Gwon S, Jung W, Nguyen H, Kim SH and Park J: Exploring scavenger receptor class F member 2 and the importance of scavenger receptor family in prediagnostic diseases. Toxicol Res. 39:341–353. 2023. View Article : Google Scholar : PubMed/NCBI

10 

Jun L, Robinson M, Geetha T, Broderick TL and Babu JR: Prevalence and mechanisms of skeletal muscle atrophy in metabolic conditions. Int J Mol Sci. 24:29732023. View Article : Google Scholar : PubMed/NCBI

11 

Cruz-Jentoft AJ, Baeyens JP, Bauer JM, Boirie Y, Cederholm T, Landi F, Martin FC, Michel JP, Rolland Y, Schneider SM, et al: Sarcopenia: European consensus on definition and diagnosis: Report of the European working group on sarcopenia in older people. Age Ageing. 39:412–423. 2010. View Article : Google Scholar : PubMed/NCBI

12 

Cho MR, Lee S and Song SK: A review of sarcopenia pathophysiology, diagnosis, treatment and future direction. J Korean Med Sci. 37:e1462022. View Article : Google Scholar : PubMed/NCBI

13 

Jang JY, Kim D and Kim ND: Pathogenesis, intervention, and current status of drug development for sarcopenia: A review. Biomedicines. 11:16352023. View Article : Google Scholar : PubMed/NCBI

14 

Cruz-Jentoft AJ, Bahat G, Bauer J, Boirie Y, Bruyere O, Cederholm T, Cooper C, Landi F, Rolland Y, Sayer AA, et al: Sarcopenia: Revised European consensus on definition and diagnosis. Age Ageing. 48:16–31. 2019. View Article : Google Scholar : PubMed/NCBI

15 

Guttikonda D and Smith AL: Sarcopenia assessment techniques. Clin Liver Dis (Hoboken). 18:189–192. 2021. View Article : Google Scholar : PubMed/NCBI

16 

Koo BK: Assessment of muscle quantity, quality and function. J Obes Metab Syndr. 31:9–16. 2022. View Article : Google Scholar : PubMed/NCBI

17 

Cheng KY, Chow SK, Hung VW, Wong CH, Wong RM, Tsang CS, Kwok T and Cheung WH: Diagnosis of sarcopenia by evaluating skeletal muscle mass by adjusted bioimpedance analysis validated with dual-energy X-ray absorptiometry. J Cachexia Sarcopenia Muscle. 12:2163–2173. 2021. View Article : Google Scholar : PubMed/NCBI

18 

Faron A, Sprinkart AM, Kuetting DLR, Feisst A, Isaak A, Endler C, Chang J, Nowak S, Block W, Thomas D, et al: Body composition analysis using CT and MRI: intra-individual intermodal comparison of muscle mass and myosteatosis. Sci Rep. 10:117652020. View Article : Google Scholar : PubMed/NCBI

19 

Dufour AB, Hannan MT, Murabito JM, Kiel DP and McLean RR: Sarcopenia definitions considering body size and fat mass are associated with mobility limitations: The Framingham Study. J Gerontol A Biol Sci Med Sci. 68:168–174. 2013. View Article : Google Scholar : PubMed/NCBI

20 

Singh H, Kim D, Kim E, Bemben MG, Anderson M, Seo DI and Bemben DA: Jump test performance and sarcopenia status in men and women, 55 to 75 years of age. J Geriatr Phys Ther. 37:76–82. 2014. View Article : Google Scholar : PubMed/NCBI

21 

Lee J, Hong YP, Shin HJ and Lee W: Associations of sarcopenia and sarcopenic obesity with metabolic syndrome considering both muscle mass and muscle strength. J Prev Med Public Health. 49:35–44. 2016. View Article : Google Scholar : PubMed/NCBI

22 

Hunter GR, McCarthy JP and Bamman MM: Effects of resistance training on older adults. Sports Med. 34:329–348. 2004. View Article : Google Scholar : PubMed/NCBI

23 

Hepple RT: Sarcopenia-a critical perspective. Sci Aging Knowledge Environ. 2003:pe312003. View Article : Google Scholar : PubMed/NCBI

24 

Hunter GR, Singh H, Carter SJ, Bryan DR and Fisher G: Sarcopenia and its implications for metabolic health. J Obes. 2019:80317052019. View Article : Google Scholar : PubMed/NCBI

25 

Zhang A, Li M, Wang B, Klein JD, Price SR and Wang XH: miRNA-23a/27a attenuates muscle atrophy and renal fibrosis through muscle-kidney crosstalk. J Cachexia Sarcopenia Muscle. 9:755–770. 2018. View Article : Google Scholar : PubMed/NCBI

26 

Xu R, Cui S, Chen L, Chen XC, Ma LL, Yang HN and Wen FM: Circulating miRNA-1-3p as biomarker of accelerated sarcopenia in patients diagnosed with chronic heart failure. Rev Invest Clin. 74:276–268. 2022.PubMed/NCBI

27 

Yang X, Xue P, Chen H, Yuan M, Kang Y, Duscher D, Machens HG and Chen Z: Denervation drives skeletal muscle atrophy and induces mitochondrial dysfunction, mitophagy and apoptosis via miR-142a-5p/MFN1 axis. Theranostics. 10:1415–1432. 2020. View Article : Google Scholar : PubMed/NCBI

28 

Wang B, Zhang A, Wang H, Klein JD, Tan L, Wang ZM, Du J, Naqvi N, Liu BC and Wang XH: miR-26a limits muscle wasting and cardiac fibrosis through exosome-mediated microRNA transfer in chronic kidney disease. Theranostics. 9:1864–1877. 2019. View Article : Google Scholar : PubMed/NCBI

29 

Oikawa S, Yuan S, Kato Y and Akimoto T: Skeletal muscle-enriched miRNAs are highly unstable in vivo and may be regulated in a Dicer-independent manner. FEBS J. 290:5692–5703. 2023. View Article : Google Scholar : PubMed/NCBI

30 

Meng Q, Zhang J, Zhong J, Zeng D and Lan D: Novel miRNA biomarkers for patients with duchenne muscular dystrophy. Front Neurol. 13:9217852022. View Article : Google Scholar : PubMed/NCBI

31 

Saad NY, Al-Kharsan M, Garwick-Coppens SE, Chermahini GA, Harper MA, Palo A, Boudreau RL and Harper SQ: Human miRNA miR-675 inhibits DUX4 expression and may be exploited as a potential treatment for Facioscapulohumeral muscular dystrophy. Nat Commun. 12:71282021. View Article : Google Scholar : PubMed/NCBI

32 

De Felice B, Annunziata A, Fiorentino G, Borra M, Biffali E, Coppola C, Cotrufo R, Brettschneider J, Giordana ML, Dalmay T, et al: miR-338-3p is over-expressed in blood, CFS, serum and spinal cord from sporadic amyotrophic lateral sclerosis patients. Neurogenetics. 15:243–253. 2014. View Article : Google Scholar : PubMed/NCBI

33 

Dumont NA, Wang YX and Rudnicki MA: Intrinsic and extrinsic mechanisms regulating satellite cell function. Development. 142:1572–1581. 2015. View Article : Google Scholar : PubMed/NCBI

34 

Feige P, Brun CE, Ritso M and Rudnicki MA: Orienting muscle stem cells for regeneration in homeostasis, aging, and disease. Cell Stem Cell. 23:653–664. 2018. View Article : Google Scholar : PubMed/NCBI

35 

Yafe A, Shklover J, Weisman-Shomer P, Bengal E and Fry M: Differential binding of quadruplex structures of muscle-specific genes regulatory sequences by MyoD, MRF4 and myogenin. Nucleic Acids Res. 36:3916–3925. 2008. View Article : Google Scholar : PubMed/NCBI

36 

Gunther S, Kim J, Kostin S, Lepper C, Fan CM and Braun T: Myf5-positive satellite cells contribute to Pax7-dependent long-term maintenance of adult muscle stem cells. Cell Stem Cell. 13:590–601. 2013. View Article : Google Scholar : PubMed/NCBI

37 

Chen JF, Mandel EM, Thomson JM, Wu Q, Callis TE, Hammond SM, Conlon FL and Wang DZ: The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat Genet. 38:228–233. 2006. View Article : Google Scholar : PubMed/NCBI

38 

Lee SW, Yang J, Kim SY, Jeong HK, Lee J, Kim WJ, Lee EJ and Kim HS: MicroRNA-26a induced by hypoxia targets HDAC6 in myogenic differentiation of embryonic stem cells. Nucleic Acids Res. 43:2057–2073. 2015. View Article : Google Scholar : PubMed/NCBI

39 

Wu R, Li H, Zhai L, Zou X, Meng J, Zhong R, Li C, Wang H, Zhang Y and Zhu D: MicroRNA-431 accelerates muscle regeneration and ameliorates muscular dystrophy by targeting Pax7 in mice. Nat Commun. 6:77132015. View Article : Google Scholar : PubMed/NCBI

40 

Ma G, Wang Y, Li Y, Cui L, Zhao Y, Zhao B and Li K: MiR-206, a key modulator of skeletal muscle development and disease. Int J Biol Sci. 11:345–352. 2015. View Article : Google Scholar : PubMed/NCBI

41 

Dey P, Soyer MA and Dey BK: MicroRNA-24-3p promotes skeletal muscle differentiation and regeneration by regulating HMGA1. Cell Mol Life Sci. 79:1702022. View Article : Google Scholar : PubMed/NCBI

42 

Lee B, Shin YJ, Lee SM, Son YH, Yang YR and Lee KP: miR-3074-3p promotes myoblast differentiation by targeting Cav1. BMB Rep. 53:278–283. 2020. View Article : Google Scholar : PubMed/NCBI

43 

Zhang Y, Yao Y, Wang Z, Lu D, Zhang Y, Adetula AA, Liu S, Zhu M, Yang Y, Fan X, et al: MiR-743a-5p regulates differentiation of myoblast by targeting Mob1b in skeletal muscle development and regeneration. Genes Dis. 9:1038–1048. 2022. View Article : Google Scholar : PubMed/NCBI

44 

Holstein I, Singh AK, Pohl F, Misiak D, Braun J, Leitner L, Huttelmaier S and Posern G: Post-transcriptional regulation of MRTF-A by miRNAs during myogenic differentiation of myoblasts. Nucleic Acids Res. 48:8927–8942. 2020. View Article : Google Scholar : PubMed/NCBI

45 

Zhao X, Gu H, Wang L, Zhang P, Du J, Shen L, Jiang D, Wang J, Li X, Zhang S, et al: MicroRNA-23a-5p mediates the proliferation and differentiation of C2C12 myoblasts. Mol Med Rep. 22:3705–3714. 2020.PubMed/NCBI

46 

Crist CG, Montarras D, Pallafacchina G, Rocancourt D, Cumano A, Conway SJ and Buckingham M: Muscle stem cell behavior is modified by microRNA-27 regulation of Pax3 expression. Proc Natl Acad Sci USA. 106:13383–13387. 2009. View Article : Google Scholar : PubMed/NCBI

47 

Kong D, He M, Yang L, Zhou R, Yan YQ, Liang Y and Teng CB: MiR-17 and miR-19 cooperatively promote skeletal muscle cell differentiation. Cell Mol Life Sci. 76:5041–5054. 2019. View Article : Google Scholar : PubMed/NCBI

48 

Attaix D, Combaret L, Bechet D and Taillandier D: Role of the ubiquitin-proteasome pathway in muscle atrophy in cachexia. Curr Opin Support Palliat Care. 2:262–266. 2008. View Article : Google Scholar : PubMed/NCBI

49 

Hartmann-Petersen R and Gordon C: Proteins interacting with the 26S proteasome. Cell Mol Life Sci. 61:1589–1595. 2004.PubMed/NCBI

50 

Bodine SC, Latres E, Baumhueter S, Lai VK, Nunez L, Clarke BA, Poueymirou WT, Panaro FJ, Na E, Dharmarajan K, et al: Identification of ubiquitin ligases required for skeletal muscle atrophy. Science. 294:1704–1708. 2001. View Article : Google Scholar : PubMed/NCBI

51 

Eddins MJ, Marblestone JG, Suresh Kumar KG, Leach CA, Sterner DE, Mattern MR and Nicholson B: Targeting the ubiquitin E3 ligase MuRF1 to inhibit muscle atrophy. Cell Biochem Biophys. 60:113–118. 2011. View Article : Google Scholar : PubMed/NCBI

52 

Clavel S, Coldefy AS, Kurkdjian E, Salles J, Margaritis I and Derijard B: Atrophy-related ubiquitin ligases, atrogin-1 and MuRF1 are up-regulated in aged rat Tibialis Anterior muscle. Mech Ageing Dev. 127:794–801. 2006. View Article : Google Scholar : PubMed/NCBI

53 

Gu X, Wang S, Li D, Jin B, Qi Z, Deng J, Huang C and Yin X: MicroRNA-142a-3p regulates neurogenic skeletal muscle atrophy by targeting Mef2a. Mol Ther Nucleic Acids. 33:191–204. 2023. View Article : Google Scholar : PubMed/NCBI

54 

Xhuti D, Nilsson MI, Manta K, Tarnopolsky MA and Nederveen JP: Circulating exosome-like vesicle and skeletal muscle microRNAs are altered with age and resistance training. J Physiol. 601:5051–5073. 2023. View Article : Google Scholar : PubMed/NCBI

55 

Ahmad N, Kushwaha P, Karvande A, Tripathi AK, Kothari P, Adhikary S, Khedgikar V, Mishra VK and Trivedi R: MicroRNA-672-5p identified during weaning reverses osteopenia and sarcopenia in ovariectomized mice. Mol Ther Nucleic Acids. 14:536–549. 2019. View Article : Google Scholar : PubMed/NCBI

56 

Webster JM, Kempen LJAP, Hardy RS and Langen RCJ: Inflammation and skeletal muscle wasting during cachexia. Front Physiol. 11:5976752020. View Article : Google Scholar : PubMed/NCBI

57 

Emery PW, Edwards RH, Rennie MJ, Souhami RL and Halliday D: Protein synthesis in muscle measured in vivo in cachectic patients with cancer. Br Med J (Clin Res Ed). 289:584–586. 1984. View Article : Google Scholar : PubMed/NCBI

58 

Warnold I, Lundholm K and Schersten T: Energy balance and body composition in cancer patients. Cancer Res. 38:1801–1807. 1978.PubMed/NCBI

59 

Chang VT, Xia Q and Kasimis B: The functional assessment of anorexia/cachexia therapy (FAACT) Appetite Scale in veteran cancer patients. J Support Oncol. 3:377–382. 2005.PubMed/NCBI

60 

Martin L, Birdsell L, Macdonald N, Reiman T, Clandinin MT, McCargar LJ, Murphy R, Ghosh S, Sawyer MB and Baracos VE: Cancer cachexia in the age of obesity: Skeletal muscle depletion is a powerful prognostic factor, independent of body mass index. J Clin Oncol. 31:1539–1547. 2013. View Article : Google Scholar : PubMed/NCBI

61 

Yang W, Huang J, Wu H, Wang Y, Du Z, Ling Y, Wang W, Wu Q and Gao W: Molecular mechanisms of cancer cachexia-induced muscle atrophy (Review). Mol Med Rep. 22:4967–4980. 2020. View Article : Google Scholar : PubMed/NCBI

62 

Bilodeau PA, Coyne ES and Wing SS: The ubiquitin proteasome system in atrophying skeletal muscle: Roles and regulation. Am J Physiol Cell Physiol. 311:C392–C403. 2016. View Article : Google Scholar : PubMed/NCBI

63 

Reed SA, Sandesara PB, Senf SM and Judge AR: Inhibition of FoxO transcriptional activity prevents muscle fiber atrophy during cachexia and induces hypertrophy. FASEB J. 26:987–1000. 2012. View Article : Google Scholar : PubMed/NCBI

64 

Xu J, Li R, Workeneh B, Dong Y, Wang X and Hu Z: Transcription factor FoxO1, the dominant mediator of muscle wasting in chronic kidney disease, is inhibited by microRNA-486. Kidney Int. 82:401–411. 2012. View Article : Google Scholar : PubMed/NCBI

65 

He WA, Calore F, Londhe P, Canella A, Guttridge DC and Croce CM: Microvesicles containing miRNAs promote muscle cell death in cancer cachexia via TLR7. Proc Natl Acad Sci USA. 111:4525–4529. 2014. View Article : Google Scholar : PubMed/NCBI

66 

Xie K, Xiong H, Xiao W, Xiong Z, Hu W, Ye J, Xu N, Shi J, Yuan C, Chen Z, et al: Downregulation of miR-29c promotes muscle wasting by modulating the activity of leukemia inhibitory factor in lung cancer cachexia. Cancer Cell Int. 21:6272021. View Article : Google Scholar : PubMed/NCBI

67 

Miao C, Zhang W, Feng F, Gu X, Shen Q, Lu S, Fan M, Li Y, Guo X, Ma Y, et al: Cancer-derived exosome miRNAs induce skeletal muscle wasting by Bcl-2-mediated apoptosis in colon cancer cachexia. Mol Ther Nucleic Acids. 24:923–938. 2021. View Article : Google Scholar : PubMed/NCBI

68 

Okugawa Y, Toiyama Y, Hur K, Yamamoto A, Yin C, Ide S, Kitajima T, Fujikawa H, Yasuda H, Koike Y, et al: Circulating miR-203 derived from metastatic tissues promotes myopenia in colorectal cancer patients. J Cachexia Sarcopenia Muscle. 10:536–548. 2019. View Article : Google Scholar : PubMed/NCBI

69 

Qiu L, Chen W, Wu C, Yuan Y and Li Y: Exosomes of oral squamous cell carcinoma cells containing miR-181a-3p induce muscle cell atrophy and apoptosis by transmissible endoplasmic reticulum stress signaling. Biochem Biophys Res Commun. 533:831–837. 2020. View Article : Google Scholar : PubMed/NCBI

70 

Su SF, Chang YW, Andreu-Vieyra C, Fang JY, Yang Y, Han B, Lee AS and Liang G: miR-30d, miR-181a and miR-199a-5p cooperatively suppress the endoplasmic reticulum chaperone and signaling regulator GRP78 in cancer. Oncogene. 32:4694–4701. 2013. View Article : Google Scholar : PubMed/NCBI

71 

Liu J, Huang Y, Cai F, Dang Y, Liu C and Wang J: MicroRNA-181a regulates endoplasmic reticulum stress in offspring of mice following prenatal microcystin-LR exposure. Chemosphere. 240:1249052020. View Article : Google Scholar : PubMed/NCBI

72 

Wei Y, Tao X, Xu H, Chen Y, Zhu L, Tang G, Li M, Jiang A, Shuai S, Ma J, et al: Role of miR-181a-5p and endoplasmic reticulum stress in the regulation of myogenic differentiation. Gene. 592:60–70. 2016. View Article : Google Scholar : PubMed/NCBI

73 

Zhang M, Zhang Q, Hu Y, Xu L, Jiang Y, Zhang C, Ding L, Jiang R, Sun J, Sun H and Yan G: miR-181a increases FoxO1 acetylation and promotes granulosa cell apoptosis via SIRT1 downregulation. Cell Death Dis. 8:e30882017. View Article : Google Scholar : PubMed/NCBI

74 

Cisterna BA, Vargas AA, Puebla C, Fernandez P, Escamilla R, Lagos CF, Matus MF, Vilos C, Cea LA, Barnafi E, et al: Active acetylcholine receptors prevent the atrophy of skeletal muscles and favor reinnervation. Nat Commun. 11:10732020. View Article : Google Scholar : PubMed/NCBI

75 

Burke RE: Sir Charles Sherrington's the integrative action of the nervous system: A centenary appreciation. Brain. 130:887–894. 2007. View Article : Google Scholar : PubMed/NCBI

76 

Dulhunty AF: Excitation-contraction coupling from the 1950s into the new millennium. Clin Exp Pharmacol Physiol. 33:763–772. 2006. View Article : Google Scholar : PubMed/NCBI

77 

Canfora I, Tarantino N and Pierno S: Metabolic pathways and ion channels involved in skeletal muscle atrophy: A starting point for potential therapeutic strategies. Cells. 11:25662022. View Article : Google Scholar : PubMed/NCBI

78 

Bruusgaard JC and Gundersen K: In vivo time-lapse microscopy reveals no loss of murine myonuclei during weeks of muscle atrophy. J Clin Invest. 118:1450–1457. 2008. View Article : Google Scholar : PubMed/NCBI

79 

De Gasperi R, Hamidi S, Harlow LM, Ksiezak-Reding H, Bauman WA and Cardozo CP: Denervation-related alterations and biological activity of miRNAs contained in exosomes released by skeletal muscle fibers. Sci Rep. 7:128882017. View Article : Google Scholar : PubMed/NCBI

80 

Magnusson C, Svensson A, Christerson U and Tagerud S: Denervation-induced alterations in gene expression in mouse skeletal muscle. Eur J Neurosci. 21:577–580. 2005. View Article : Google Scholar : PubMed/NCBI

81 

Ehmsen JT and Hoke A: Cellular and molecular features of neurogenic skeletal muscle atrophy. Exp Neurol. 331:1133792020. View Article : Google Scholar : PubMed/NCBI

82 

Daeschler SC, Feinberg K, Harhaus L, Kneser U, Gordon T and Borschel GH: Advancing nerve regeneration: Translational perspectives of tacrolimus (FK506). Int J Mol Sci. 24:127712023. View Article : Google Scholar : PubMed/NCBI

83 

Zheng H, Liu X, Katsurada K and Patel KP: Renal denervation improves sodium excretion in rats with chronic heart failure: Effects on expression of renal ENaC and AQP2. Am J Physiol Heart Circ Physiol. 317:H958–H968. 2019. View Article : Google Scholar : PubMed/NCBI

84 

Tokinoya K, Shirai T, Ota Y, Takemasa T and Takekoshi K: Denervation-induced muscle atrophy suppression in renalase-deficient mice via increased protein synthesis. Physiol Rep. 8:e144752020. View Article : Google Scholar : PubMed/NCBI

85 

Sandri M: Protein breakdown in muscle wasting: Role of autophagy-lysosome and ubiquitin-proteasome. Int J Biochem Cell Biol. 45:2121–2129. 2013. View Article : Google Scholar : PubMed/NCBI

86 

Bongers KS, Fox DK, Ebert SM, Kunkel SD, Dyle MC, Bullard SA, Dierdorff JM and Adams CM: Skeletal muscle denervation causes skeletal muscle atrophy through a pathway that involves both Gadd45a and HDAC4. Am J Physiol Endocrinol Metab. 305:E907–E915. 2013. View Article : Google Scholar : PubMed/NCBI

87 

Weng J, Zhang P, Yin X and Jiang B: The whole transcriptome involved in denervated muscle atrophy following peripheral nerve injury. Front Mol Neurosci. 11:692018. View Article : Google Scholar : PubMed/NCBI

88 

Nimmo R, Ciau-Uitz A, Ruiz-Herguido C, Soneji S, Bigas A, Patient R and Enver T: MiR-142-3p controls the specification of definitive hemangioblasts during ontogeny. Dev Cell. 26:237–249. 2013. View Article : Google Scholar : PubMed/NCBI

89 

Huang QK, Qiao HY, Fu MH, Li G, Li WB, Chen Z, Wei J and Liang BS: MiR-206 Attenuates Denervation-Induced Skeletal Muscle Atrophy in Rats Through Regulation of Satellite Cell Differentiation via TGF-beta1, Smad3, and HDAC4 Signaling. Med Sci Monit. 22:1161–1170. 2016. View Article : Google Scholar : PubMed/NCBI

90 

Li J, Wang L, Hua X, Tang H, Chen R, Yang T, Das S and Xiao J: CRISPR/Cas9-Mediated miR-29b editing as a treatment of different types of muscle atrophy in mice. Mol Ther. 28:1359–1372. 2020. View Article : Google Scholar : PubMed/NCBI

91 

Srivastava S, Rathor R, Singh SN and Suryakumar G: Emerging role of MyomiRs as biomarkers and therapeutic targets in skeletal muscle diseases. Am J Physiol Cell Physiol. 321:C859–C875. 2021. View Article : Google Scholar : PubMed/NCBI

92 

Gu XY, Jin B, Qi ZD and Yin XF: MicroRNA is a potential target for therapies to improve the physiological function of skeletal muscle after trauma. Neural Regen Res. 17:1617–1622. 2022. View Article : Google Scholar : PubMed/NCBI

93 

Abiusi E, Infante P, Cagnoli C, Lospinoso Severini L, Pane M, Coratti G, Pera MC, D'Amico A, Diano F, Novelli A, et al: SMA-miRs (miR-181a-5p, −324-5p, and −451a) are overexpressed in spinal muscular atrophy skeletal muscle and serum samples. Elife. 10:e680542021. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Jung W, Juang U, Gwon S, Nguyen H, Huang Q, Lee S, Lee B, Kwon S, Kim S, Park J, Park J, et al: MicroRNA‑mediated regulation of muscular atrophy: Exploring molecular pathways and therapeutics (Review). Mol Med Rep 29: 98, 2024.
APA
Jung, W., Juang, U., Gwon, S., Nguyen, H., Huang, Q., Lee, S. ... Park, J. (2024). MicroRNA‑mediated regulation of muscular atrophy: Exploring molecular pathways and therapeutics (Review). Molecular Medicine Reports, 29, 98. https://doi.org/10.3892/mmr.2024.13222
MLA
Jung, W., Juang, U., Gwon, S., Nguyen, H., Huang, Q., Lee, S., Lee, B., Kwon, S., Kim, S., Park, J."MicroRNA‑mediated regulation of muscular atrophy: Exploring molecular pathways and therapeutics (Review)". Molecular Medicine Reports 29.6 (2024): 98.
Chicago
Jung, W., Juang, U., Gwon, S., Nguyen, H., Huang, Q., Lee, S., Lee, B., Kwon, S., Kim, S., Park, J."MicroRNA‑mediated regulation of muscular atrophy: Exploring molecular pathways and therapeutics (Review)". Molecular Medicine Reports 29, no. 6 (2024): 98. https://doi.org/10.3892/mmr.2024.13222
Copy and paste a formatted citation
x
Spandidos Publications style
Jung W, Juang U, Gwon S, Nguyen H, Huang Q, Lee S, Lee B, Kwon S, Kim S, Park J, Park J, et al: MicroRNA‑mediated regulation of muscular atrophy: Exploring molecular pathways and therapeutics (Review). Mol Med Rep 29: 98, 2024.
APA
Jung, W., Juang, U., Gwon, S., Nguyen, H., Huang, Q., Lee, S. ... Park, J. (2024). MicroRNA‑mediated regulation of muscular atrophy: Exploring molecular pathways and therapeutics (Review). Molecular Medicine Reports, 29, 98. https://doi.org/10.3892/mmr.2024.13222
MLA
Jung, W., Juang, U., Gwon, S., Nguyen, H., Huang, Q., Lee, S., Lee, B., Kwon, S., Kim, S., Park, J."MicroRNA‑mediated regulation of muscular atrophy: Exploring molecular pathways and therapeutics (Review)". Molecular Medicine Reports 29.6 (2024): 98.
Chicago
Jung, W., Juang, U., Gwon, S., Nguyen, H., Huang, Q., Lee, S., Lee, B., Kwon, S., Kim, S., Park, J."MicroRNA‑mediated regulation of muscular atrophy: Exploring molecular pathways and therapeutics (Review)". Molecular Medicine Reports 29, no. 6 (2024): 98. https://doi.org/10.3892/mmr.2024.13222
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team