|
1
|
Zhao AM: Chinese expert consensus on
diagnosis and treatment of spontaneous abortion (2020 edition).
Chin J Pract Gynecol Obstet. 36:1082–1090. 2020.
|
|
2
|
Quenby S, Gallos ID, Dhillon-Smith RK,
Podesek M, Stephenson MD, Fisher J, Brosens JJ, Brewin J, Ramhorst
R, Lucas ES, et al: Miscarriage matters: The epidemiological,
physical, psychological, and economic costs of early pregnancy
loss. Lancet. 397:1658–1667. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Dimitriadis E, Menkhorst E, Saito S,
Kutteh WH and Brosens JJ: Recurrent pregnancy loss. Nat Rev Dis
Primers. 6:982020. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Larsen EC, Christiansen OB, Kolte AM and
Macklon N: New insights into mechanisms behind miscarriage. BMC
Med. 11:1542013. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Li HF, Shen QH, Li XQ, Feng ZF, Chen WM,
Qian JH, Shen L, Yu LY and Yang Y: The efficacy of traditional
Chinese medicine shoutai pill combined with western medicine in the
first trimester of pregnancy in women with unexplained recurrent
spontaneous abortion: A systematic review and meta-analysis. Biomed
Res Int. 2020:74951612020.PubMed/NCBI
|
|
6
|
Shi YJ, Xie JH and Li XJ: Meta-analysis of
pre-pregnancy intervention with Chinese medicinals for tonifying
kidney and activating blood in patients with recurrent spontaneous
abortion of pre-thrombotic state. Shandong J Tradit Chin Med.
41:744–752. 2022.
|
|
7
|
Wu T, Wang YZ, Li WL and Yu XH:
Meta-analysis of tonifying kidney and invigorating spleen in the
treatment of recurrent abortion. Chin J Gen Pract. 20:1056–1061.
2022.
|
|
8
|
Ahmad A, Tandon S, Xuan TD and Nooreen Z:
A review on Phytoconstituents and Biological activities of Cuscuta
species. Biomed Pharmacother. 92:772–795. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Donnapee S, Li J, Yang X, Ge AH, Donkor
PO, Gao XM and Chang YX: Cuscuta chinensis Lam.: A systematic
review on ethnopharmacology, phytochemistry and pharmacology of an
important traditional herbal medicine. J Ethnopharmacol.
157:292–308. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Lu X, Lin CY, Zhang WQ, Cao R, Qin WH and
Fan LL: Chemical components and pharmacological effect of Trib.
Lorantheae in China: A review. Chin J Exp Tradit Med Form.
29:209–221. 2023.
|
|
11
|
Yang D, Wang T, Long M and Li P:
Quercetin: Its main pharmacological activity and potential
application in clinical medicine. Oxid Med Cell Longev.
2020:88253872020. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Li J, Sun Z, Luo G, Wang S, Cui H, Yao Z,
Xiong H, He Y, Qian Y and Fan C: Quercetin attenuates
trauma-induced heterotopic ossification by tuning immune cell
infiltration and related inflammatory insult. Front Immunol.
12:6492852021. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Gansukh E, Nile A, Kim DH, Oh JW and Nile
SH: New insights into antiviral and cytotoxic potential of
quercetin and its derivatives-A biochemical perspective. Food Chem.
334:1275082021. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Hur HJ, Jeong YH, Lee SH and Sung MJ:
Quercitrin ameliorates hyperlipidemia and hepatic steatosis in
ovariectomized mice. Life (Basel). 10:2432020.PubMed/NCBI
|
|
15
|
Huang YY, Wang ZH, Deng LH, Wang H and
Zheng Q: Oral administration of quercetin or its derivatives
inhibit bone loss in animal model of osteoporosis. Oxid Med Cell
Longev. 2020:60805972020. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
van der Woude H, Ter Veld MG, Jacobs N,
van der Saag PT, Murk AJ and Rietjens IM: The stimulation of cell
proliferation by quercetin is mediated by the estrogen receptor.
Mol Nutr Food Res. 49:763–771. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Patel RV, Mistry BM, Shinde SK, Syed R,
Singh V and Shin HS: Therapeutic potential of quercetin as a
cardiovascular agent. Eur J Med Chem. 155:889–904. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Reyes-Farias M and Carrasco-Pozo C: The
anti-cancer effect of quercetin: molecular implications in cancer
metabolism. Int J Mol Sci. 20:31772019. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Liu C, Liu DQ, Tian YK, Mei W, Tian XB, Xu
AJ and Zhou YQ: The emerging role of quercetin in the treatment of
chronic pain. Curr Neuropharmacol. 20:2346–2353. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Hosseini A, Razavi BM, Banach M and
Hosseinzadeh H: Quercetin and metabolic syndrome: A review.
Phytother Res. 35:5352–5364. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Tang F, Tang Q, Tian Y, Fan Q, Huang Y and
Tan X: Network pharmacology-based prediction of the active
ingredients and potential targets of Mahuang Fuzi Xixin decoction
for application to allergic rhinitis. J Ethnopharmacol.
176:402–412. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Nogales C, Mamdouh ZM, List M, Kiel C,
Casas AI and Schmidt HHHW: Network pharmacology: Curing causal
mechanisms instead of treating symptoms. Trends Pharmacol Sci.
43:136–150. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
He RP, Jin Z, Ma RY, Hu FD and Dai JY:
Network pharmacology unveils spleen-fortifying effect of Codonopsis
Radix on different gastric diseases based on theory of ‘same
treatment for different diseases’ in traditional Chinese medicine.
Chin Herb Med. 13:189–201. 2020.PubMed/NCBI
|
|
24
|
Shi QQ, Yan MQ, Yu HH, Chen QQ, Chen SH
and Lyu GY: Effect of Yunkang oral liquid on preventing LPS-induced
abortion and regulating immune tolerance in mice. Zhongguo Zhong
Yao Za Zhi. 44:1227–1232. 2019.(In Chinese). PubMed/NCBI
|
|
25
|
Chen LL, Song C, Zhang Y, Li Y, Zhao YH,
Lin FY, Han DD, Dai MH, Li W and Pan PH: Quercetin protects against
LPS-induced lung injury in mice via SIRT1-mediated suppression of
PKM2 nuclear accumulation. Eur J Pharmacol. 936:1753522022.
View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Li Q, Yin L, Si Y, Zhang C, Meng Y and
Yang W: The bioflavonoid quercetin improves pathophysiology in a
rat model of preeclampsia. Biomed Pharmacother. 127:1101222020.
View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Wierwille WW and Ellsworth LA: Evaluation
of driver drowsiness by trained raters. Accid Anal Prev.
26:571–581. 1994. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Kim S, Chen J, Cheng T, Gindulyte A, He J,
He S, Li Q, Shoemaker BA, Thiessen PA, Yu B, et al: PubChem 2023
update. Nucleic Acids Res. 51(D1): D1373–D1380. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Wang X, Shen Y, Wang S, Li S, Zhang W, Liu
X, Lai L, Pei J and Li H: PharmMapper 2017 update: a web server for
potential drug target identification with a comprehensive target
pharmacophore database. Nucleic Acids Res. 45((W1)): W356–W360.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
UniProt Consortium: UniProt: The universal
protein knowledgebase in 2023. Nucleic Acids Res. 51(D1):
D523–D531. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Hamosh A, Amberger JS, Bocchini C, Scott
AF and Rasmussen SA: Online mendelian inheritance in man
(OMIM®): Victor McKusick's magnum opus. Am J Med Genet
A. 185:3259–3265. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Stelzer G, Rosen N, Plaschkes I, Zimmerman
S, Twik M, Fishilevich S, Stein TI, Nudel R, Lieder I, Mazor Y, et
al: The GeneCards suite: From gene data mining to disease genome
sequence analyses. Curr Protoc Bioinformatics. 54:1.30.1–1.30.33.
2016. View
Article : Google Scholar : PubMed/NCBI
|
|
33
|
Piñero J, Ramírez-Anguita JM,
Saüch-Pitarch J, Ronzano F, Centeno E, Sanz F and Furlong LI: The
DisGeNET knowledge platform for disease genomics: 2019 Update.
Nucleic Acids Res. 48(D1): D845–D855. 2020.PubMed/NCBI
|
|
34
|
Bardou P, Mariette J, Escudié F, Djemiel C
and Klopp C: Jvenn: An interactive Venn diagram viewer. BMC
Bioinformatics. 15:2932014. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Szklarczyk D, Kirsch R, Koutrouli M,
Nastou K, Mehryary F, Hachilif R, Gable AL, Fang T, Doncheva NT,
Pyysalo S, et al: The STRING database in 2023: Protein-protein
association networks and functional enrichment analyses for any
sequenced genome of interest. Nucleic Acids Res. 51(D1): D638–D646.
2023. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Shannon P, Markiel A, Ozier O, Baliga NS,
Wang JT, Ramage D, Amin N, Schwikowski B and Ideker T: Cytoscape: A
software environment for integrated models of biomolecular
interaction networks. Genome Res. 13:2498–2504. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Wang D and Wang XL: Mechanism of diosgenin
in treatment of atherosclerosis based on network pharmacology,
molecular docking and experimental validation. Chin Tradit Herb
Drugs. 53:7783–7794. 2022.
|
|
38
|
Zhou Y, Zhou B, Pache L, Chang M,
Khodabakhshi AH, Tanaseichuk O, Benner C and Chanda SK: Metascape
provides a biologist-oriented resource for the analysis of
systems-level datasets. Nat Commun. 10:15232019. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Vaitsopoulou CI, Kolibianakis EM, Bosdou
JK, Neofytou E, Lymperi S, Makedos A, Savvaidou D, Chatzimeletiou
K, Grimbizis GF, Lambropoulos A and Tarlatzis BC: Expression of
genes that regulate follicle development and maturation during
ovarian stimulation in poor responders. Reprod Biomed Online.
42:248–259. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Brown MB, von Chamier M, Allam AB and
Reyes L: M1/M2 macrophage polarity in normal and complicated
pregnancy. Front Immunol. 5:6062014. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Chavan AR, Griffith OW and Wagner GP: The
inflammation paradox in the evolution of mammalian pregnancy:
Turning a foe into a friend. Curr Opin Genet Dev. 47:24–32. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Li Y, Zhang D, Xu L, Dong L, Zheng J, Lin
Y, Huang J, Zhang Y, Tao Y, Zang X, et al: Cell-cell contact with
proinflammatory macrophages enhances the immunotherapeutic effect
of mesenchymal stem cells in two abortion models. Cell Mol Immunol.
16:908–920. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Liu PS, Chen YT, Li X, Hsueh PC, Tzeng SF,
Chen H, Shi PZ, Xie X, Parik S, Planque M, et al: CD40 signal
rewires fatty acid and glutamine metabolism for stimulating
macrophage anti-tumorigenic functions. Nat Immunol. 24:452–462.
2023. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Wang L and He C: Nrf2-mediated
anti-inflammatory polarization of macrophages as therapeutic
targets for osteoarthritis. Front Immunol. 13:9671932022.
View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Zhang W, Fu ZT, Liu CG, Wang BL, Liu RD
and Fan RH: Stimultaneous determination of six flavonoids in Semen
Cuscutae by UPLC-MS/MS. J Shenyang Med Coll. 20:377–380. 2018.
|
|
46
|
Su BW, Wang H, Li YH, Pei HH, Zhu KX and
Lu D: Contents of avicularin, quercetrin amd quercetin in Taxilli
Herba harvested from different areas and time points. Chin J Hosp
Pharm. 37:1922–1926. 2017.
|
|
47
|
Sun XM, Song H, Yan XJ, Hu Y, Xu BL, Zhao
LZ and Li WL: Screening and determination of estrogen-like quality
markers of Cuscuta chinensis. Chin Tradit Herb Drugs. 51:2671–2679.
2020.
|
|
48
|
Wu H, Hao LL, Li WL and Jin Y: Analysis of
medication rules of traditional Chinese medicine in treatment of
immunological recurrent abortion by data driven approach. Liaoning
J Tradit Chin Med. 47:52–55. 2020.
|
|
49
|
Zhang J, Chen L, Zheng CH, Wang J, Xie D
and Zhou YX: Effect of shoutai pills on Th1/Th2 cytokines in serum
and endometrium of rats with stimulated ovulation. Curr Med Sci.
39:285–290. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Li YQ, Zhao F, Ji MM, Li K and Wang YH:
Efficacy of Jiawei Shoutai Pill in the treatment of threatened
miscarriage and its effect on reproductive immuno-endocrine
function. Lishizhen Med Mater Med Res. 31:2971–2973. 2020.
|
|
51
|
Zhou H, Zhen XY, Wang H, Zeng Q, Deng LW
and Ding WJ: Exploration of the mechanism differences between
Shoutaiwan and Juyuanjian in reversing the pathology of decidual of
spontaneous abortion patients based on the ‘uterine collaterals
connecting the kidney’ and ‘fetal collaterals connecting the
spleen’ theory. Chin J Exp Tradit Med Form. 28:186–200. 2022.
|
|
52
|
Hao XL, Wang DY, Gao J and Luo SP: Effect
of modified Shoutai Pills on IL-17 in mice model of spontaneous
abortion due to kidney deficiency. World J Integr Tradit West Med.
15:292–295. 2020.
|
|
53
|
Lou YY, Wu XT and Fu P: Effect of Chinese
medicine on PI3K signaling pathway at the maternal-fetal interface
of recurrent miscarriage of kidney deficiency type. Zhejiang J
Tradit Chin Med. 54:564–566. 2019.
|
|
54
|
Zhang MY, Lou YY and Fu P: Effect of
Huatai Antai Decoction regulating PI3K signaling pathway on
endometrial decidulization in recurrent spontaneous abortion of
kidney deficiency type. Zhejiang J Tradit Chin Med. 55:892–894.
2020.
|
|
55
|
Chiang SCC, Owsley E, Panchal N,
Chaturvedi V, Terrell CE, Jordan MB, Mehta PA, Davies SM, Akeno N,
Booth C and Marsh RA: Quercetin ameliorates XIAP
deficiency-associated hyperinflammation. Blood. 140:706–715. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
56
|
da Silva AB, Cerqueira Coelho PL, das
Neves Oliveira M, Oliveira JL, Oliveira Amparo JA, da Silva KC,
Soares JRP, Pitanga BPS, Dos Santos Souza C, de Faria Lopes GP, et
al: The flavonoid rutin and its aglycone quercetin modulate the
microglia inflammatory profile improving antiglioma activity. Brain
Behav Immun. 85:170–185. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Olayinka J, Eduviere A, Adeoluwa O, Fafure
A, Adebanjo A and Ozolua R: Quercetin mitigates memory deficits in
scopolamine mice model via protection against neuroinflammation and
neurodegeneration. Life Sci. 292:1203262022. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Liu W, Zhang M, Feng J, Fan A, Zhou Y and
Xu Y: The influence of quercetin on maternal immunity, oxidative
stress, and inflammation in mice with exposure of fine particulate
matter during gestation. Int J Environ Res Public Health.
14:5922017. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Cao L, Tan C, Meng F, Liu P, Reece EA and
Zhao Z: Amelioration of intracellular stress and reduction of
neural tube defects in embryos of diabetic mice by phytochemical
quercetin. Sci Rep. 6:214912016. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Zhou J, Li L, Pan X, Wang J, Qi Q, Sun H,
Li C and Wang L: The effect of a traditional Chinese
quadri-combination therapy and its component quercetin on recurrent
spontaneous abortion: A clinical trial, network pharmacology and
experiments-based study. Front Pharmacol. 13:9656942022. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Albini A and Noonan DM: Decidual-like NK
cell polarization: From cancer killing to cancer nurturing. Cancer
Discov. 11:28–33. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Hazan AD, Smith SD, Jones RL, Whittle W,
Lye SJ and Dunk CE: Vascular-leukocyte interactions: Mechanisms of
human decidual spiral artery remodeling in vitro. Am J Pathol.
177:1017–1030. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Hanna J, Goldman-Wohl D, Hamani Y, Avraham
I, Greenfield C, Natanson-Yaron S, Prus D, Cohen-Daniel L, Arnon
TI, Manaster I, et al: Decidual NK cells regulate key developmental
processes at the human fetal-maternal interface. Nat Med.
12:1065–1074. 2006. View
Article : Google Scholar : PubMed/NCBI
|
|
64
|
Hao F, Zhou X and Jin L: Natural killer
cells: Functional differences in recurrent spontaneous abortion†.
Biol Reprod. 102:524–531. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Gaynor LM and Colucci F: Uterine natural
killer cells: Functional distinctions and influence on pregnancy in
humans and mice. Front Immunol. 8:4672017. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Bruno A, Ferlazzo G, Albini A and Noonan
DM: A think tank of TINK/TANKs: Tumor-infiltrating/tumor-associated
natural killer cells in tumor progression and angiogenesis. J Natl
Cancer Inst. 106:dju2002014. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Jabrane-Ferrat N: Features of human
decidual NK cells in healthy pregnancy and during viral infection.
Front Immunol. 10:13972019. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Haider S, Lackner AI, Dietrich B, Kunihs
V, Haslinger P, Meinhardt G, Maxian T, Saleh L, Fiala C, Pollheimer
J, et al: Transforming growth factor-β signaling governs the
differentiation program of extravillous trophoblasts in the
developing human placenta. Proc Natl Acad Sci USA.
119:e21206671192022. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Hu Y, Gui Z, Zhou Y, Xia L, Lin K and Xu
Y: Quercetin alleviates rat osteoarthritis by inhibiting
inflammation and apoptosis of chondrocytes, modulating synovial
macrophages polarization to M2 macrophages. Free Radic Biol Med.
145:146–160. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Ediriweera MK, Tennekoon KH and Samarakoon
SR: Role of the PI3K/AKT/mTOR signaling pathway in ovarian cancer:
Biological and therapeutic significance. Semin Cancer Biol.
59:147–160. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Fresno Vara JA, Casado E, de Castro J,
Cejas P, Belda-Iniesta C and González-Barón M: PI3K/Akt signalling
pathway and cancer. Cancer Treat Rev. 30:193–204. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Paskeh MDA, Ghadyani F, Hashemi M,
Abbaspour A, Zabolian A, Javanshir S, Razzazan M, Mirzaei S,
Entezari M, Goharrizi MASB, et al: Biological impact and
therapeutic perspective of targeting PI3K/Akt signaling in
hepatocellular carcinoma: Promises and challenges. Pharmacol Res.
187:1065532023. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Ding J, Yang C, Zhang Y, Wang J, Zhang S,
Guo D, Yin T and Yang J: M2 macrophage-derived G-CSF promotes
trophoblasts EMT, invasion and migration via activating
PI3K/Akt/Erk1/2 pathway to mediate normal pregnancy. J Cell Mol
Med. 25:2136–2147. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Song NR, Chung MY, Kang NJ, Seo SG, Jang
TS, Lee HJ and Lee KW: Quercetin suppresses invasion and migration
of H-Ras-transformed MCF10A human epithelial cells by inhibiting
phosphatidylinositol 3-kinase. Food Chem. 142:66–71. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Halder JB, Zhao X, Soker S, Paria BC,
Klagsbrun M, Das SK and Dey SK: Differential expression of VEGF
isoforms and VEGF(164)-specific receptor neuropilin-1 in the mouse
uterus suggests a role for VEGF(164) in vascular permeability and
angiogenesis during implantation. Genesis. 26:213–224. 2000.
View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Nagashima T, Li Q, Clementi C, Lydon JP,
DeMayo FJ and Matzuk MM: BMPR2 is required for postimplantation
uterine function and pregnancy maintenance. J Clin Invest.
123:2539–2550. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Perdicaro DJ, Rodriguez Lanzi C, Gambarte
Tudela J, Miatello RM, Oteiza PI and Vazquez Prieto MA: Quercetin
attenuates adipose hypertrophy, in part through activation of
adipogenesis in rats fed a high-fat diet. J Nutr Biochem.
79:1083522020. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Zhang J, Liu X and Gao Y: Abnormal H3K27
histone methylation of RASA1 gene leads to unexplained recurrent
spontaneous abortion by regulating Ras-MAPK pathway in trophoblast
cells. Mol Biol Rep. 48:5109–5119. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Cui S, Wu Q, Wang J, Li M, Qian J and Li
S: Quercetin inhibits LPS-induced macrophage migration by
suppressing the iNOS/FAK/paxillin pathway and modulating the
cytoskeleton. Cell Adh Migr. 13:1–12. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Mor G, Aldo P and Alvero AB: The unique
immunological and microbial aspects of pregnancy. Nat Rev Immunol.
17:469–482. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Ma LN, Huang XB, Muyayalo KP, Mor G and
Liao AH: Lactic acid: A novel signaling molecule in early
pregnancy? Front Immunol. 11:2792020. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
He Y, Sun MM, Zhang GG, Yang J, Chen KS,
Xu WW and Li B: Targeting PI3K/Akt signal transduction for cancer
therapy. Signal Transduct Target Ther. 6:4252021. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Downward J: Targeting RAS signalling
pathways in cancer therapy. Nat Rev Cancer. 3:11–22. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Shah S, Brock EJ, Ji K and Mattingly RR:
Ras and Rap1: A tale of two GTPases. Semin Cancer Biol. 54:29–39.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Campbell BB, Galati MA, Stone SC,
Riemenschneider AN, Edwards M, Sudhaman S, Siddaway R, Komosa M,
Nunes NM, Nobre L, et al: Mutations in the RAS/MAPK pathway drive
replication repair-deficient hypermutated tumors and confer
sensitivity to MEK inhibition. Cancer Discov. 11:1454–1467. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Endo M, Yamamoto H, Setsu N, Kohashi K,
Takahashi Y, Ishii T, Iida K, Matsumoto Y, Hakozaki M, Aoki M, et
al: Prognostic significance of AKT/mTOR and MAPK pathways and
antitumor effect of mTOR inhibitor in NF1-related and sporadic
malignant peripheral nerve sheath tumors. Clin Cancer Res.
19:450–461. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Chuai Y, Rizzuto I, Zhang X, Li Y, Dai G,
Otter SJ, Bharathan R, Stewart A and Wang A: Vascular endothelial
growth factor (VEGF) targeting therapy for persistent, recurrent,
or metastatic cervical cancer. Cochrane Database Syst Rev.
3:CD0133482021.PubMed/NCBI
|