Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
June-2024 Volume 29 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
June-2024 Volume 29 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML

  • Supplementary Files
    • Supplementary_Data.pdf
Review Open Access

Mincle as a potential intervention target for the prevention of inflammation and fibrosis (Review)

  • Authors:
    • Yuanxia Zou
    • Jianchun Li
    • Hongwei Su
    • Nathupakorn Dechsupa
    • Jian Liu
    • Li Wang
  • View Affiliations / Copyright

    Affiliations: Research Center for Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China, Department of Urology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China, Molecular Imaging and Therapy Research Unit, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50000, Thailand
    Copyright: © Zou et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 103
    |
    Published online on: April 18, 2024
       https://doi.org/10.3892/mmr.2024.13227
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Macrophage‑inducible C‑type lectin receptor (Mincle) is predominantly found on antigen‑presenting cells. It can recognize specific ligands when stimulated by certain pathogens such as fungi and Mycobacterium tuberculosis. This recognition triggers the activation of the nuclear factor‑κB pathway, leading to the production of inflammatory factors and contributing to the innate immune response of the host. Moreover, Mincle identifies lipid damage‑related molecules discharged by injured cells, such as Sin3‑associated protein 130, which triggers aseptic inflammation and ultimately hastens the advancement of renal damage, autoimmune disorders and malignancies by fostering tissue inflammation. Presently, research on the functioning of the Mincle receptor in different inflammatory and fibrosis‑associated conditions has emerged as a popular topic. Nevertheless, there remains a lack of research on the impact of Mincle in promoting long‑lasting inflammatory reactions and fibrosis. Additional investigation is required into the function of Mincle receptors in chronological inflammatory reactions and fibrosis of organ systems, including the progression from inflammation to fibrosis. Hence, the present study showed an overview of the primary roles and potential mechanism of Mincle in inflammation, fibrosis, as well as the progression of inflammation to fibrosis. The aim of the present study was to clarify the potential mechanism of Mincle in inflammation and fibrosis and to offer perspectives for the development of drugs that target Mincle.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

View References

1 

Oishi Y and Manabe I: Macrophages in inflammation, repair and regeneration. Int Immunol. 30:511–528. 2018. View Article : Google Scholar

2 

Gao Q, Mok HP and Zhuang J: Secreted modular calcium-binding proteins in pathophysiological processes and embryonic development. Chin Med J (Engl). 132:2476–2484. 2019. View Article : Google Scholar : PubMed/NCBI

3 

Yamasaki S, Ishikawa E, Sakuma M, Hara H, Ogata K and Saito T: Mincle is an ITAM-coupled activating receptor that senses damaged cells. Nat Immunol. 9:1179–1188. 2008. View Article : Google Scholar

4 

Ishikawa E, Ishikawa T, Morita YS, Toyonaga K, Yamada H, Takeuchi O, Kinoshita T, Akira S, Yoshikai Y and Yamasaki S: Direct recognition of the mycobacterial glycolipid, trehalose dimycolate, by C-type lectin Mincle. J Exp Med. 206:2879–2888. 2009. View Article : Google Scholar : PubMed/NCBI

5 

Werninghaus K, Babiak A, Gross O, Hölscher C, Dietrich H, Agger EM, Mages J, Mocsai A, Schoenen H, Finger K, et al: Adjuvanticity of a synthetic cord factor analogue for subunit Mycobacterium tuberculosis vaccination requires FcRgamma-Syk-Card9-dependent innate immune activation. J Exp Med. 206:89–97. 2009. View Article : Google Scholar : PubMed/NCBI

6 

Lefèvre L, Lugo-Villarino G, Meunier E, Valentin A, Olagnier D, Authier H, Duval C, Dardenne C, Bernad J, Lemesre JL, et al: The C-type lectin receptors dectin-1, MR, and SIGNR3 contribute both positively and negatively to the macrophage response to Leishmania infantum. Immunity. 38:1038–1049. 2013. View Article : Google Scholar

7 

Seifert L, Werba G, Tiwari S, Giao Ly NN, Alothman S, Alqunaibit D, Avanzi A, Barilla R, Daley D, Greco SH, et al: The necrosome promotes pancreatic oncogenesis via CXCL1 and Mincle-induced immune suppression. Nature. 532:245–249. 2016. View Article : Google Scholar : PubMed/NCBI

8 

Lee WB, Kang JS, Choi WY, Zhang Q, Kim CH, Choi UY, Kim-Ha J and Kim YJ: Mincle-mediated translational regulation is required for strong nitric oxide production and inflammation resolution. Nat Commun. 7:113222016. View Article : Google Scholar : PubMed/NCBI

9 

Kumar H, Kawai T and Akira S: Pathogen recognition by the innate immune system. Int Rev Immunol. 30:16–34. 2011. View Article : Google Scholar

10 

Matsumoto M, Tanaka T, Kaisho T, Sanjo H, Copeland NG, Gilbert DJ, Jenkins NA and Akira S: A novel LPS-inducible C-type lectin is a transcriptional target of NF-IL6 in macrophages. J Immunol. 163:5039–5048. 1999. View Article : Google Scholar

11 

Honjoh C, Chihara K, Yoshiki H, Yamauchi S, Takeuchi K, Kato Y, Hida Y, Ishizuka T and Sada K: Association of C-type lectin Mincle with FcεRIβγ subunits leads to functional activation of RBL-2H3 cells through Syk. Sci Rep. 7:460642017. View Article : Google Scholar : PubMed/NCBI

12 

Yamasaki S, Matsumoto M, Takeuchi O, Matsuzawa T, Ishikawa E, Sakuma M, Tateno H, Uno J, Hirabayashi J, Mikami Y, et al: C-type lectin Mincle is an activating receptor for pathogenic fungus, Malassezia. Proc Natl Acad Sci USA. 106:1897–1902. 2009. View Article : Google Scholar : PubMed/NCBI

13 

Saijo S, Ikeda S, Yamabe K, Kakuta S, Ishigame H, Akitsu A, Fujikado N, Kusaka T, Kubo S, Chung SH, et al: Dectin-2 recognition of alpha-mannans and induction of Th17 cell differentiation is essential for host defense against Candida albicans. Immunity. 32:681–691. 2010. View Article : Google Scholar : PubMed/NCBI

14 

Gross O, Gewies A, Finger K, Schäfer M, Sparwasser T, Peschel C, Förster I and Ruland J: Card9 controls a non-TLR signalling pathway for innate anti-fungal immunity. Nature. 442:651–656. 2006. View Article : Google Scholar : PubMed/NCBI

15 

Hara H, Ishihara C, Takeuchi A, Imanishi T, Xue L, Morris SW, Inui M, Takai T, Shibuya A, Saijo S, et al: The adaptor protein CARD9 is essential for the activation of myeloid cells through ITAM-associated and Toll-like receptors. Nat Immunol. 8:619–629. 2007. View Article : Google Scholar

16 

Schoenen H, Bodendorfer B, Hitchens K, Manzanero S, Werninghaus K, Nimmerjahn F, Agger EM, Stenger S, Andersen P, Ruland J, et al: Cutting edge: Mincle is essential for recognition and adjuvanticity of the mycobacterial cord factor and its synthetic analog trehalose-dibehenate. J Immunol. 184:2756–2760. 2010. View Article : Google Scholar

17 

Wells CA, Salvage-Jones JA, Li X, Hitchens K, Butcher S, Murray RZ, Beckhouse AG, Lo YL, Manzanero S, Cobbold C, et al: The macrophage-inducible C-type lectin, mincle, is an essential component of the innate immune response to Candida albicans. J Immunol. 180:7404–7413. 2008. View Article : Google Scholar

18 

Kiyotake R, Oh-Hora M, Ishikawa E, Miyamoto T, Ishibashi T and Yamasaki S: Human Mincle binds to cholesterol crystals and triggers innate immune responses. J Biol Chem. 290:25322–25332. 2015. View Article : Google Scholar : PubMed/NCBI

19 

Kostarnoy AV, Gancheva PG, Lepenies B, Tukhvatulin AI, Dzharullaeva AS, Polyakov NB, Grumov DA, Egorova DA, Kulibin AY, Bobrov MA, et al: Receptor Mincle promotes skin allergies and is capable of recognizing cholesterol sulfate. Proc Natl Acad Sci USA. 114:E2758–E2765. 2017. View Article : Google Scholar : PubMed/NCBI

20 

Richardson MB, Torigoe S, Yamasaki S and Williams SJ: Mycobacterium tuberculosis β-gentiobiosyl diacylglycerides signal through the pattern recognition receptor Mincle: Total synthesis and structure activity relationships. Chem Commun (Camb). 51:15027–15030. 2015. View Article : Google Scholar : PubMed/NCBI

21 

Behler-Janbeck F, Takano T, Maus R, Stolper J, Jonigk D, Tort Tarrés M, Fuehner T, Prasse A, Welte T, Timmer MS, et al: C-type lectin mincle recognizes glucosyl-diacylglycerol of Streptococcus pneumoniae and plays a protective role in pneumococcal pneumonia. PLoS Pathog. 12:e10060382016. View Article : Google Scholar : PubMed/NCBI

22 

Shah S, Nagata M, Yamasaki S and Williams SJ: Total synthesis of a cyclopropane-fatty acid α-glucosyl diglyceride from Lactobacillus plantarum and identification of its ability to signal through Mincle. Chem Commun (Camb). 52:10902–10905. 2016. View Article : Google Scholar : PubMed/NCBI

23 

Jacobsen KM, Keiding UB, Clement LL, Schaffert ES, Rambaruth ND, Johannsen M, Drickamer K and Poulsen TB: The natural product brartemicin is a high affinity ligand for the carbohydrate-recognition domain of the macrophage receptor mincle. Medchemcomm. 6:647–652. 2015. View Article : Google Scholar : PubMed/NCBI

24 

Zhang Z, He L, Hu S, Wang Y, Lai Q, Yang P, Yu Q, Zhang S, Xiong F, Simsekyilmaz S, et al: AAL exacerbates pro-inflammatory response in macrophages by regulating Mincle/Syk/Card9 signaling along with the Nlrp3 inflammasome assembly. Am J Transl Res. 7:1812–1825. 2015.PubMed/NCBI

25 

Nagata M, Izumi Y, Ishikawa E, Kiyotake R, Doi R, Iwai S, Omahdi Z, Yamaji T, Miyamoto T, Bamba T and Yamasaki S: Intracellular metabolite β-glucosylceramide is an endogenous Mincle ligand possessing immunostimulatory activity. Proc Natl Acad Sci USA. 114:E3285–E3294. 2017. View Article : Google Scholar : PubMed/NCBI

26 

Ishikawa T, Itoh F, Yoshida S, Saijo S, Matsuzawa T, Gonoi T, Saito T, Okawa Y, Shibata N, Miyamoto T and Yamasaki S: Identification of distinct ligands for the C-type lectin receptors Mincle and dectin-2 in the pathogenic fungus Malassezia. Cell Host Microbe. 13:477–488. 2013. View Article : Google Scholar : PubMed/NCBI

27 

Williams SJ: Sensing lipids with Mincle: Structure and function. Front Immunol. 8:16622017. View Article : Google Scholar

28 

Li S, Zhang Y, Lu R, Lv X, Lei Q, Tang D, Dai Q, Deng Z, Liao X, Tu S, et al: Peroxiredoxin 1 aggravates acute kidney injury by promoting inflammation through Mincle/Syk/NF-κB signaling. Kidney Int. 104:305–323. 2023. View Article : Google Scholar

29 

Greco SH, Torres-Hernandez A, Kalabin A, Whiteman C, Rokosh R, Ravirala S, Ochi A, Gutierrez J, Salyana MA, Mani VR, et al: Mincle signaling promotes Con A hepatitis. J Immunol. 197:2816–2827. 2016. View Article : Google Scholar

30 

Zhou H, Yu M, Zhao J, Martin BN, Roychowdhury S, McMullen MR, Wang E, Fox PL, Yamasaki S, Nagy LE and Li X: IRAKM-Mincle axis links cell death to inflammation: Pathophysiological implications for chronic alcoholic liver disease. Hepatology. 64:1978–1993. 2016. View Article : Google Scholar : PubMed/NCBI

31 

Te Velde AA: The C-type lectin Mincle: Clues for a role in Crohn's disease adjuvant reaction. Front Immunol. 8:13042017. View Article : Google Scholar

32 

Arumugam TV, Manzanero S, Furtado M, Biggins PJ, Hsieh YH, Gelderblom M, MacDonald KP, Salimova E, Li YI, Korn O, et al: An atypical role for the myeloid receptor Mincle in central nervous system injury. J Cereb Blood Flow Metab. 37:2098–2111. 2017. View Article : Google Scholar : PubMed/NCBI

33 

Xie Y, Guo H, Wang L, Xu L, Zhang X, Yu L, Liu Q, Li Y, Zhao N, Zhao N, et al: Human albumin attenuates excessive innate immunity via inhibition of microglial Mincle/Syk signaling in subarachnoid hemorrhage. Brain Behav Immun. 60:346–360. 2017. View Article : Google Scholar : PubMed/NCBI

34 

Li C, Xue VW, Wang QM, Lian GY, Huang XR, Lee TL, To KF, Tang PM and Lan HY: The Mincle/Syk/NF-κB signaling circuit is essential for maintaining the protumoral activities of tumor-associated macrophages. Cancer Immunol Res. 8:1004–1017. 2020. View Article : Google Scholar : PubMed/NCBI

35 

Sethi G, Sung B and Aggarwal BB: TNF: A master switch for inflammation to cancer. Front Biosci. 13:5094–5107. 2008. View Article : Google Scholar

36 

Shapiro H, Lutaty A and Ariel A: Macrophages, meta-inflammation, and immuno-metabolism. ScientificWorldJournal. 11:2509–2529. 2011. View Article : Google Scholar

37 

Sica A and Mantovani A: Macrophage plasticity and polarization: In vivo veritas. J Clin Invest. 122:787–795. 2012. View Article : Google Scholar

38 

Luyendyk JP, Schoenecker JG and Flick MJ: The multifaceted role of fibrinogen in tissue injury and inflammation. Blood. 133:511–520. 2019. View Article : Google Scholar : PubMed/NCBI

39 

Mack M: Inflammation and fibrosis. Matrix Biol. 68–69. 106–121. 2018.

40 

Chen GY and Nuñez G: Sterile inflammation: Sensing and reacting to damage. Nat Rev Immunol. 10:826–837. 2010. View Article : Google Scholar

41 

Drouin M, Saenz J and Chiffoleau E: C-type lectin-like receptors: Head or tail in cell death immunity. Front Immunol. 11:2512020. View Article : Google Scholar

42 

Zhang J, Jiang J, Wang B, Wang Y, Qian Y, Suo J, Li Y and Peng Z: SAP130 released by ferroptosis tubular epithelial cells promotes macrophage polarization via Mincle signaling in sepsis acute kidney injury. Int Immunopharmacol. 129:1115642024. View Article : Google Scholar

43 

Lv LL, Tang PMK, Li CJ, You YK, Li J, Huang XR, Ni J, Feng M, Liu BC and Lan HY: The pattern recognition receptor, Mincle, is essential for maintaining the M1 macrophage phenotype in acute renal inflammation. Kidney Int. 91:587–602. 2017. View Article : Google Scholar

44 

Lv LL, Wang C, Li ZL, Cao JY, Zhong X, Feng Y, Chen J, Tang TT, Ni HF, Wu QL, et al: SAP130 released by damaged tubule drives necroinflammation via miRNA-219c/Mincle signaling in acute kidney injury. Cell Death Dis. 12:8662021. View Article : Google Scholar : PubMed/NCBI

45 

Tanaka M, Saka-Tanaka M, Ochi K, Fujieda K, Sugiura Y, Miyamoto T, Kohda H, Ito A, Miyazawa T, Matsumoto A, et al: C-type lectin Mincle mediates cell death-triggered inflammation in acute kidney injury. J Exp Med. 217:e201922302020. View Article : Google Scholar : PubMed/NCBI

46 

Kim JW, Roh YS, Jeong H, Yi HK, Lee MH, Lim CW and Kim B: Spliceosome-associated protein 130 exacerbates alcohol-induced liver injury by inducing NLRP3 inflammasome-mediated IL-1β in mice. Am J Pathol. 188:967–980. 2018. View Article : Google Scholar

47 

Schierwagen R, Uschner FE, Ortiz C, Torres S, Brol MJ, Tyc O, Gu W, Grimm C, Zeuzem S, Plamper A, et al: The role of macrophage-inducible C-type lectin in different stages of chronic liver disease. Front Immunol. 11:13522020. View Article : Google Scholar

48 

Nati M, Haddad D, Birkenfeld AL, Koch CA, Chavakis T and Chatzigeorgiou A: The role of immune cells in metabolism-related liver inflammation and development of non-alcoholic steatohepatitis (NASH). Rev Endocr Metab Disord. 17:29–39. 2016. View Article : Google Scholar : PubMed/NCBI

49 

Sharma A, Steichen AL, Jondle CN, Mishra BB and Sharma J: Protective role of Mincle in bacterial pneumonia by regulation of neutrophil mediated phagocytosis and extracellular trap formation. J Infect Dis. 209:1837–1846. 2014. View Article : Google Scholar : PubMed/NCBI

50 

Hollwedel FD, Maus R, Stolper J, Khan A, Stocker BL, Timmer MSM, Lu X, Pich A, Welte T, Yamasaki S and Maus UA: Overexpression of macrophage-inducible C-Type lectin mincle aggravates proinflammatory responses to Streptococcus pneumoniae with fatal outcome in mice. J Immunol. 205:3390–3399. 2020. View Article : Google Scholar

51 

Rabes A, Zimmermann S, Reppe K, Lang R, Seeberger PH, Suttorp N, Witzenrath M, Lepenies B and Opitz B: The C-type lectin receptor Mincle binds to Streptococcus pneumoniae but plays a limited role in the anti-pneumococcal innate immune response. PLoS One. 10:e01170222015. View Article : Google Scholar : PubMed/NCBI

52 

Fisher J, Card G, Liang Y, Trent B, Rosenzweig H and Soong L: Orientia tsutsugamushi selectively stimulates the C-type lectin receptor Mincle and type 1-skewed proinflammatory immune responses. PLoS Pathog. 17:e10097822021. View Article : Google Scholar : PubMed/NCBI

53 

Tanaka M: Molecular mechanism of obesity-induced adipose tissue inflammation; the role of Mincle in adipose tissue fibrosis and ectopic lipid accumulation. Endocr J. 67:107–111. 2020. View Article : Google Scholar : PubMed/NCBI

54 

Ichioka M, Suganami T, Tsuda N, Shirakawa I, Hirata Y, Satoh-Asahara N, Shimoda Y, Tanaka M, Kim-Saijo M, Miyamoto Y, et al: Increased expression of macrophage-inducible C-type lectin in adipose tissue of obese mice and humans. Diabetes. 60:819–826. 2011. View Article : Google Scholar : PubMed/NCBI

55 

Capizzi A, Woo J and Verduzco-Gutierrez M: Traumatic brain injury: An overview of epidemiology, pathophysiology, and medical management. Med Clin North Am. 104:213–238. 2020. View Article : Google Scholar : PubMed/NCBI

56 

Khellaf A, Khan DZ and Helmy A: Recent advances in traumatic brain injury. J Neurol. 266:2878–2889. 2019. View Article : Google Scholar

57 

Corrigan F, Mander KA, Leonard AV and Vink R: Neurogenic inflammation after traumatic brain injury and its potentiation of classical inflammation. J Neuroinflammation. 13:2642016. View Article : Google Scholar : PubMed/NCBI

58 

Postolache TT, Wadhawan A, Can A, Lowry CA, Woodbury M, Makkar H, Hoisington AJ, Scott AJ, Potocki E, Benros ME and Stiller JW: Inflammation in traumatic brain injury. J Alzheimers Dis. 74:1–28. 2020. View Article : Google Scholar : PubMed/NCBI

59 

de Rivero Vaccari JC, Brand FJ III, Berti AF, Alonso OF, Bullock MR and de Rivero Vaccari JP: Mincle signaling in the innate immune response after traumatic brain injury. J Neurotrauma. 32:228–236. 2015. View Article : Google Scholar

60 

He X, Huang Y, Liu Y, Zhang X, Yue P, Ma X, Miao Z, Long X, Yang Y, Wan X, et al: BAY61-3606 attenuates neuroinflammation and neurofunctional damage by inhibiting microglial Mincle/Syk signaling response after traumatic brain injury. Int J Mol Med. 49:52022. View Article : Google Scholar : PubMed/NCBI

61 

He Y, Xu L, Li B, Guo ZN, Hu Q, Guo Z, Tang J, Chen Y, Zhang Y, Tang J and Zhang JH: Macrophage-inducible C-Type lectin/spleen tyrosine kinase signaling pathway contributes to neuroinflammation after subarachnoid hemorrhage in rats. Stroke. 46:2277–2286. 2015. View Article : Google Scholar : PubMed/NCBI

62 

Calsolaro V and Edison P: Neuroinflammation in Alzheimer's disease: Current evidence and future directions. Alzheimers Dement. 12:719–732. 2016. View Article : Google Scholar

63 

Leng F and Edison P: Neuroinflammation and microglial activation in Alzheimer disease: Where do we go from here? Nat Rev Neurol. 17:157–172. 2021. View Article : Google Scholar

64 

Marogianni C, Sokratous M, Dardiotis E, Hadjigeorgiou GM, Bogdanos D and Xiromerisiou G: Neurodegeneration and inflammation-an interesting interplay in Parkinson's disease. Int J Mol Sci. 21:84212020. View Article : Google Scholar

65 

Subhramanyam CS, Wang C, Hu Q and Dheen ST: Microglia-mediated neuroinflammation in neurodegenerative diseases. Semin Cell Dev Biol. 94:112–120. 2019. View Article : Google Scholar

66 

Thadathil N, Nicklas EH, Mohammed S, Lewis TL Jr, Richardson A and Deepa SS: Necroptosis increases with age in the brain and contributes to age-related neuroinflammation. Geroscience. 43:2345–2361. 2021. View Article : Google Scholar : PubMed/NCBI

67 

Brett BL, Gardner RC, Godbout J, Dams-O'Connor K and Keene CD: Traumatic brain injury and risk of neurodegenerative disorder. Biol Psychiatry. 91:498–507. 2022. View Article : Google Scholar : PubMed/NCBI

68 

Zhao Q, Bai J, Chen Y, Liu X, Zhao S, Ling G, Jia S, Zhai F and Xiang R: An optimized herbal combination for the treatment of liver fibrosis: Hub genes, bioactive ingredients, and molecular mechanisms. J Ethnopharmacol. 297:1155672022. View Article : Google Scholar

69 

Zhang J, Xiao Y, Liu H, Xu L, Guo X, Gao Y, Li M, Xu J, Qi Q and Lv P: Edaravone dexborneol alleviates neuroinflammation by reducing neuroglial cell proliferation and suppresses neuronal apoptosis/autophagy in vascular dementia rats. Neurochem Res. 48:3113–3128. 2023. View Article : Google Scholar : PubMed/NCBI

70 

Huang XL, Zhang L, Duan Y, Wang YJ and Wang J: Association of pentraxin 3 with autoimmune diseases: A systematic review and meta-analysis. Arch Med Res. 47:223–231. 2016. View Article : Google Scholar : PubMed/NCBI

71 

Davidson A and Diamond B: Autoimmune diseases. N Engl J Med. 345:340–350. 2001. View Article : Google Scholar : PubMed/NCBI

72 

Xiao ZX, Miller JS and Zheng SG: An updated advance of autoantibodies in autoimmune diseases. Autoimmun Rev. 20:1027432021. View Article : Google Scholar : PubMed/NCBI

73 

Tan RZ, Zhong X, Han RY, Xie KH, Jia J, Yang Y, Cheng M, Yang CY, Lan HY and Wang L: Macrophages mediate psoriasis via Mincle-dependent mechanism in mice. Cell Death Discov. 9:1402023. View Article : Google Scholar : PubMed/NCBI

74 

Oh J, Vidal-Jordana A and Montalban X: Multiple sclerosis: Clinical aspects. Curr Opin Neurol. 31:752–759. 2018. View Article : Google Scholar

75 

Doshi A and Chataway J: Multiple sclerosis, a treatable disease. Clin Med (Lond). 16 (Suppl 6):s53–s59. 2016. View Article : Google Scholar : PubMed/NCBI

76 

Dobson R and Giovannoni G: Multiple sclerosis-a review. Eur J Neurol. 26:27–40. 2019. View Article : Google Scholar

77 

N'Diaye M, Brauner S, Flytzani S, Kular L, Warnecke A, Adzemovic MZ, Piket E, Min JH, Edwards W, Mela F, et al: C-type lectin receptors Mcl and Mincle control development of multiple sclerosis-like neuroinflammation. J Clin Invest. 130:838–852. 2020. View Article : Google Scholar

78 

Jadidi-Niaragh F and Mirshafiey A: Th17 cell, the new player of neuroinflammatory process in multiple sclerosis. Scand J Immunol. 74:1–13. 2011. View Article : Google Scholar

79 

Gong W, Zheng T, Guo K, Fang M, Xie H, Li W, Tang Q, Hong Z, Ren H, Gu G, et al: Corrigendum to: Mincle/Syk signalling promotes intestinal mucosal inflammation through induction of macrophage pyroptosis in Crohn's disease. J Crohns Colitis. 16:10082022. View Article : Google Scholar : PubMed/NCBI

80 

Wu XY, Guo JP, Yin FR, Lu XL, Li R, He J, Liu X and Li ZG: Macrophage-inducible C-type lectin is associated with anti-cyclic citrullinated peptide antibodies-positive rheumatoid arthritis in men. Chin Med J (Engl). 125:3115–3119. 2012.PubMed/NCBI

81 

Takata K, Takano S, Miyagi M, Mukai M, Iwase D, Aikawa J, Ohashi Y, Inoue G, Takaso M and Uchida K: Elevated macrophage-inducible C-type lectin expression in the synovial tissue of patients with rheumatoid arthritis. Cent Eur J Immunol. 46:470–473. 2021. View Article : Google Scholar

82 

Wick G, Backovic A, Rabensteiner E, Plank N, Schwentner C and Sgonc R: The immunology of fibrosis: Innate and adaptive responses. Trends Immunol. 31:110–119. 2010. View Article : Google Scholar

83 

Tao C, Xian H, Nian-Yu Z, Jia-Cui S, Dong W and Hui-Ping L: C-type lectin Mincle initiates IL-17-mediated inflammation in acute exacerbations of idiopathic pulmonary fibrosis. Biomed Pharmacother. 159:1142532023. View Article : Google Scholar : PubMed/NCBI

84 

Chen T, Qiu H, Zhao MM, Chen SS, Wu Q, Zhou NY, Lu LQ, Song JC, Tang DL, Weng D and Li HP: IL-17A contributes to HSV1 infection-induced acute lung injury in a mouse model of pulmonary fibrosis. J Cell Mol Med. 23:908–919. 2019. View Article : Google Scholar : PubMed/NCBI

85 

Tanaka M, Ikeda K, Suganami T, Komiya C, Ochi K, Shirakawa I, Hamaguchi M, Nishimura S, Manabe I, Matsuda T, et al: Macrophage-inducible C-type lectin underlies obesity-induced adipose tissue fibrosis. Nat Commun. 5:49822014. View Article : Google Scholar : PubMed/NCBI

86 

Watanabe Y, Nagai Y, Honda H, Okamoto N, Yamamoto S, Hamashima T, Ishii Y, Tanaka M, Suganami T, Sasahara M, et al: Isoliquiritigenin attenuates adipose tissue inflammation in vitro and adipose tissue fibrosis through inhibition of innate immune responses in mice. Sci Rep. 6:230972016. View Article : Google Scholar : PubMed/NCBI

87 

Liao Y, Tan RZ, Li JC, Liu TT, Zhong X, Yan Y, Yang JK, Lin X, Fan JM and Wang L: Isoliquiritigenin attenuates UUO-Induced renal inflammation and fibrosis by inhibiting Mincle/Syk/NF-kappa B signaling pathway. Drug Des Devel Ther. 14:1455–1468. 2020. View Article : Google Scholar : PubMed/NCBI

88 

Wang YY, Jiang H, Pan J, Huang XR, Wang YC, Huang HF, To KF, Nikolic-Paterson DJ, Lan HY and Chen JH: Macrophage-to-myofibroblast transition contributes to interstitial fibrosis in chronic renal allograft injury. J Am Soc Nephrol. 28:2053–2067. 2017. View Article : Google Scholar

89 

Meng XM, Wang S, Huang XR, Yang C, Xiao J, Zhang Y, To KF, Nikolic-Paterson DJ and Lan HY: Inflammatory macrophages can transdifferentiate into myofibroblasts during renal fibrosis. Cell Death Dis. 7:e24952016. View Article : Google Scholar : PubMed/NCBI

90 

Little K, Llorián-Salvador M, Tang M, Du X, Marry S, Chen M and Xu H: Macrophage to myofibroblast transition contributes to subretinal fibrosis secondary to neovascular age-related macular degeneration. J Neuroinflammation. 17:3552020. View Article : Google Scholar : PubMed/NCBI

91 

Tan RZ, Liu J, Zhang YY, Wang HL, Li JC, Liu YH, Zhong X, Zhang YW, Yan Y, Lan HY and Wang L: Curcumin relieved cisplatin-induced kidney inflammation through inhibiting Mincle-maintained M1 macrophage phenotype. Phytomedicine. 52:284–294. 2019. View Article : Google Scholar : PubMed/NCBI

92 

Tan RZ, Wang C, Deng C, Zhong X, Yan Y, Luo Y, Lan HY, He T and Wang L: Quercetin protects against cisplatin-induced acute kidney injury by inhibiting Mincle/Syk/NF-κB signaling maintained macrophage inflammation. Phytother Res. 34:139–152. 2020. View Article : Google Scholar : PubMed/NCBI

93 

Hui D, Rui-Zhi T, Jian-Chun L, Xia Z, Dan W, Jun-Ming F and Li W: Astragalus propinquus Schischkin and Panax notoginseng (A&P) compound relieved cisplatin-induced acute kidney injury through inhibiting the mincle maintained macrophage inflammation. J Ethnopharmacol. 252:1126372020. View Article : Google Scholar

94 

Lei XY, Tan RZ, Jia J, Wu SL, Wen CL, Lin X, Wang H, Shi ZJ, Li B, Kang Y and Wang L: Artesunate relieves acute kidney injury through inhibiting macrophagic Mincle-mediated necroptosis and inflammation to tubular epithelial cell. J Cell Mol Med. 25:8775–8788. 2021. View Article : Google Scholar : PubMed/NCBI

95 

Tan RZ, Li JC, Liu J, Lei XY, Zhong X, Wang C, Yan Y, Linda Ye L, Darrel Duan D, Lan HY and Wang L: BAY61-3606 protects kidney from acute ischemia/reperfusion injury through inhibiting spleen tyrosine kinase and suppressing inflammatory macrophage response. FASEB J. Sep 15–2020.(Epub ahead of print). View Article : Google Scholar

96 

Tan RZ, Yan Y, Yu Y, Diao H, Zhong X, Lin X, Liao YY and Wang L: Renoprotective effect of oridonin in a mouse model of acute kidney injury via suppression of macrophage involved inflammation. Biol Pharm Bull. 44:714–723. 2021. View Article : Google Scholar

97 

Rui-Zhi T, Hui D, Jian-Chun L, Xia Z, Xiao-Jia W, Dan W, Jun-Ming F and Li W: Astragalus mongholicus bunge and Panax notoginseng formula (A&P) combined with bifidobacterium contribute a renoprotective effect in chronic kidney disease through inhibiting macrophage inflammatory response in kidney and intestine. Front Physiol. 11:5836682020. View Article : Google Scholar

98 

Lin X, Lei XQ, Yang JK, Jia J, Zhong X, Tan RZ and Wang L: Astragalus mongholicus bunge and Panax notoginseng formula (A&P) improves renal mesangial cell damage in diabetic nephropathy by inhibiting the inflammatory response of infiltrated macrophages. BMC Complement Med Ther. 22:172022. View Article : Google Scholar : PubMed/NCBI

99 

Yang G, Kantapan J, Mazhar M, Bai X, Zou Y, Wang H, Huang B, Yang S, Dechsupa N and Wang L: Mesenchymal stem cells transplantation combined with IronQ attenuates ICH-induced inflammation response via Mincle/syk signaling pathway. Stem Cell Res Ther. 14:1312023. View Article : Google Scholar : PubMed/NCBI

100 

Papan P, Kantapan J, Sangthong P, Meepowpan P and Dechsupa N: Iron (III)-quercetin complex: Synthesis, physicochemical characterization, and MRI cell tracking toward potential applications in regenerative medicine. Contrast Media Mol Imaging. 2020:88778622020. View Article : Google Scholar : PubMed/NCBI

101 

Kantapan J, Anukul N, Leetrakool N, Rolin G, Vergote J and Dechsupa N: Iron-quercetin complex preconditioning of human peripheral blood mononuclear cells accelerates angiogenic and fibroblast migration: Implications for wound healing. Int J Mol Sci. 22:88512021. View Article : Google Scholar

102 

Dechsupa N, Kosintarajit P, Kamkan K, Khanjina T, Sirikul C, Innuan P, Suwan A, Anukul N and Kantapan J: Iron(III)-quercetin complexes' safety for MRI cell tracking in cell therapy applications: Cytotoxic and genotoxic assessment. Nanomaterials (Basel). 12:27762022. View Article : Google Scholar : PubMed/NCBI

103 

Liu XY, Dai XH, Zou W, Yu XP, Teng W, Wang Y, Yu WW, Ma HH, Chen QX, Liu P, et al: Acupuncture through Baihui (DU20) to Qubin (GB7) mitigates neurological impairment after intracerebral hemorrhage. Neural Regen Res. 13:1425–1232. 2018. View Article : Google Scholar : PubMed/NCBI

104 

Li Y, Dong Y, Ran Y, Zhang Y, Wu B, Xie J, Cao Y, Mo M, Li S, Deng H, et al: Three-dimensional cultured mesenchymal stem cells enhance repair of ischemic stroke through inhibition of microglia. Stem Cell Res Ther. 12:3582021. View Article : Google Scholar : PubMed/NCBI

105 

Antar SA, Ashour NA, Marawan ME and Al-Karmalawy AA: Fibrosis: Types, effects, markers, mechanisms for disease progression, and its relation with oxidative stress, immunity, and inflammation. Int J Mol Sci. 24:40042023. View Article : Google Scholar

106 

Wynn TA and Vannella KM: Macrophages in tissue repair, regeneration, and fibrosis. Immunity. 44:450–462. 2016. View Article : Google Scholar : PubMed/NCBI

107 

Pellicoro A, Ramachandran P, Iredale JP and Fallowfield JA: Liver fibrosis and repair: Immune regulation of wound healing in a solid organ. Nat Rev Immunol. 14:181–194. 2014. View Article : Google Scholar

108 

Savin IA, Zenkova MA and Sen'kova AV: Pulmonary fibrosis as a result of acute lung inflammation: Molecular mechanisms, relevant in vivo models, prognostic and therapeutic approaches. Int J Mol Sci. 23:149592022. View Article : Google Scholar

109 

Mohammed S, Thadathil N, Selvarani R, Nicklas EH, Wang D, Miller BF, Richardson A and Deepa SS: Necroptosis contributes to chronic inflammation and fibrosis in aging liver. Aging Cell. 20:e135122021. View Article : Google Scholar

110 

Lan HY: Diverse roles of TGF-β/Smads in renal fibrosis and inflammation. Int J Biol Sci. 7:1056–1067. 2011. View Article : Google Scholar

111 

Hashimoto K, Nishimura S, Shinyashiki Y, Ito T, Kakinoki R and Akagi M: Clinicopathological assessment of PD-1/PD-L1 immune checkpoint expression in desmoid tumors. Eur J Histochem. 67:36882023. View Article : Google Scholar : PubMed/NCBI

112 

Hashimoto K, Nishimura S, Shinyashiki Y, Ito T, Kakinoki R and Akagi M: Involvement of NY-ESO-1 and MAGE-A4 in the pathogenesis of desmoid tumors. Medicine (Baltimore). 102:e339082023. View Article : Google Scholar : PubMed/NCBI

113 

Ni K, Liu M, Zheng J, Wen L, Chen Q, Xiang Z, Lam KT, Liu Y, Chan GC, Lau YL and Tu W: PD-1/PD-L1 pathway mediates the alleviation of pulmonary fibrosis by human mesenchymal stem cells in humanized mice. Am J Respir Cell Mol Biol. 58:684–695. 2018. View Article : Google Scholar

114 

Nakamori Y, Park EJ and Shimaoka M: Immune deregulation in sepsis and septic shock: Reversing immune paralysis by targeting PD-1/PD-L1 pathway. Front Immunol. 11:6242792021. View Article : Google Scholar

115 

Roperto S, Russo V, Esposito I, Ceccarelli DM, Paciello O, Avallone L, Capparelli R and Roperto F: Mincle, an innate immune receptor, is expressed in urothelial cancer cells of papillomavirus-associated urothelial tumors of cattle. PLoS One. 10:e01416242015. View Article : Google Scholar : PubMed/NCBI

116 

Thomas R, Al-Khadairi G, Roelands J, Hendrickx W, Dermime S, Bedognetti D and Decock J: NY-ESO-1 based immunotherapy of cancer: Current perspectives. Front Immunol. 9:9472018. View Article : Google Scholar

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Zou Y, Li J, Su H, Dechsupa N, Liu J and Wang L: Mincle as a potential intervention target for the prevention of inflammation and fibrosis (Review). Mol Med Rep 29: 103, 2024.
APA
Zou, Y., Li, J., Su, H., Dechsupa, N., Liu, J., & Wang, L. (2024). Mincle as a potential intervention target for the prevention of inflammation and fibrosis (Review). Molecular Medicine Reports, 29, 103. https://doi.org/10.3892/mmr.2024.13227
MLA
Zou, Y., Li, J., Su, H., Dechsupa, N., Liu, J., Wang, L."Mincle as a potential intervention target for the prevention of inflammation and fibrosis (Review)". Molecular Medicine Reports 29.6 (2024): 103.
Chicago
Zou, Y., Li, J., Su, H., Dechsupa, N., Liu, J., Wang, L."Mincle as a potential intervention target for the prevention of inflammation and fibrosis (Review)". Molecular Medicine Reports 29, no. 6 (2024): 103. https://doi.org/10.3892/mmr.2024.13227
Copy and paste a formatted citation
x
Spandidos Publications style
Zou Y, Li J, Su H, Dechsupa N, Liu J and Wang L: Mincle as a potential intervention target for the prevention of inflammation and fibrosis (Review). Mol Med Rep 29: 103, 2024.
APA
Zou, Y., Li, J., Su, H., Dechsupa, N., Liu, J., & Wang, L. (2024). Mincle as a potential intervention target for the prevention of inflammation and fibrosis (Review). Molecular Medicine Reports, 29, 103. https://doi.org/10.3892/mmr.2024.13227
MLA
Zou, Y., Li, J., Su, H., Dechsupa, N., Liu, J., Wang, L."Mincle as a potential intervention target for the prevention of inflammation and fibrosis (Review)". Molecular Medicine Reports 29.6 (2024): 103.
Chicago
Zou, Y., Li, J., Su, H., Dechsupa, N., Liu, J., Wang, L."Mincle as a potential intervention target for the prevention of inflammation and fibrosis (Review)". Molecular Medicine Reports 29, no. 6 (2024): 103. https://doi.org/10.3892/mmr.2024.13227
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team