|
1
|
Oishi Y and Manabe I: Macrophages in
inflammation, repair and regeneration. Int Immunol. 30:511–528.
2018. View Article : Google Scholar
|
|
2
|
Gao Q, Mok HP and Zhuang J: Secreted
modular calcium-binding proteins in pathophysiological processes
and embryonic development. Chin Med J (Engl). 132:2476–2484. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Yamasaki S, Ishikawa E, Sakuma M, Hara H,
Ogata K and Saito T: Mincle is an ITAM-coupled activating receptor
that senses damaged cells. Nat Immunol. 9:1179–1188. 2008.
View Article : Google Scholar
|
|
4
|
Ishikawa E, Ishikawa T, Morita YS,
Toyonaga K, Yamada H, Takeuchi O, Kinoshita T, Akira S, Yoshikai Y
and Yamasaki S: Direct recognition of the mycobacterial glycolipid,
trehalose dimycolate, by C-type lectin Mincle. J Exp Med.
206:2879–2888. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Werninghaus K, Babiak A, Gross O, Hölscher
C, Dietrich H, Agger EM, Mages J, Mocsai A, Schoenen H, Finger K,
et al: Adjuvanticity of a synthetic cord factor analogue for
subunit Mycobacterium tuberculosis vaccination requires
FcRgamma-Syk-Card9-dependent innate immune activation. J Exp Med.
206:89–97. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Lefèvre L, Lugo-Villarino G, Meunier E,
Valentin A, Olagnier D, Authier H, Duval C, Dardenne C, Bernad J,
Lemesre JL, et al: The C-type lectin receptors dectin-1, MR, and
SIGNR3 contribute both positively and negatively to the macrophage
response to Leishmania infantum. Immunity. 38:1038–1049. 2013.
View Article : Google Scholar
|
|
7
|
Seifert L, Werba G, Tiwari S, Giao Ly NN,
Alothman S, Alqunaibit D, Avanzi A, Barilla R, Daley D, Greco SH,
et al: The necrosome promotes pancreatic oncogenesis via CXCL1 and
Mincle-induced immune suppression. Nature. 532:245–249. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Lee WB, Kang JS, Choi WY, Zhang Q, Kim CH,
Choi UY, Kim-Ha J and Kim YJ: Mincle-mediated translational
regulation is required for strong nitric oxide production and
inflammation resolution. Nat Commun. 7:113222016. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Kumar H, Kawai T and Akira S: Pathogen
recognition by the innate immune system. Int Rev Immunol. 30:16–34.
2011. View Article : Google Scholar
|
|
10
|
Matsumoto M, Tanaka T, Kaisho T, Sanjo H,
Copeland NG, Gilbert DJ, Jenkins NA and Akira S: A novel
LPS-inducible C-type lectin is a transcriptional target of NF-IL6
in macrophages. J Immunol. 163:5039–5048. 1999. View Article : Google Scholar
|
|
11
|
Honjoh C, Chihara K, Yoshiki H, Yamauchi
S, Takeuchi K, Kato Y, Hida Y, Ishizuka T and Sada K: Association
of C-type lectin Mincle with FcεRIβγ subunits leads to functional
activation of RBL-2H3 cells through Syk. Sci Rep. 7:460642017.
View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Yamasaki S, Matsumoto M, Takeuchi O,
Matsuzawa T, Ishikawa E, Sakuma M, Tateno H, Uno J, Hirabayashi J,
Mikami Y, et al: C-type lectin Mincle is an activating receptor for
pathogenic fungus, Malassezia. Proc Natl Acad Sci USA.
106:1897–1902. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Saijo S, Ikeda S, Yamabe K, Kakuta S,
Ishigame H, Akitsu A, Fujikado N, Kusaka T, Kubo S, Chung SH, et
al: Dectin-2 recognition of alpha-mannans and induction of Th17
cell differentiation is essential for host defense against
Candida albicans. Immunity. 32:681–691. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Gross O, Gewies A, Finger K, Schäfer M,
Sparwasser T, Peschel C, Förster I and Ruland J: Card9 controls a
non-TLR signalling pathway for innate anti-fungal immunity. Nature.
442:651–656. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Hara H, Ishihara C, Takeuchi A, Imanishi
T, Xue L, Morris SW, Inui M, Takai T, Shibuya A, Saijo S, et al:
The adaptor protein CARD9 is essential for the activation of
myeloid cells through ITAM-associated and Toll-like receptors. Nat
Immunol. 8:619–629. 2007. View
Article : Google Scholar
|
|
16
|
Schoenen H, Bodendorfer B, Hitchens K,
Manzanero S, Werninghaus K, Nimmerjahn F, Agger EM, Stenger S,
Andersen P, Ruland J, et al: Cutting edge: Mincle is essential for
recognition and adjuvanticity of the mycobacterial cord factor and
its synthetic analog trehalose-dibehenate. J Immunol.
184:2756–2760. 2010. View Article : Google Scholar
|
|
17
|
Wells CA, Salvage-Jones JA, Li X, Hitchens
K, Butcher S, Murray RZ, Beckhouse AG, Lo YL, Manzanero S, Cobbold
C, et al: The macrophage-inducible C-type lectin, mincle, is an
essential component of the innate immune response to Candida
albicans. J Immunol. 180:7404–7413. 2008. View Article : Google Scholar
|
|
18
|
Kiyotake R, Oh-Hora M, Ishikawa E,
Miyamoto T, Ishibashi T and Yamasaki S: Human Mincle binds to
cholesterol crystals and triggers innate immune responses. J Biol
Chem. 290:25322–25332. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Kostarnoy AV, Gancheva PG, Lepenies B,
Tukhvatulin AI, Dzharullaeva AS, Polyakov NB, Grumov DA, Egorova
DA, Kulibin AY, Bobrov MA, et al: Receptor Mincle promotes skin
allergies and is capable of recognizing cholesterol sulfate. Proc
Natl Acad Sci USA. 114:E2758–E2765. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Richardson MB, Torigoe S, Yamasaki S and
Williams SJ: Mycobacterium tuberculosis β-gentiobiosyl
diacylglycerides signal through the pattern recognition receptor
Mincle: Total synthesis and structure activity relationships. Chem
Commun (Camb). 51:15027–15030. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Behler-Janbeck F, Takano T, Maus R,
Stolper J, Jonigk D, Tort Tarrés M, Fuehner T, Prasse A, Welte T,
Timmer MS, et al: C-type lectin mincle recognizes
glucosyl-diacylglycerol of Streptococcus pneumoniae and
plays a protective role in pneumococcal pneumonia. PLoS Pathog.
12:e10060382016. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Shah S, Nagata M, Yamasaki S and Williams
SJ: Total synthesis of a cyclopropane-fatty acid α-glucosyl
diglyceride from Lactobacillus plantarum and identification of its
ability to signal through Mincle. Chem Commun (Camb).
52:10902–10905. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Jacobsen KM, Keiding UB, Clement LL,
Schaffert ES, Rambaruth ND, Johannsen M, Drickamer K and Poulsen
TB: The natural product brartemicin is a high affinity ligand for
the carbohydrate-recognition domain of the macrophage receptor
mincle. Medchemcomm. 6:647–652. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Zhang Z, He L, Hu S, Wang Y, Lai Q, Yang
P, Yu Q, Zhang S, Xiong F, Simsekyilmaz S, et al: AAL exacerbates
pro-inflammatory response in macrophages by regulating
Mincle/Syk/Card9 signaling along with the Nlrp3 inflammasome
assembly. Am J Transl Res. 7:1812–1825. 2015.PubMed/NCBI
|
|
25
|
Nagata M, Izumi Y, Ishikawa E, Kiyotake R,
Doi R, Iwai S, Omahdi Z, Yamaji T, Miyamoto T, Bamba T and Yamasaki
S: Intracellular metabolite β-glucosylceramide is an endogenous
Mincle ligand possessing immunostimulatory activity. Proc Natl Acad
Sci USA. 114:E3285–E3294. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Ishikawa T, Itoh F, Yoshida S, Saijo S,
Matsuzawa T, Gonoi T, Saito T, Okawa Y, Shibata N, Miyamoto T and
Yamasaki S: Identification of distinct ligands for the C-type
lectin receptors Mincle and dectin-2 in the pathogenic fungus
Malassezia. Cell Host Microbe. 13:477–488. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Williams SJ: Sensing lipids with Mincle:
Structure and function. Front Immunol. 8:16622017. View Article : Google Scholar
|
|
28
|
Li S, Zhang Y, Lu R, Lv X, Lei Q, Tang D,
Dai Q, Deng Z, Liao X, Tu S, et al: Peroxiredoxin 1 aggravates
acute kidney injury by promoting inflammation through
Mincle/Syk/NF-κB signaling. Kidney Int. 104:305–323. 2023.
View Article : Google Scholar
|
|
29
|
Greco SH, Torres-Hernandez A, Kalabin A,
Whiteman C, Rokosh R, Ravirala S, Ochi A, Gutierrez J, Salyana MA,
Mani VR, et al: Mincle signaling promotes Con A hepatitis. J
Immunol. 197:2816–2827. 2016. View Article : Google Scholar
|
|
30
|
Zhou H, Yu M, Zhao J, Martin BN,
Roychowdhury S, McMullen MR, Wang E, Fox PL, Yamasaki S, Nagy LE
and Li X: IRAKM-Mincle axis links cell death to inflammation:
Pathophysiological implications for chronic alcoholic liver
disease. Hepatology. 64:1978–1993. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Te Velde AA: The C-type lectin Mincle:
Clues for a role in Crohn's disease adjuvant reaction. Front
Immunol. 8:13042017. View Article : Google Scholar
|
|
32
|
Arumugam TV, Manzanero S, Furtado M,
Biggins PJ, Hsieh YH, Gelderblom M, MacDonald KP, Salimova E, Li
YI, Korn O, et al: An atypical role for the myeloid receptor Mincle
in central nervous system injury. J Cereb Blood Flow Metab.
37:2098–2111. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Xie Y, Guo H, Wang L, Xu L, Zhang X, Yu L,
Liu Q, Li Y, Zhao N, Zhao N, et al: Human albumin attenuates
excessive innate immunity via inhibition of microglial Mincle/Syk
signaling in subarachnoid hemorrhage. Brain Behav Immun.
60:346–360. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Li C, Xue VW, Wang QM, Lian GY, Huang XR,
Lee TL, To KF, Tang PM and Lan HY: The Mincle/Syk/NF-κB signaling
circuit is essential for maintaining the protumoral activities of
tumor-associated macrophages. Cancer Immunol Res. 8:1004–1017.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Sethi G, Sung B and Aggarwal BB: TNF: A
master switch for inflammation to cancer. Front Biosci.
13:5094–5107. 2008. View
Article : Google Scholar
|
|
36
|
Shapiro H, Lutaty A and Ariel A:
Macrophages, meta-inflammation, and immuno-metabolism.
ScientificWorldJournal. 11:2509–2529. 2011. View Article : Google Scholar
|
|
37
|
Sica A and Mantovani A: Macrophage
plasticity and polarization: In vivo veritas. J Clin Invest.
122:787–795. 2012. View Article : Google Scholar
|
|
38
|
Luyendyk JP, Schoenecker JG and Flick MJ:
The multifaceted role of fibrinogen in tissue injury and
inflammation. Blood. 133:511–520. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Mack M: Inflammation and fibrosis. Matrix
Biol. 68–69. 106–121. 2018.
|
|
40
|
Chen GY and Nuñez G: Sterile inflammation:
Sensing and reacting to damage. Nat Rev Immunol. 10:826–837. 2010.
View Article : Google Scholar
|
|
41
|
Drouin M, Saenz J and Chiffoleau E: C-type
lectin-like receptors: Head or tail in cell death immunity. Front
Immunol. 11:2512020. View Article : Google Scholar
|
|
42
|
Zhang J, Jiang J, Wang B, Wang Y, Qian Y,
Suo J, Li Y and Peng Z: SAP130 released by ferroptosis tubular
epithelial cells promotes macrophage polarization via Mincle
signaling in sepsis acute kidney injury. Int Immunopharmacol.
129:1115642024. View Article : Google Scholar
|
|
43
|
Lv LL, Tang PMK, Li CJ, You YK, Li J,
Huang XR, Ni J, Feng M, Liu BC and Lan HY: The pattern recognition
receptor, Mincle, is essential for maintaining the M1 macrophage
phenotype in acute renal inflammation. Kidney Int. 91:587–602.
2017. View Article : Google Scholar
|
|
44
|
Lv LL, Wang C, Li ZL, Cao JY, Zhong X,
Feng Y, Chen J, Tang TT, Ni HF, Wu QL, et al: SAP130 released by
damaged tubule drives necroinflammation via miRNA-219c/Mincle
signaling in acute kidney injury. Cell Death Dis. 12:8662021.
View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Tanaka M, Saka-Tanaka M, Ochi K, Fujieda
K, Sugiura Y, Miyamoto T, Kohda H, Ito A, Miyazawa T, Matsumoto A,
et al: C-type lectin Mincle mediates cell death-triggered
inflammation in acute kidney injury. J Exp Med. 217:e201922302020.
View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Kim JW, Roh YS, Jeong H, Yi HK, Lee MH,
Lim CW and Kim B: Spliceosome-associated protein 130 exacerbates
alcohol-induced liver injury by inducing NLRP3
inflammasome-mediated IL-1β in mice. Am J Pathol. 188:967–980.
2018. View Article : Google Scholar
|
|
47
|
Schierwagen R, Uschner FE, Ortiz C, Torres
S, Brol MJ, Tyc O, Gu W, Grimm C, Zeuzem S, Plamper A, et al: The
role of macrophage-inducible C-type lectin in different stages of
chronic liver disease. Front Immunol. 11:13522020. View Article : Google Scholar
|
|
48
|
Nati M, Haddad D, Birkenfeld AL, Koch CA,
Chavakis T and Chatzigeorgiou A: The role of immune cells in
metabolism-related liver inflammation and development of
non-alcoholic steatohepatitis (NASH). Rev Endocr Metab Disord.
17:29–39. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Sharma A, Steichen AL, Jondle CN, Mishra
BB and Sharma J: Protective role of Mincle in bacterial pneumonia
by regulation of neutrophil mediated phagocytosis and extracellular
trap formation. J Infect Dis. 209:1837–1846. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Hollwedel FD, Maus R, Stolper J, Khan A,
Stocker BL, Timmer MSM, Lu X, Pich A, Welte T, Yamasaki S and Maus
UA: Overexpression of macrophage-inducible C-Type lectin mincle
aggravates proinflammatory responses to Streptococcus
pneumoniae with fatal outcome in mice. J Immunol.
205:3390–3399. 2020. View Article : Google Scholar
|
|
51
|
Rabes A, Zimmermann S, Reppe K, Lang R,
Seeberger PH, Suttorp N, Witzenrath M, Lepenies B and Opitz B: The
C-type lectin receptor Mincle binds to Streptococcus
pneumoniae but plays a limited role in the anti-pneumococcal
innate immune response. PLoS One. 10:e01170222015. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Fisher J, Card G, Liang Y, Trent B,
Rosenzweig H and Soong L: Orientia tsutsugamushi selectively
stimulates the C-type lectin receptor Mincle and type 1-skewed
proinflammatory immune responses. PLoS Pathog. 17:e10097822021.
View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Tanaka M: Molecular mechanism of
obesity-induced adipose tissue inflammation; the role of Mincle in
adipose tissue fibrosis and ectopic lipid accumulation. Endocr J.
67:107–111. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Ichioka M, Suganami T, Tsuda N, Shirakawa
I, Hirata Y, Satoh-Asahara N, Shimoda Y, Tanaka M, Kim-Saijo M,
Miyamoto Y, et al: Increased expression of macrophage-inducible
C-type lectin in adipose tissue of obese mice and humans. Diabetes.
60:819–826. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Capizzi A, Woo J and Verduzco-Gutierrez M:
Traumatic brain injury: An overview of epidemiology,
pathophysiology, and medical management. Med Clin North Am.
104:213–238. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Khellaf A, Khan DZ and Helmy A: Recent
advances in traumatic brain injury. J Neurol. 266:2878–2889. 2019.
View Article : Google Scholar
|
|
57
|
Corrigan F, Mander KA, Leonard AV and Vink
R: Neurogenic inflammation after traumatic brain injury and its
potentiation of classical inflammation. J Neuroinflammation.
13:2642016. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Postolache TT, Wadhawan A, Can A, Lowry
CA, Woodbury M, Makkar H, Hoisington AJ, Scott AJ, Potocki E,
Benros ME and Stiller JW: Inflammation in traumatic brain injury. J
Alzheimers Dis. 74:1–28. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
de Rivero Vaccari JC, Brand FJ III, Berti
AF, Alonso OF, Bullock MR and de Rivero Vaccari JP: Mincle
signaling in the innate immune response after traumatic brain
injury. J Neurotrauma. 32:228–236. 2015. View Article : Google Scholar
|
|
60
|
He X, Huang Y, Liu Y, Zhang X, Yue P, Ma
X, Miao Z, Long X, Yang Y, Wan X, et al: BAY61-3606 attenuates
neuroinflammation and neurofunctional damage by inhibiting
microglial Mincle/Syk signaling response after traumatic brain
injury. Int J Mol Med. 49:52022. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
He Y, Xu L, Li B, Guo ZN, Hu Q, Guo Z,
Tang J, Chen Y, Zhang Y, Tang J and Zhang JH: Macrophage-inducible
C-Type lectin/spleen tyrosine kinase signaling pathway contributes
to neuroinflammation after subarachnoid hemorrhage in rats. Stroke.
46:2277–2286. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Calsolaro V and Edison P:
Neuroinflammation in Alzheimer's disease: Current evidence and
future directions. Alzheimers Dement. 12:719–732. 2016. View Article : Google Scholar
|
|
63
|
Leng F and Edison P: Neuroinflammation and
microglial activation in Alzheimer disease: Where do we go from
here? Nat Rev Neurol. 17:157–172. 2021. View Article : Google Scholar
|
|
64
|
Marogianni C, Sokratous M, Dardiotis E,
Hadjigeorgiou GM, Bogdanos D and Xiromerisiou G: Neurodegeneration
and inflammation-an interesting interplay in Parkinson's disease.
Int J Mol Sci. 21:84212020. View Article : Google Scholar
|
|
65
|
Subhramanyam CS, Wang C, Hu Q and Dheen
ST: Microglia-mediated neuroinflammation in neurodegenerative
diseases. Semin Cell Dev Biol. 94:112–120. 2019. View Article : Google Scholar
|
|
66
|
Thadathil N, Nicklas EH, Mohammed S, Lewis
TL Jr, Richardson A and Deepa SS: Necroptosis increases with age in
the brain and contributes to age-related neuroinflammation.
Geroscience. 43:2345–2361. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Brett BL, Gardner RC, Godbout J,
Dams-O'Connor K and Keene CD: Traumatic brain injury and risk of
neurodegenerative disorder. Biol Psychiatry. 91:498–507. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Zhao Q, Bai J, Chen Y, Liu X, Zhao S, Ling
G, Jia S, Zhai F and Xiang R: An optimized herbal combination for
the treatment of liver fibrosis: Hub genes, bioactive ingredients,
and molecular mechanisms. J Ethnopharmacol. 297:1155672022.
View Article : Google Scholar
|
|
69
|
Zhang J, Xiao Y, Liu H, Xu L, Guo X, Gao
Y, Li M, Xu J, Qi Q and Lv P: Edaravone dexborneol alleviates
neuroinflammation by reducing neuroglial cell proliferation and
suppresses neuronal apoptosis/autophagy in vascular dementia rats.
Neurochem Res. 48:3113–3128. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Huang XL, Zhang L, Duan Y, Wang YJ and
Wang J: Association of pentraxin 3 with autoimmune diseases: A
systematic review and meta-analysis. Arch Med Res. 47:223–231.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Davidson A and Diamond B: Autoimmune
diseases. N Engl J Med. 345:340–350. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Xiao ZX, Miller JS and Zheng SG: An
updated advance of autoantibodies in autoimmune diseases. Autoimmun
Rev. 20:1027432021. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Tan RZ, Zhong X, Han RY, Xie KH, Jia J,
Yang Y, Cheng M, Yang CY, Lan HY and Wang L: Macrophages mediate
psoriasis via Mincle-dependent mechanism in mice. Cell Death
Discov. 9:1402023. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Oh J, Vidal-Jordana A and Montalban X:
Multiple sclerosis: Clinical aspects. Curr Opin Neurol. 31:752–759.
2018. View Article : Google Scholar
|
|
75
|
Doshi A and Chataway J: Multiple
sclerosis, a treatable disease. Clin Med (Lond). 16 (Suppl
6):s53–s59. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Dobson R and Giovannoni G: Multiple
sclerosis-a review. Eur J Neurol. 26:27–40. 2019. View Article : Google Scholar
|
|
77
|
N'Diaye M, Brauner S, Flytzani S, Kular L,
Warnecke A, Adzemovic MZ, Piket E, Min JH, Edwards W, Mela F, et
al: C-type lectin receptors Mcl and Mincle control development of
multiple sclerosis-like neuroinflammation. J Clin Invest.
130:838–852. 2020. View Article : Google Scholar
|
|
78
|
Jadidi-Niaragh F and Mirshafiey A: Th17
cell, the new player of neuroinflammatory process in multiple
sclerosis. Scand J Immunol. 74:1–13. 2011. View Article : Google Scholar
|
|
79
|
Gong W, Zheng T, Guo K, Fang M, Xie H, Li
W, Tang Q, Hong Z, Ren H, Gu G, et al: Corrigendum to: Mincle/Syk
signalling promotes intestinal mucosal inflammation through
induction of macrophage pyroptosis in Crohn's disease. J Crohns
Colitis. 16:10082022. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Wu XY, Guo JP, Yin FR, Lu XL, Li R, He J,
Liu X and Li ZG: Macrophage-inducible C-type lectin is associated
with anti-cyclic citrullinated peptide antibodies-positive
rheumatoid arthritis in men. Chin Med J (Engl). 125:3115–3119.
2012.PubMed/NCBI
|
|
81
|
Takata K, Takano S, Miyagi M, Mukai M,
Iwase D, Aikawa J, Ohashi Y, Inoue G, Takaso M and Uchida K:
Elevated macrophage-inducible C-type lectin expression in the
synovial tissue of patients with rheumatoid arthritis. Cent Eur J
Immunol. 46:470–473. 2021. View Article : Google Scholar
|
|
82
|
Wick G, Backovic A, Rabensteiner E, Plank
N, Schwentner C and Sgonc R: The immunology of fibrosis: Innate and
adaptive responses. Trends Immunol. 31:110–119. 2010. View Article : Google Scholar
|
|
83
|
Tao C, Xian H, Nian-Yu Z, Jia-Cui S, Dong
W and Hui-Ping L: C-type lectin Mincle initiates IL-17-mediated
inflammation in acute exacerbations of idiopathic pulmonary
fibrosis. Biomed Pharmacother. 159:1142532023. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Chen T, Qiu H, Zhao MM, Chen SS, Wu Q,
Zhou NY, Lu LQ, Song JC, Tang DL, Weng D and Li HP: IL-17A
contributes to HSV1 infection-induced acute lung injury in a mouse
model of pulmonary fibrosis. J Cell Mol Med. 23:908–919. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Tanaka M, Ikeda K, Suganami T, Komiya C,
Ochi K, Shirakawa I, Hamaguchi M, Nishimura S, Manabe I, Matsuda T,
et al: Macrophage-inducible C-type lectin underlies obesity-induced
adipose tissue fibrosis. Nat Commun. 5:49822014. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Watanabe Y, Nagai Y, Honda H, Okamoto N,
Yamamoto S, Hamashima T, Ishii Y, Tanaka M, Suganami T, Sasahara M,
et al: Isoliquiritigenin attenuates adipose tissue inflammation in
vitro and adipose tissue fibrosis through inhibition of innate
immune responses in mice. Sci Rep. 6:230972016. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Liao Y, Tan RZ, Li JC, Liu TT, Zhong X,
Yan Y, Yang JK, Lin X, Fan JM and Wang L: Isoliquiritigenin
attenuates UUO-Induced renal inflammation and fibrosis by
inhibiting Mincle/Syk/NF-kappa B signaling pathway. Drug Des Devel
Ther. 14:1455–1468. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Wang YY, Jiang H, Pan J, Huang XR, Wang
YC, Huang HF, To KF, Nikolic-Paterson DJ, Lan HY and Chen JH:
Macrophage-to-myofibroblast transition contributes to interstitial
fibrosis in chronic renal allograft injury. J Am Soc Nephrol.
28:2053–2067. 2017. View Article : Google Scholar
|
|
89
|
Meng XM, Wang S, Huang XR, Yang C, Xiao J,
Zhang Y, To KF, Nikolic-Paterson DJ and Lan HY: Inflammatory
macrophages can transdifferentiate into myofibroblasts during renal
fibrosis. Cell Death Dis. 7:e24952016. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Little K, Llorián-Salvador M, Tang M, Du
X, Marry S, Chen M and Xu H: Macrophage to myofibroblast transition
contributes to subretinal fibrosis secondary to neovascular
age-related macular degeneration. J Neuroinflammation. 17:3552020.
View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Tan RZ, Liu J, Zhang YY, Wang HL, Li JC,
Liu YH, Zhong X, Zhang YW, Yan Y, Lan HY and Wang L: Curcumin
relieved cisplatin-induced kidney inflammation through inhibiting
Mincle-maintained M1 macrophage phenotype. Phytomedicine.
52:284–294. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Tan RZ, Wang C, Deng C, Zhong X, Yan Y,
Luo Y, Lan HY, He T and Wang L: Quercetin protects against
cisplatin-induced acute kidney injury by inhibiting
Mincle/Syk/NF-κB signaling maintained macrophage inflammation.
Phytother Res. 34:139–152. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Hui D, Rui-Zhi T, Jian-Chun L, Xia Z, Dan
W, Jun-Ming F and Li W: Astragalus propinquus Schischkin and
Panax notoginseng (A&P) compound relieved
cisplatin-induced acute kidney injury through inhibiting the mincle
maintained macrophage inflammation. J Ethnopharmacol.
252:1126372020. View Article : Google Scholar
|
|
94
|
Lei XY, Tan RZ, Jia J, Wu SL, Wen CL, Lin
X, Wang H, Shi ZJ, Li B, Kang Y and Wang L: Artesunate relieves
acute kidney injury through inhibiting macrophagic Mincle-mediated
necroptosis and inflammation to tubular epithelial cell. J Cell Mol
Med. 25:8775–8788. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Tan RZ, Li JC, Liu J, Lei XY, Zhong X,
Wang C, Yan Y, Linda Ye L, Darrel Duan D, Lan HY and Wang L:
BAY61-3606 protects kidney from acute ischemia/reperfusion injury
through inhibiting spleen tyrosine kinase and suppressing
inflammatory macrophage response. FASEB J. Sep 15–2020.(Epub ahead
of print). View Article : Google Scholar
|
|
96
|
Tan RZ, Yan Y, Yu Y, Diao H, Zhong X, Lin
X, Liao YY and Wang L: Renoprotective effect of oridonin in a mouse
model of acute kidney injury via suppression of macrophage involved
inflammation. Biol Pharm Bull. 44:714–723. 2021. View Article : Google Scholar
|
|
97
|
Rui-Zhi T, Hui D, Jian-Chun L, Xia Z,
Xiao-Jia W, Dan W, Jun-Ming F and Li W: Astragalus
mongholicus bunge and Panax notoginseng formula
(A&P) combined with bifidobacterium contribute a renoprotective
effect in chronic kidney disease through inhibiting macrophage
inflammatory response in kidney and intestine. Front Physiol.
11:5836682020. View Article : Google Scholar
|
|
98
|
Lin X, Lei XQ, Yang JK, Jia J, Zhong X,
Tan RZ and Wang L: Astragalus mongholicus bunge and Panax
notoginseng formula (A&P) improves renal mesangial cell
damage in diabetic nephropathy by inhibiting the inflammatory
response of infiltrated macrophages. BMC Complement Med Ther.
22:172022. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Yang G, Kantapan J, Mazhar M, Bai X, Zou
Y, Wang H, Huang B, Yang S, Dechsupa N and Wang L: Mesenchymal stem
cells transplantation combined with IronQ attenuates ICH-induced
inflammation response via Mincle/syk signaling pathway. Stem Cell
Res Ther. 14:1312023. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Papan P, Kantapan J, Sangthong P,
Meepowpan P and Dechsupa N: Iron (III)-quercetin complex:
Synthesis, physicochemical characterization, and MRI cell tracking
toward potential applications in regenerative medicine. Contrast
Media Mol Imaging. 2020:88778622020. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Kantapan J, Anukul N, Leetrakool N, Rolin
G, Vergote J and Dechsupa N: Iron-quercetin complex preconditioning
of human peripheral blood mononuclear cells accelerates angiogenic
and fibroblast migration: Implications for wound healing. Int J Mol
Sci. 22:88512021. View Article : Google Scholar
|
|
102
|
Dechsupa N, Kosintarajit P, Kamkan K,
Khanjina T, Sirikul C, Innuan P, Suwan A, Anukul N and Kantapan J:
Iron(III)-quercetin complexes' safety for MRI cell tracking in cell
therapy applications: Cytotoxic and genotoxic assessment.
Nanomaterials (Basel). 12:27762022. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Liu XY, Dai XH, Zou W, Yu XP, Teng W, Wang
Y, Yu WW, Ma HH, Chen QX, Liu P, et al: Acupuncture through Baihui
(DU20) to Qubin (GB7) mitigates neurological impairment after
intracerebral hemorrhage. Neural Regen Res. 13:1425–1232. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Li Y, Dong Y, Ran Y, Zhang Y, Wu B, Xie J,
Cao Y, Mo M, Li S, Deng H, et al: Three-dimensional cultured
mesenchymal stem cells enhance repair of ischemic stroke through
inhibition of microglia. Stem Cell Res Ther. 12:3582021. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Antar SA, Ashour NA, Marawan ME and
Al-Karmalawy AA: Fibrosis: Types, effects, markers, mechanisms for
disease progression, and its relation with oxidative stress,
immunity, and inflammation. Int J Mol Sci. 24:40042023. View Article : Google Scholar
|
|
106
|
Wynn TA and Vannella KM: Macrophages in
tissue repair, regeneration, and fibrosis. Immunity. 44:450–462.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Pellicoro A, Ramachandran P, Iredale JP
and Fallowfield JA: Liver fibrosis and repair: Immune regulation of
wound healing in a solid organ. Nat Rev Immunol. 14:181–194. 2014.
View Article : Google Scholar
|
|
108
|
Savin IA, Zenkova MA and Sen'kova AV:
Pulmonary fibrosis as a result of acute lung inflammation:
Molecular mechanisms, relevant in vivo models, prognostic and
therapeutic approaches. Int J Mol Sci. 23:149592022. View Article : Google Scholar
|
|
109
|
Mohammed S, Thadathil N, Selvarani R,
Nicklas EH, Wang D, Miller BF, Richardson A and Deepa SS:
Necroptosis contributes to chronic inflammation and fibrosis in
aging liver. Aging Cell. 20:e135122021. View Article : Google Scholar
|
|
110
|
Lan HY: Diverse roles of TGF-β/Smads in
renal fibrosis and inflammation. Int J Biol Sci. 7:1056–1067. 2011.
View Article : Google Scholar
|
|
111
|
Hashimoto K, Nishimura S, Shinyashiki Y,
Ito T, Kakinoki R and Akagi M: Clinicopathological assessment of
PD-1/PD-L1 immune checkpoint expression in desmoid tumors. Eur J
Histochem. 67:36882023. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Hashimoto K, Nishimura S, Shinyashiki Y,
Ito T, Kakinoki R and Akagi M: Involvement of NY-ESO-1 and MAGE-A4
in the pathogenesis of desmoid tumors. Medicine (Baltimore).
102:e339082023. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Ni K, Liu M, Zheng J, Wen L, Chen Q, Xiang
Z, Lam KT, Liu Y, Chan GC, Lau YL and Tu W: PD-1/PD-L1 pathway
mediates the alleviation of pulmonary fibrosis by human mesenchymal
stem cells in humanized mice. Am J Respir Cell Mol Biol.
58:684–695. 2018. View Article : Google Scholar
|
|
114
|
Nakamori Y, Park EJ and Shimaoka M: Immune
deregulation in sepsis and septic shock: Reversing immune paralysis
by targeting PD-1/PD-L1 pathway. Front Immunol. 11:6242792021.
View Article : Google Scholar
|
|
115
|
Roperto S, Russo V, Esposito I, Ceccarelli
DM, Paciello O, Avallone L, Capparelli R and Roperto F: Mincle, an
innate immune receptor, is expressed in urothelial cancer cells of
papillomavirus-associated urothelial tumors of cattle. PLoS One.
10:e01416242015. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Thomas R, Al-Khadairi G, Roelands J,
Hendrickx W, Dermime S, Bedognetti D and Decock J: NY-ESO-1 based
immunotherapy of cancer: Current perspectives. Front Immunol.
9:9472018. View Article : Google Scholar
|