Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
July-2024 Volume 30 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
July-2024 Volume 30 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Pancreatic stellate cells: Key players in pancreatic health and diseases (Review)

  • Authors:
    • Zhengfeng Wang
    • Shi Dong
    • Wence Zhou
  • View Affiliations / Copyright

    Affiliations: Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China, The Second School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu 730000, P.R. China, Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, P.R. China
    Copyright: © Wang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 109
    |
    Published online on: May 1, 2024
       https://doi.org/10.3892/mmr.2024.13233
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

As a pluripotent cell, activated pancreatic stellate cells (PSCs) can differentiate into various pancreatic parenchymal cells and participate in the secretion of extracellular matrix and the repair of pancreatic damage. Additionally, PSCs characteristics allow them to contribute to pancreatic inflammation and carcinogenesis. Moreover, a detailed study of the pathogenesis of activated PSCs in pancreatic disease can offer promise for the development of innovative therapeutic strategies and improved patient prognoses. Therefore, the present study review aimed to examine the involvement of activated PSCs in pancreatic diseases and elucidate the underlying mechanisms to provide a viable therapeutic strategy for the management of pancreas‑related diseases.
View Figures

Figure 1

Figure 2

View References

1 

Wang Y, Li HT, Liu G, Jiang CS, Ni YH, Zeng JH, Lin X, Wang QY, Li DZ, Wang W and Zeng XP: COMP promotes pancreatic fibrosis by activating pancreatic stellate cells through CD36-ERK/AKT signaling pathways. Cell Signal. 118:1111352024. View Article : Google Scholar : PubMed/NCBI

2 

Apte MV, Pirola RC and Wilson JS: Pancreatic stellate cells: A starring role in normal and diseased pancreas. Front Physiol. 3:3442012. View Article : Google Scholar : PubMed/NCBI

3 

Omary MB, Lugea A, Lowe AW and Pandol SJ: The pancreatic stellate cell: A star on the rise in pancreatic diseases. J Clin Invest. 117:50–59. 2007. View Article : Google Scholar : PubMed/NCBI

4 

Apte M, Pirola R and Wilson J: The fibrosis of chronic pancreatitis: New insights into the role of pancreatic stellate cells. Antioxid Redox Signal. 15:2711–2722. 2011. View Article : Google Scholar : PubMed/NCBI

5 

Erkan M, Adler G, Apte MV, Bachem MG, Buchholz M, Detlefsen S, Esposito I, Friess H, Gress TM, Habisch HJ, et al: StellaTUM: Current consensus and discussion on pancreatic stellate cell research. Gut. 61:172–178. 2012. View Article : Google Scholar : PubMed/NCBI

6 

Ulmasov B, Neuschwander-Tetri BA, Lai J, Monastyrskiy V, Bhat T, Yates MP, Oliva J, Prinsen MJ, Ruminski PG and Griggs DW: Inhibitors of Arg-Gly-Asp-Binding integrins reduce development of pancreatic fibrosis in mice. Cell Mol Gastroenterol Hepatol. 2:499–518. 2016. View Article : Google Scholar : PubMed/NCBI

7 

Masamune A and Shimosegawa T: Pancreatic stellate cells-multi-functional cells in the pancreas. Pancreatology. 13:102–105. 2013. View Article : Google Scholar : PubMed/NCBI

8 

Murray ER, Menezes S, Henry JC, Williams JL, Alba-Castellón L, Baskaran P, Quétier I, Desai A, Marshall JJT, Rosewell I, et al: Disruption of pancreatic stellate cell myofibroblast phenotype promotes pancreatic tumor invasion. Cell Rep. 38:1102272022. View Article : Google Scholar : PubMed/NCBI

9 

Yu L, Li JJ, Liang XL, Wu H and Liang Z: PSME3 Promotes TGFB1 secretion by PC cells to induce pancreatic stellate cell proliferation. J Cancer. 10:2128–2138. 2019. View Article : Google Scholar : PubMed/NCBI

10 

Derynck R and Budi EH: Specificity, versatility, and control of TGF-β family signaling. Sci Signal. 12:eaav51832019. View Article : Google Scholar : PubMed/NCBI

11 

Gough NR, Xiang X and Mishra L: TGF-β signaling in liver, pancreas, and gastrointestinal diseases and cancer. Gastroenterology. 161:434–452.e15. 2021. View Article : Google Scholar : PubMed/NCBI

12 

Wu B, Zhang S, Guo Z, Bi Y, Zhou M, Li P, Seyedsadr M, Xu X, Li JL, Markovic-Plese S and Wan YY: The TGF-β superfamily cytokine Activin-A is induced during autoimmune neuroinflammation and drives pathogenic Th17 cell differentiation. Immunity. 54:308–323.e6. 2021. View Article : Google Scholar : PubMed/NCBI

13 

Apte MV, Haber PS, Darby SJ, Rodgers SC, McCaughan GW, Korsten MA, Pirola RC and Wilson JS: Pancreatic stellate cells are activated by proinflammatory cytokines: Implications for pancreatic fibrogenesis. Gut. 44:534–541. 1999. View Article : Google Scholar : PubMed/NCBI

14 

Lee H, Lim C, Lee J, Kim N, Bang S, Lee H, Min B, Park G, Noda M, Stetler-Stevenson WG and Oh J: TGF-beta signaling preserves RECK expression in activated pancreatic stellate cells. J Cell Biochem. 104:1065–1074. 2008. View Article : Google Scholar : PubMed/NCBI

15 

Shek FW, Benyon RC, Walker FM, McCrudden PR, Pender SL, Williams EJ, Johnson PA, Johnson CD, Bateman AC, Fine DR and Iredale JP: Expression of transforming growth factor-beta 1 by pancreatic stellate cells and its implications for matrix secretion and turnover in chronic pancreatitis. Am J Pathol. 160:1787–1798. 2002. View Article : Google Scholar : PubMed/NCBI

16 

Apte MV and Wilson JS: Dangerous liaisons: Pancreatic stellate cells and pancreatic cancer cells. J Gastroenterol Hepatol. 27 (Suppl 2):S69–S74. 2012. View Article : Google Scholar

17 

Sarper M, Cortes E, Lieberthal TJ and Del Río Hernández A: ATRA modulates mechanical activation of TGF-β by pancreatic stellate cells. Sci Rep. 6:276392016. View Article : Google Scholar : PubMed/NCBI

18 

Zheng M, Li H, Sun L, Brigstock DR and Gao R: Interleukin-6 participates in human pancreatic stellate cell activation and collagen I production via TGF-β1/Smad pathway. Cytokine. 143:1555362021. View Article : Google Scholar : PubMed/NCBI

19 

Shen YW, Zhou YD, Chen HZ, Luan X and Zhang WD: Targeting CTGF in cancer: An emerging therapeutic opportunity. Trends Cancer. 7:511–524. 2021. View Article : Google Scholar : PubMed/NCBI

20 

Huang G and Brigstock DR: Regulation of hepatic stellate cells by connective tissue growth factor. Front Biosci (Landmark Ed). 17:2495–2507. 2012. View Article : Google Scholar : PubMed/NCBI

21 

di Mola FF, Friess H, Riesle E, Koliopanos A, Büchler P, Zhu Z, Brigstock DR, Korc M and Büchler MW: Connective tissue growth factor is involved in pancreatic repair and tissue remodeling in human and rat acute necrotizing pancreatitis. Ann Surg. 235:60–67. 2002. View Article : Google Scholar : PubMed/NCBI

22 

di Mola FF, Friess H, Martignoni ME, Di Sebastiano P, Zimmermann A, Innocenti P, Graber H, Gold LI, Korc M and Büchler MW: Connective tissue growth factor is a regulator for fibrosis in human chronic pancreatitis. Ann Surg. 230:63–71. 1999. View Article : Google Scholar : PubMed/NCBI

23 

Wenger C, Ellenrieder V, Alber B, Lacher U, Menke A, Hameister H, Wilda M, Iwamura T, Beger HG, Adler G and Gress TM: Expression and differential regulation of connective tissue growth factor in pancreatic cancer cells. Oncogene. 18:1073–1080. 1999. View Article : Google Scholar : PubMed/NCBI

24 

Gao R and Brigstock DR: A novel integrin alpha5beta1 binding domain in module 4 of connective tissue growth factor (CCN2/CTGF) promotes adhesion and migration of activated pancreatic stellate cells. Gut. 55:856–862. 2006. View Article : Google Scholar : PubMed/NCBI

25 

Charrier A, Chen R, Chen L, Kemper S, Hattori T, Takigawa M and Brigstock DR: Connective tissue growth factor (CCN2) and microRNA-21 are components of a positive feedback loop in pancreatic stellate cells (PSCs) during chronic pancreatitis and are exported in PSCs-derived exosomes. J Cell Commun Signal. 8:147–156. 2014. View Article : Google Scholar : PubMed/NCBI

26 

Tamura T, Kodama T, Sato K, Murai K, Yoshioka T, Shigekawa M, Yamada R, Hikita H, Sakamori R, Akita H, et al: Dysregulation of PI3K and Hippo signaling pathways synergistically induces chronic pancreatitis via CTGF upregulation. J Clin Invest. 131:e1434142021. View Article : Google Scholar : PubMed/NCBI

27 

Chen X, Zhang Y, Qian W, Han L, Li W, Duan W, Wu Z, Wang Z and Ma Q: Arl4c promotes the growth and drug resistance of pancreatic cancer by regulating tumor-stromal interactions. iScience. 24:1034002021. View Article : Google Scholar : PubMed/NCBI

28 

Qi X and Li X: Mechanistic insights into the generation and transduction of hedgehog signaling. Trends Biochem Sci. 45:397–410. 2020. View Article : Google Scholar : PubMed/NCBI

29 

Bausch D, Fritz S, Bolm L, Wellner UF, Fernandez-Del-Castillo C, Warshaw AL, Thayer SP and Liss AS: Hedgehog signaling promotes angiogenesis directly and indirectly in pancreatic cancer. Angiogenesis. 23:479–492. 2020. View Article : Google Scholar : PubMed/NCBI

30 

Tang D, Wang D, Yuan Z, Xue X, Zhang Y, An Y, Chen J, Tu M, Lu Z, Wei J, et al: Persistent activation of pancreatic stellate cells creates a microenvironment favorable for the malignant behavior of pancreatic ductal adenocarcinoma. Int J Cancer. 132:993–1003. 2013. View Article : Google Scholar : PubMed/NCBI

31 

Olive KP, Jacobetz MA, Davidson CJ, Gopinathan A, McIntyre D, Honess D, Madhu B, Goldgraben MA, Caldwell ME, Allard D, et al: Inhibition of Hedgehog signaling enhances delivery of chemotherapy in a mouse model of pancreatic cancer. Science. 324:1457–1461. 2009. View Article : Google Scholar : PubMed/NCBI

32 

Li X, Wang Z, Ma Q, Xu Q, Liu H, Duan W, Lei J, Ma J, Wang X, Lv S, et al: Sonic hedgehog paracrine signaling activates stromal cells to promote perineural invasion in pancreatic cancer. Clin Cancer Res. 20:4326–4338. 2014. View Article : Google Scholar : PubMed/NCBI

33 

Yu Y, Cheng L, Yan B, Zhou C, Qian W, Xiao Y, Qin T, Cao J, Han L, Ma Q and Ma J: Overexpression of Gremlin 1 by sonic hedgehog signaling promotes pancreatic cancer progression. Int J Oncol. 53:2445–2457. 2018.PubMed/NCBI

34 

Hwang RF, Moore TT, Hattersley MM, Scarpitti M, Yang B, Devereaux E, Ramachandran V, Arumugam T, Ji B, Logsdon CD, et al: Inhibition of the hedgehog pathway targets the tumor-associated stroma in pancreatic cancer. Mol Cancer Res. 10:1147–1157. 2012. View Article : Google Scholar : PubMed/NCBI

35 

Riera-Domingo C, Audigé A, Granja S, Cheng WC, Ho PC, Baltazar F, Stockmann C and Mazzone M: Immunity, Hypoxia, and Metabolism-the Ménage à trois of cancer: Implications for immunotherapy. Physiol Rev. 100:1–102. 2020. View Article : Google Scholar : PubMed/NCBI

36 

Liu M, Zhong J, Zeng Z, Huang K, Ye Z, Deng S, Chen H, Xu F, Li Q and Zhao G: Hypoxia-induced feedback of HIF-1α and lncRNA-CF129 contributes to pancreatic cancer progression through stabilization of p53 protein. Theranostics. 9:4795–4810. 2019. View Article : Google Scholar : PubMed/NCBI

37 

Shi X, Wang M, Zhang Y, Guo X, Liu M, Zhou Z, Zhao Y, He R, Gao Y, Liu Y, et al: Hypoxia activated HGF expression in pancreatic stellate cells confers resistance of pancreatic cancer cells to EGFR inhibition. EBioMedicine. 86:1043522022. View Article : Google Scholar : PubMed/NCBI

38 

Estaras M, Gonzalez-Portillo MR, Martinez R, Garcia A, Estevez M, Fernandez-Bermejo M, Mateos JM, Vara D, Blanco-Fernández G, Lopez-Guerra D, et al: Melatonin modulates the antioxidant defenses and the expression of proinflammatory mediators in pancreatic stellate cells subjected to hypoxia. Antioxidants (Basel). 10:5772021. View Article : Google Scholar : PubMed/NCBI

39 

Masamune A, Kikuta K, Watanabe T, Satoh K, Hirota M and Shimosegawa T: Hypoxia stimulates pancreatic stellate cells to induce fibrosis and angiogenesis in pancreatic cancer. Am J Physiol Gastrointest Liver Physiol. 295:G709–G717. 2008. View Article : Google Scholar : PubMed/NCBI

40 

Xiao Y, Qin T, Sun L, Qian W, Li J, Duan W, Lei J, Wang Z, Ma J, Li X, et al: Resveratrol ameliorates the malignant progression of pancreatic cancer by inhibiting Hypoxia-induced pancreatic stellate cell activation. Cell Transplant. 29:9636897209299872020. View Article : Google Scholar : PubMed/NCBI

41 

Zou X, Tang XY, Qu ZY, Sun ZW, Ji CF, Li YJ and Guo SD: Targeting the PDGF/PDGFR signaling pathway for cancer therapy: A review. Int J Biol Macromol. 202:539–557. 2022. View Article : Google Scholar : PubMed/NCBI

42 

Hu R, Wang YL, Edderkaoui M, Lugea A, Apte MV and Pandol SJ: Ethanol augments PDGF-induced NADPH oxidase activity and proliferation in rat pancreatic stellate cells. Pancreatology. 7:332–340. 2007. View Article : Google Scholar : PubMed/NCBI

43 

Masamune A, Suzuki N, Kikuta K, Satoh M, Satoh K and Shimosegawa T: Curcumin blocks activation of pancreatic stellate cells. J Cell Biochem. 97:1080–1093. 2006. View Article : Google Scholar : PubMed/NCBI

44 

Zhao T, Xiao D, Jin F, Sun X, Yu J, Wang H, Liu J, Cai W, Huang C, Wang X, et al: ESE3-positive PSCs drive pancreatic cancer fibrosis, chemoresistance and poor prognosis via tumour-stromal IL-1β/NF-κB/ESE3 signalling axis. Br J Cancer. 127:1461–1472. 2022. View Article : Google Scholar : PubMed/NCBI

45 

Guo HL, Liang XS, Zeng XP, Liu Y, Li ZS, Wang LJ and Hu LH: Pirfenidone alleviates chronic pancreatitis via suppressing the activation of pancreatic stellate cells and the M1 polarization of macrophages. Int Immunopharmacol. 130:1116912024. View Article : Google Scholar : PubMed/NCBI

46 

Masamune A, Kikuta K, Satoh M, Suzuki N and Shimosegawa T: Green tea polyphenol epigallocatechin-3-gallate blocks PDGF-induced proliferation and migration of rat pancreatic stellate cells. World J Gastroenterol. 11:3368–3374. 2005. View Article : Google Scholar : PubMed/NCBI

47 

Ouyang W and O'Garra A: IL-10 family cytokines IL-10 and IL-22: From basic science to clinical translation. Immunity. 50:871–891. 2019. View Article : Google Scholar : PubMed/NCBI

48 

Zhang LJ, Zheng WD, Shi MN and Wang XZ: Effects of interleukin-10 on activation and apoptosis of hepatic stellate cells in fibrotic rat liver. World J Gastroenterol. 12:1918–1923. 2006. View Article : Google Scholar : PubMed/NCBI

49 

Shi MN, Huang YH, Zheng WD, Zhang LJ, Chen ZX and Wang XZ: Relationship between transforming growth factor beta1 and anti-fibrotic effect of interleukin-10. World J Gastroenterol. 12:2357–2362. 2006. View Article : Google Scholar : PubMed/NCBI

50 

Demols A, Van Laethem JL, Quertinmont E, Degraef C, Delhaye M, Geerts A and Deviere J: Endogenous interleukin-10 modulates fibrosis and regeneration in experimental chronic pancreatitis. Am J Physiol Gastrointest Liver Physiol. 282:G1105–G1112. 2002. View Article : Google Scholar : PubMed/NCBI

51 

Mews P, Phillips P, Fahmy R, Korsten M, Pirola R, Wilson J and Apte M: Pancreatic stellate cells respond to inflammatory cytokines: Potential role in chronic pancreatitis. Gut. 50:535–541. 2002. View Article : Google Scholar : PubMed/NCBI

52 

Talukdar R and Tandon RK: Pancreatic stellate cells: New target in the treatment of chronic pancreatitis. J Gastroenterol Hepatol. 23:34–41. 2008. View Article : Google Scholar : PubMed/NCBI

53 

Marzoq AJ, Mustafa SA, Heidrich L, Hoheisel JD and Alhamdani MSS: Impact of the secretome of activated pancreatic stellate cells on growth and differentiation of pancreatic tumour cells. Sci Rep. 9:53032019. View Article : Google Scholar : PubMed/NCBI

54 

Kandikattu HK, Venkateshaiah SU and Mishra A: Chronic pancreatitis and the development of pancreatic cancer. Endocr Metab Immune Disord Drug Targets. 20:1182–1210. 2020. View Article : Google Scholar : PubMed/NCBI

55 

Lugea A and Waldron RT: Exosome-mediated intercellular communication between stellate cells and cancer cells in pancreatic ductal adenocarcinoma. Pancreas. 46:1–4. 2017. View Article : Google Scholar : PubMed/NCBI

56 

Hu F, Lou N, Jiao J, Guo F, Xiang H and Shang D: Macrophages in pancreatitis: Mechanisms and therapeutic potential. Biomed Pharmacother. 131:1106932020. View Article : Google Scholar : PubMed/NCBI

57 

Ng B, Viswanathan S, Widjaja AA, Lim WW, Shekeran SG, Goh JWT, Tan J, Kuthubudeen F, Lim SY, Xie C, et al: IL11 Activates pancreatic stellate cells and causes pancreatic inflammation, fibrosis and atrophy in a mouse model of pancreatitis. Int J Mol Sci. 23:35492022. View Article : Google Scholar : PubMed/NCBI

58 

Filomeni G, De Zio D and Cecconi F: Oxidative stress and autophagy: The clash between damage and metabolic needs. Cell Death Differ. 22:377–388. 2015. View Article : Google Scholar : PubMed/NCBI

59 

Ryu GR, Lee E, Chun HJ, Yoon KH, Ko SH, Ahn YB and Song KH: Oxidative stress plays a role in high glucose-induced activation of pancreatic stellate cells. Biochem Biophys Res Commun. 439:258–263. 2013. View Article : Google Scholar : PubMed/NCBI

60 

Zhang J, Bai J, Zhou Q, Hu Y, Wang Q, Yang L, Chen H, An H, Zhou C, Wang Y, et al: Glutathione prevents high glucose-induced pancreatic fibrosis by suppressing pancreatic stellate cell activation via the ROS/TGFβ/SMAD pathway. Cell Death Dis. 13:4402022. View Article : Google Scholar : PubMed/NCBI

61 

An W, Zhu JW, Jiang F, Jiang H, Zhao JL, Liu MY, Li GX, Shi XG, Sun C and Li ZS: Fibromodulin is upregulated by oxidative stress through the MAPK/AP-1 pathway to promote pancreatic stellate cell activation. Pancreatology. 20:278–287. 2020. View Article : Google Scholar : PubMed/NCBI

62 

Xia B, Gao J, Li S, Huang L, Zhu L, Ma T, Zhao L, Yang Y, Luo K, Shi X, et al: Mechanical stimulation of Schwann cells promote peripheral nerve regeneration via extracellular vesicle-mediated transfer of microRNA 23b-3p. Theranostics. 10:8974–8995. 2020. View Article : Google Scholar : PubMed/NCBI

63 

Asaumi H, Watanabe S, Taguchi M, Tashiro M and Otsuki M: Externally applied pressure activates pancreatic stellate cells through the generation of intracellular reactive oxygen species. Am J Physiol Gastrointest Liver Physiol. 293:G972–G978. 2007. View Article : Google Scholar : PubMed/NCBI

64 

Radoslavova S, Fels B, Pethö Z, Gruner M, Ruck T, Meuth SG, Folcher A, Prevarskaya N, Schwab A and Ouadid-Ahidouch H: TRPC1 channels regulate the activation of pancreatic stellate cells through ERK1/2 and SMAD2 pathways and perpetuate their pressure-mediated activation. Cell Calcium. 106:1026212022. View Article : Google Scholar : PubMed/NCBI

65 

Kalli M, Papageorgis P, Gkretsi V and Stylianopoulos T: Solid stress facilitates fibroblasts activation to promote pancreatic cancer cell migration. Ann Biomed Eng. 46:657–669. 2018. View Article : Google Scholar : PubMed/NCBI

66 

Pethő Z, Najder K, Bulk E and Schwab A: Mechanosensitive ion channels push cancer progression. Cell Calcium. 80:79–90. 2019. View Article : Google Scholar : PubMed/NCBI

67 

Martinac B: Mechanosensitive ion channels: Molecules of mechanotransduction. J Cell Sci. 117:2449–2460. 2004. View Article : Google Scholar : PubMed/NCBI

68 

Nielsen N, Kondratska K, Ruck T, Hild B, Kovalenko I, Schimmelpfennig S, Welzig J, Sargin S, Lindemann O, Christian S, et al: TRPC6 channels modulate the response of pancreatic stellate cells to hypoxia. Pflugers Arch. 469:1567–1577. 2017. View Article : Google Scholar : PubMed/NCBI

69 

Jakubowska MA, Ferdek PE, Gerasimenko OV, Gerasimenko JV and Petersen OH: Nitric oxide signals are interlinked with calcium signals in normal pancreatic stellate cells upon oxidative stress and inflammation. Open Biol. 6:1601492016. View Article : Google Scholar : PubMed/NCBI

70 

Hennigs JK, Seiz O, Spiro J, Berna MJ, Baumann HJ, Klose H and Pace A: Molecular basis of P2-receptor-mediated calcium signaling in activated pancreatic stellate cells. Pancreas. 40:740–746. 2011. View Article : Google Scholar : PubMed/NCBI

71 

Jiang T, Wang H, Liu L, Song H, Zhang Y, Wang J, Liu L, Xu T, Fan R, Xu Y, et al: CircIL4R activates the PI3K/AKT signaling pathway via the miR-761/TRIM29/PHLPP1 axis and promotes proliferation and metastasis in colorectal cancer. Mol Cancer. 20:1672021. View Article : Google Scholar : PubMed/NCBI

72 

Liu B, Deng X, Jiang Q, Li G, Zhang J, Zhang N, Xin S and Xu K: Scoparone improves hepatic inflammation and autophagy in mice with nonalcoholic steatohepatitis by regulating the ROS/P38/Nrf2 axis and PI3K/AKT/mTOR pathway in macrophages. Biomed Pharmacother. 125:1098952020. View Article : Google Scholar : PubMed/NCBI

73 

Xue R, Wang J, Yang L, Liu X, Gao Y, Pang Y, Wang Y and Hao J: Coenzyme Q10 ameliorates pancreatic fibrosis via the ROS-Triggered mTOR signaling pathway. Oxid Med Cell Longev. 2019:80396942019. View Article : Google Scholar : PubMed/NCBI

74 

Cui LH, Li CX, Zhuo YZ, Yang L, Cui NQ and Zhang SK: Saikosaponin d ameliorates pancreatic fibrosis by inhibiting autophagy of pancreatic stellate cells via PI3K/Akt/mTOR pathway. Chem Biol Interact. 300:18–26. 2019. View Article : Google Scholar : PubMed/NCBI

75 

Schwer CI, Stoll P, Rospert S, Fitzke E, Schallner N, Bürkle H, Schmidt R and Humar M: Carbon monoxide releasing molecule-2 CORM-2 represses global protein synthesis by inhibition of eukaryotic elongation factor eEF2. Int J Biochem Cell Biol. 45:201–212. 2013. View Article : Google Scholar : PubMed/NCBI

76 

Zhang P, Guan H, Yuan S, Cheng H, Zheng J, Zhang Z, Liu Y, Yu Y, Meng Z, Zheng X and Zhao L: Targeting myeloid derived suppressor cells reverts immune suppression and sensitizes BRAF-mutant papillary thyroid cancer to MAPK inhibitors. Nat Commun. 13:15882022. View Article : Google Scholar : PubMed/NCBI

77 

Zou ZL, Sun MH, Yin WF, Yang L and Kong LY: Avicularin suppresses cartilage extracellular matrix degradation and inflammation via TRAF6/MAPK activation. Phytomedicine. 91:1536572021. View Article : Google Scholar : PubMed/NCBI

78 

Zhang Y, Ware MB, Zaidi MY, Ruggieri AN, Olson BM, Komar H, Farren MR, Nagaraju GP, Zhang C, Chen Z, et al: Heat shock Protein-90 inhibition alters activation of pancreatic stellate cells and enhances the efficacy of PD-1 blockade in pancreatic cancer. Mol Cancer Ther. 20:150–160. 2021. View Article : Google Scholar : PubMed/NCBI

79 

McCarroll JA, Phillips PA, Santucci N, Pirola RC, Wilson JS and Apte MV: Vitamin A inhibits pancreatic stellate cell activation: Implications for treatment of pancreatic fibrosis. Gut. 55:79–89. 2006. View Article : Google Scholar : PubMed/NCBI

80 

Roach KM and Bradding P: Ca2+ signalling in fibroblasts and the therapeutic potential of KCa3.1 channel blockers in fibrotic diseases. Br J Pharmacol. 177:1003–1024. 2020. View Article : Google Scholar : PubMed/NCBI

81 

Murphy-Ullrich JE and Suto MJ: Thrombospondin-1 regulation of latent TGF-β activation: A therapeutic target for fibrotic disease. Matrix Biol. 68–69. 28–43. 2018.

82 

Itatani Y, Kawada K and Sakai Y: Transforming Growth Factor-β signaling pathway in colorectal cancer and its tumor microenvironment. Int J Mol Sci. 20:58222019. View Article : Google Scholar : PubMed/NCBI

83 

Kanda T, Jiang X and Yokosuka O: Androgen receptor signaling in hepatocellular carcinoma and pancreatic cancers. World J Gastroenterol. 20:9229–9236. 2014.PubMed/NCBI

84 

Zhang X, Yun JS, Han D, Yook JI, Kim HS and Cho ES: TGF-β pathway in salivary gland fibrosis. Int J Mol Sci. 21:91382020. View Article : Google Scholar : PubMed/NCBI

85 

Ren Y, Zhang J, Wang M, Bi J, Wang T, Qiu M, Lv Y, Wu Z and Wu R: Identification of irisin as a therapeutic agent that inhibits oxidative stress and fibrosis in a murine model of chronic pancreatitis. Biomed Pharmacother. 126:1101012020. View Article : Google Scholar : PubMed/NCBI

86 

Colaianni G, Cinti S, Colucci S and Grano M: Irisin and musculoskeletal health. Ann N Y Acad Sci. 1402:5–9. 2017. View Article : Google Scholar : PubMed/NCBI

87 

Petta S, Valenti L, Svegliati-Baroni G, Ruscica M, Pipitone RM, Dongiovanni P, Rychlicki C, Ferri N, Cammà C, Fracanzani AL, et al: Fibronectin Type III Domain-containing protein 5 rs3480 A>G polymorphism, irisin, and liver fibrosis in patients with nonalcoholic fatty liver disease. J Clin Endocrinol Metab. 102:2660–2669. 2017. View Article : Google Scholar : PubMed/NCBI

88 

Peng H, Wang Q, Lou T, Qin J, Jung S, Shetty V, Li F, Wang Y, Feng XH, Mitch WE, et al: Myokine mediated muscle-kidney crosstalk suppresses metabolic reprogramming and fibrosis in damaged kidneys. Nat Commun. 8:14932017. View Article : Google Scholar : PubMed/NCBI

89 

Chen RR, Fan XH, Chen G, Zeng GW, Xue YG, Liu XT and Wang CY: Irisin attenuates angiotensin II-induced cardiac fibrosis via Nrf2 mediated inhibition of ROS/TGFβ1/Smad2/3 signaling axis. Chem Biol Interact. 302:11–21. 2019. View Article : Google Scholar : PubMed/NCBI

90 

Ren Y, Zhang J, Wang M, Bi J, Wang T, Qiu M, Lv Y, Wu Z and Wu R: Identification of irisin as a therapeutic agent that inhibits oxidative stress and fibrosis in a murine model of chronic pancreatitis. Biomed Pharmacother. 126:1101012020. View Article : Google Scholar : PubMed/NCBI

91 

Bansod S, Doijad N and Godugu C: Berberine attenuates severity of chronic pancreatitis and fibrosis via AMPK-mediated inhibition of TGF-β1/Smad signaling and M2 polarization. Toxicol Appl Pharmacol. 403:1151622020. View Article : Google Scholar : PubMed/NCBI

92 

Choi JW, Lee SK, Kim MJ, Kim DG, Shin JY, Zhou Z, Jo IJ, Song HJ, Bae GS and Park SJ: Piperine ameliorates the severity of fibrosis via inhibition of TGF-β/SMAD signaling in a mouse model of chronic pancreatitis. Mol Med Rep. 20:3709–3718. 2019.PubMed/NCBI

93 

Mirza AZ, Althagafi II and Shamshad H: Role of PPAR receptor in different diseases and their ligands: Physiological importance and clinical implications. Eur J Med Chem. 166:502–513. 2019. View Article : Google Scholar : PubMed/NCBI

94 

Christofides A, Konstantinidou E, Jani C and Boussiotis VA: The role of peroxisome proliferator-activated receptors (PPAR) in immune responses. Metabolism. 114:1543382021. View Article : Google Scholar : PubMed/NCBI

95 

Wang Q, Wang H, Jing Q, Yang Y, Xue D, Hao C and Zhang W: Regulation of pancreatic fibrosis by acinar cell-Derived exosomal miR-130a-3p via targeting of stellate cell PPAR-γ. J Inflamm Res. 14:461–477. 2021. View Article : Google Scholar : PubMed/NCBI

96 

Kim N, Choi S, Lim C, Lee H and Oh J: Albumin mediates PPAR-gamma or C/EBP-alpha-induced phenotypic changes in pancreatic stellate cells. Biochem Biophys Res Commun. 391:640–644. 2010. View Article : Google Scholar : PubMed/NCBI

97 

Che M, Kweon SM, Teo JL, Yuan YC, Melstrom LG, Waldron RT, Lugea A, Urrutia RA, Pandol SJ and Lai KKY: Targeting the CBP/β-Catenin interaction to suppress activation of Cancer-Promoting pancreatic stellate cells. Cancers (Basel). 12:14762020. View Article : Google Scholar : PubMed/NCBI

98 

Yu H, Lin L, Zhang Z, Zhang H and Hu H: Targeting NF-κB pathway for the therapy of diseases: Mechanism and clinical study. Signal Transduct Target Ther. 5:2092020. View Article : Google Scholar : PubMed/NCBI

99 

Treiber M, Neuhöfer P, Anetsberger E, Einwächter H, Lesina M, Rickmann M, Liang S, Kehl T, Nakhai H, Schmid RM and Algül H: Myeloid, but not pancreatic, RelA/p65 is required for fibrosis in a mouse model of chronic pancreatitis. Gastroenterology. 141:1473–1485.e14857. 2011. View Article : Google Scholar : PubMed/NCBI

100 

Wu N, Xu XF, Xin JQ, Fan JW, Wei YY, Peng QX, Duan LF, Wang W and Zhang H: The effects of nuclear factor-kappa B in pancreatic stellate cells on inflammation and fibrosis of chronic pancreatitis. J Cell Mol Med. 25:2213–2227. 2021. View Article : Google Scholar : PubMed/NCBI

101 

Chen H, Tan P, Qian B, Du Y, Wang A, Shi H, Huang Z, Huang S, Liang T and Fu W: Hic-5 deficiency protects cerulein-induced chronic pancreatitis via down-regulation of the NF-κB (p65)/IL-6 signalling pathway. J Cell Mol Med. 24:1488–1503. 2020. View Article : Google Scholar : PubMed/NCBI

102 

Carrière C, Gore AJ, Norris AM, Gunn JR, Young AL, Longnecker DS and Korc M: Deletion of Rb accelerates pancreatic carcinogenesis by oncogenic Kras and impairs senescence in premalignant lesions. Gastroenterology. 141:1091–1101. 2011. View Article : Google Scholar : PubMed/NCBI

103 

Sun HZ, Gong XY, Wu L, Wang XX, Nie YN, Shang R, Wang H, Li YC, Sun QF, Gao PF and Bi JX: Hydrogen sulfide modulates gastric acid secretion in rats via involvement of substance P and nuclear factor-κB signaling. J Physiol Pharmacol. 692018.doi: 10.26402/jpp.2018.3.08.

104 

Sundar V and Tamizhselvi R: Inhibition of Rb phosphorylation leads to H2S-mediated inhibition of NF-kB in acute pancreatitis and associated lung injury in mice. Pancreatology. 20:647–658. 2020. View Article : Google Scholar : PubMed/NCBI

105 

Nulali J, Zhan M, Zhang K, Tu P, Liu Y and Song H: Osteoglycin: An ECM factor regulating fibrosis and tumorigenesis. Biomolecules. 12:16742022. View Article : Google Scholar : PubMed/NCBI

106 

Guan P, Liu C, Xie D, Mao S, Ji Y, Lin Y, Chen Z, Wang Q, Fan L and Sun Y: Exosome-loaded extracellular matrix-mimic hydrogel with anti-inflammatory property Facilitates/promotes growth plate injury repair. Bioact Mater. 10:145–158. 2021.PubMed/NCBI

107 

Pietilä EA, Gonzalez-Molina J, Moyano-Galceran L, Jamalzadeh S, Zhang K, Lehtinen L, Turunen SP, Martins TA, Gultekin O, Lamminen T, et al: Co-evolution of matrisome and adaptive adhesion dynamics drives ovarian cancer chemoresistance. Nat Commun. 12:39042021. View Article : Google Scholar : PubMed/NCBI

108 

Mosquera MJ, Kim S, Bareja R, Fang Z, Cai S, Pan H, Asad M, Martin ML, Sigouros M, Rowdo FM, et al: Extracellular matrix in synthetic Hydrogel-based prostate cancer organoids regulate therapeutic response to EZH2 and DRD2 inhibitors. Adv Mater. 34:e21000962022. View Article : Google Scholar : PubMed/NCBI

109 

Hwang HJ, Oh MS, Lee DW and Kuh HJ: Multiplex quantitative analysis of stroma-mediated cancer cell invasion, matrix remodeling, and drug response in a 3D co-culture model of pancreatic tumor spheroids and stellate cells. J Exp Clin Cancer Res. 38:2582019. View Article : Google Scholar : PubMed/NCBI

110 

Sun L, Qu L, Brigstock DR, Li H, Li Y and Gao R: Biological and proteomic characteristics of an immortalized human pancreatic stellate cell line. Int J Med Sci. 17:137–144. 2020. View Article : Google Scholar : PubMed/NCBI

111 

Tanaka S, Hosokawa M, Yonezawa T, Hayashi W, Ueda K and Iwakawa S: Induction of epithelial-mesenchymal transition and down-regulation of miR-200c and miR-141 in oxaliplatin-resistant colorectal cancer cells. Biol Pharm Bull. 38:435–440. 2015. View Article : Google Scholar : PubMed/NCBI

112 

Xu W, Liu H, Liu ZG, Wang HS, Zhang F, Wang H, Zhang J, Chen JJ, Huang HJ, Tan Y, et al: Histone deacetylase inhibitors upregulate Snail via Smad2/3 phosphorylation and stabilization of Snail to promote metastasis of hepatoma cells. Cancer Lett. 420:1–13. 2018. View Article : Google Scholar : PubMed/NCBI

113 

Zou XZ, Liu T, Gong ZC, Hu CP and Zhang Z: MicroRNAs-mediated epithelial-mesenchymal transition in fibrotic diseases. Eur J Pharmacol. 796:190–206. 2017. View Article : Google Scholar : PubMed/NCBI

114 

Tian L, Lu ZP, Cai BB, Zhao LT, Qian D, Xu QC, Wu PF, Zhu Y, Zhang JJ, Du Q, et al: Activation of pancreatic stellate cells involves an EMT-like process. Int J Oncol. 48:783–792. 2016. View Article : Google Scholar : PubMed/NCBI

115 

Ling J, Kang Y, Zhao R, Xia Q, Lee DF, Chang Z, Li J, Peng B, Fleming JB, Wang H, et al: KrasG12D-induced IKK2/β/NF-κB activation by IL-1α and p62 feedforward loops is required for development of pancreatic ductal adenocarcinoma. Cancer Cell. 21:105–120. 2012. View Article : Google Scholar : PubMed/NCBI

116 

Masamune A, Yoshida N, Hamada S, Takikawa T, Nabeshima T and Shimosegawa T: Exosomes derived from pancreatic cancer cells induce activation and profibrogenic activities in pancreatic stellate cells. Biochem Biophys Res Commun. 495:71–77. 2018. View Article : Google Scholar : PubMed/NCBI

117 

Zhang YF, Zhou YZ, Zhang B, Huang SF, Li PP, He XM, Cao GD, Kang MX, Dong X and Wu YL: Pancreatic cancer-derived exosomes promoted pancreatic stellate cells recruitment by pancreatic cancer. J Cancer. 10:4397–4407. 2019. View Article : Google Scholar : PubMed/NCBI

118 

Xu M, Wang G, Zhou H, Cai J, Li P, Zhou M, Lu Y, Jiang X, Huang H, Zhang Y and Gong A: TGF-β1-miR-200a-PTEN induces epithelial-mesenchymal transition and fibrosis of pancreatic stellate cells. Mol Cell Biochem. 431:161–168. 2017. View Article : Google Scholar : PubMed/NCBI

119 

Xue J, Sharma V, Hsieh MH, Chawla A, Murali R, Pandol SJ and Habtezion A: Alternatively activated macrophages promote pancreatic fibrosis in chronic pancreatitis. Nat Commun. 6:71582015. View Article : Google Scholar : PubMed/NCBI

120 

Charrier A, Chen R, Kemper S and Brigstock DR: Regulation of pancreatic inflammation by connective tissue growth factor (CTGF/CCN2). Immunology. 141:564–576. 2014. View Article : Google Scholar : PubMed/NCBI

121 

Neuzillet C, Tijeras-Raballand A, Ragulan C, Cros J, Patil Y, Martinet M, Erkan M, Kleeff J, Wilson J, Apte M, et al: Inter- and intra-tumoural heterogeneity in cancer-associated fibroblasts of human pancreatic ductal adenocarcinoma. J Pathol. 248:51–65. 2019. View Article : Google Scholar : PubMed/NCBI

122 

Orecchioni M, Ghosheh Y, Pramod AB and Ley K: Macrophage polarization: Different gene signatures in M1(LPS+) vs. Classically and M2(LPS-) vs. Alternatively activated macrophages. Front Immunol. 10:10842019. View Article : Google Scholar : PubMed/NCBI

123 

Dey S, Udari LM, RiveraHernandez P, Kwon JJ, Willis B, Easler JJ, Fogel EL, Pandol S and Kota J: Loss of miR-29a/b1 promotes inflammation and fibrosis in acute pancreatitis. JCI Insight. 6:e1495392021. View Article : Google Scholar : PubMed/NCBI

124 

Michalski CW, Gorbachevski A, Erkan M, Reiser C, Deucker S, Bergmann F, Giese T, Weigand M, Giese NA, Friess H and Kleeff J: Mononuclear cells modulate the activity of pancreatic stellate cells which in turn promote fibrosis and inflammation in chronic pancreatitis. J Transl Med. 5:632007. View Article : Google Scholar : PubMed/NCBI

125 

Schmid-Kotsas A, Gross HJ, Menke A, Weidenbach H, Adler G, Siech M, Beger H, Grünert AC and Bachem MG: Lipopolysaccharide-activated macrophages stimulate the synthesis of collagen type I and C-fibronectin in cultured pancreatic stellate cells. Am J Pathol. 155:1749–1758. 1999. View Article : Google Scholar : PubMed/NCBI

126 

Li N, Li Y, Li Z, Huang C, Yang Y, Lang M, Cao J, Jiang W, Xu Y, Dong J and Ren H: Hypoxia inducible factor 1 (HIF-1) recruits macrophage to activate pancreatic stellate cells in pancreatic ductal adenocarcinoma. Int J Mol Sci. 17:7992016. View Article : Google Scholar : PubMed/NCBI

127 

Gerasimenko JV, Petersen OH and Gerasimenko OV: SARS-CoV-2 S protein subunit 1 elicits Ca2+ Influx-Dependent Ca2+ signals in pancreatic stellate cells and macrophages in situ. Function (Oxf). 3:zqac0022022. View Article : Google Scholar : PubMed/NCBI

128 

Eberhardt M, Salmon P, von Mach MA, Hengstler JG, Brulport M, Linscheid P, Seboek D, Oberholzer J, Barbero A, Martin I, et al: Multipotential nestin and Isl-1 positive mesenchymal stem cells isolated from human pancreatic islets. Biochem Biophys Res Commun. 345:1167–1176. 2006. View Article : Google Scholar : PubMed/NCBI

129 

Ku HT, Zhang N, Kubo A, O'Connor R, Mao M, Keller G and Bromberg JS: Committing embryonic stem cells to early endocrine pancreas in vitro. Stem Cells. 22:1205–1217. 2004. View Article : Google Scholar : PubMed/NCBI

130 

Bai C, Gao Y, Zhang X, Yang W and Guan W: Melatonin promotes self-renewal of nestin-positive pancreatic stem cells through activation of the MT2/ERK/SMAD/nestin axis. Artif Cells Nanomed Biotechnol. 46:62–74. 2018. View Article : Google Scholar : PubMed/NCBI

131 

Augstein P, Loudovaris T, Bandala-Sanchez E, Heinke P, Naselli G, Lee L, Hawthorne WJ, Góñez LJ, Neale AM, Vaillant F, et al: Characterization of the human pancreas side population as a potential reservoir of adult stem cells. Pancreas. 47:25–34. 2018. View Article : Google Scholar : PubMed/NCBI

132 

Zhou Y, Sun B, Li W, Zhou J, Gao F, Wang X, Cai M and Sun Z: Pancreatic stellate cells: A rising translational physiology star as a potential stem cell type for beta cell neogenesis. Front Physiol. 10:2182019. View Article : Google Scholar : PubMed/NCBI

133 

Kordes C, Sawitza I, Götze S and Häussinger D: Stellate cells from rat pancreas are stem cells and can contribute to liver regeneration. PLoS One. 7:e518782012. View Article : Google Scholar : PubMed/NCBI

134 

Karanu FN, Yuefei L, Gallacher L, Sakano S and Bhatia M: Differential response of primitive human CD34- and CD34+ hematopoietic cells to the Notch ligand Jagged-1. Leukemia. 17:1366–1374. 2003. View Article : Google Scholar : PubMed/NCBI

135 

Izquierdo AG and Crujeiras AB: Role of epigenomic mechanisms in the onset and management of insulin resistance. Rev Endocr Metab Disord. 20:89–102. 2019. View Article : Google Scholar : PubMed/NCBI

136 

Yoon KH, Ko SH, Cho JH, Lee JM, Ahn YB, Song KH, Yoo SJ, Kang MI, Cha BY, Lee KW, et al: Selective beta-cell loss and alpha-cell expansion in patients with type 2 diabetes mellitus in Korea. J Clin Endocrinol Metab. 88:2300–2308. 2003. View Article : Google Scholar : PubMed/NCBI

137 

Ogihara T and Mirmira RG: An islet in distress: β cell failure in type 2 diabetes. J Diabetes Investig. 1:123–133. 2010. View Article : Google Scholar : PubMed/NCBI

138 

Kim JW, Ko SH, Cho JH, Sun C, Hong OK, Lee SH, Kim JH, Lee KW, Kwon HS, Lee JM, et al: Loss of beta-cells with fibrotic islet destruction in type 2 diabetes mellitus. Front Biosci. 13:6022–6033. 2008. View Article : Google Scholar : PubMed/NCBI

139 

Yang Y, Kim JW, Park HS, Lee EY and Yoon KH: Pancreatic stellate cells in the islets as a novel target to preserve the pancreatic β-cell mass and function. J Diabetes Investig. 11:268–280. 2020. View Article : Google Scholar : PubMed/NCBI

140 

Yoshikawa H, Kihara Y, Taguchi M, Yamaguchi T, Nakamura H and Otsuki M: Role of TGF-beta1 in the development of pancreatic fibrosis in Otsuka Long-Evans Tokushima Fatty rats. Am J Physiol Gastrointest Liver Physiol. 282:G549–G558. 2002. View Article : Google Scholar : PubMed/NCBI

141 

Saito R, Yamada S, Yamamoto Y, Kodera T, Hara A, Tanaka Y, Kimura F, Takei I, Umezawa K and Kojima I: Conophylline suppresses pancreatic stellate cells and improves islet fibrosis in Goto-Kakizaki rats. Endocrinology. 153:621–630. 2012. View Article : Google Scholar : PubMed/NCBI

142 

Zhou W, Dong S, Chen Z, Li X and Jiang W: New challenges for microRNAs in acute pancreatitis: Progress and treatment. J Transl Med. 20:1922022. View Article : Google Scholar : PubMed/NCBI

143 

Won JH, Zhang Y, Ji B, Logsdon CD and Yule DI: Phenotypic changes in mouse pancreatic stellate cell Ca2+ signaling events following activation in culture and in a disease model of pancreatitis. Mol Biol Cell. 22:421–436. 2011. View Article : Google Scholar : PubMed/NCBI

144 

Gryshchenko O, Gerasimenko JV, Gerasimenko OV and Petersen OH: Ca(2+) signals mediated by bradykinin type 2 receptors in normal pancreatic stellate cells can be inhibited by specific Ca(2+) channel blockade. J Physiol. 594:281–293. 2016. View Article : Google Scholar : PubMed/NCBI

145 

Gryshchenko O, Gerasimenko JV, Peng S, Gerasimenko OV and Petersen OH: Calcium signalling in the acinar environment of the exocrine pancreas: Physiology and pathophysiology. J Physiol. 596:2663–2678. 2018. View Article : Google Scholar : PubMed/NCBI

146 

Ferdek PE, Jakubowska MA, Gerasimenko JV, Gerasimenko OV and Petersen OH: Bile acids induce necrosis in pancreatic stellate cells dependent on calcium entry and sodium-driven bile uptake. J Physiol. 594:6147–6164. 2016. View Article : Google Scholar : PubMed/NCBI

147 

Dixit A, Cheema H, George J, Iyer S, Dudeja V, Dawra R and Saluja AK: Extracellular release of ATP promotes systemic inflammation during acute pancreatitis. Am J Physiol Gastrointest Liver Physiol. 317:G463–G475. 2019. View Article : Google Scholar : PubMed/NCBI

148 

Hart PA and Conwell DL: Chronic pancreatitis: Managing a difficult disease. Am J Gastroenterol. 115:49–55. 2020. View Article : Google Scholar : PubMed/NCBI

149 

Yao S, Tu Z, Yang X, Zhang L, Zhong Y, Zheng L, Wang H, Yi Z, An J, Jin H, et al: Physiological and pathological roles of Hic-5 in several organs (Review). Int J Mol Med. 50:1382022. View Article : Google Scholar : PubMed/NCBI

150 

Gao L, Lei XF, Miyauchi A, Noguchi M, Omoto T, Haraguchi S, Miyazaki T, Miyazaki A and Kim-Kaneyama JR: Hic-5 is required for activation of pancreatic stellate cells and development of pancreatic fibrosis in chronic pancreatitis. Sci Rep. 10:191052020. View Article : Google Scholar : PubMed/NCBI

151 

Qiang L, Yang S, Cui YH and He YY: Keratinocyte autophagy enables the activation of keratinocytes and fibroblastsand facilitates wound healing. Autophagy. 17:2128–2143. 2021. View Article : Google Scholar : PubMed/NCBI

152 

Zhang T, Zhang G, Yang W, Chen H, Hu J, Zhao Z, Cheng C, Li G, Xie Y, Li Y, et al: Lnc-PFAR facilitates autophagy and exacerbates pancreatic fibrosis by reducing pre-miR-141 maturation in chronic pancreatitis. Cell Death Dis. 12:9962021. View Article : Google Scholar : PubMed/NCBI

153 

Yang X, Chen J, Wang J, Ma S, Feng W, Wu Z, Guo Y, Zhou H, Mi W, Chen W, et al: Very-low-density lipoprotein receptor-enhanced lipid metabolism in pancreatic stellate cells promotes pancreatic fibrosis. Immunity. 55:1185–1199.e8. 2022. View Article : Google Scholar : PubMed/NCBI

154 

Siegel RL, Miller KD, Fuchs HE and Jemal A: Cancer statistics, 2021. CA Cancer J Clin. 71:7–33. 2021. View Article : Google Scholar : PubMed/NCBI

155 

Sun W, Ren Y, Lu Z and Zhao X: The potential roles of exosomes in pancreatic cancer initiation and metastasis. Mol Cancer. 19:1352020. View Article : Google Scholar : PubMed/NCBI

156 

Pothula SP, Pirola RC, Wilson JS and Apte MV: Pancreatic stellate cells: Aiding and abetting pancreatic cancer progression. Pancreatology. 20:409–418. 2020. View Article : Google Scholar : PubMed/NCBI

157 

Li M, Guo H, Wang Q, Chen K, Marko K, Tian X and Yang Y: Pancreatic stellate cells derived exosomal miR-5703 promotes pancreatic cancer by downregulating CMTM4 and activating PI3K/Akt pathway. Cancer Lett. 490:20–30. 2020. View Article : Google Scholar : PubMed/NCBI

158 

Jiang J, Bai J, Qin T, Wang Z and Han L: NGF from pancreatic stellate cells induces pancreatic cancer proliferation and invasion by PI3K/AKT/GSK signal pathway. J Cell Mol Med. 24:5901–5910. 2020. View Article : Google Scholar : PubMed/NCBI

159 

Geleta B, Tout FS, Lim SC, Sahni S, Jansson PJ, Apte MV, Richardson DR and Kovačević Ž: Targeting Wnt/tenascin C-mediated cross talk between pancreatic cancer cells and stellate cells via activation of the metastasis suppressor NDRG1. J Biol Chem. 298:1016082022. View Article : Google Scholar : PubMed/NCBI

160 

Kikuta K, Masamune A, Watanabe T, Ariga H, Itoh H, Hamada S, Satoh K, Egawa S, Unno M and Shimosegawa T: Pancreatic stellate cells promote epithelial-mesenchymal transition in pancreatic cancer cells. Biochem Biophys Res Commun. 403:380–384. 2010. View Article : Google Scholar : PubMed/NCBI

161 

Hamada S, Masamune A, Takikawa T, Suzuki N, Kikuta K, Hirota M, Hamada H, Kobune M, Satoh K and Shimosegawa T: Pancreatic stellate cells enhance stem cell-like phenotypes in pancreatic cancer cells. Biochem Biophys Res Commun. 421:349–354. 2012. View Article : Google Scholar : PubMed/NCBI

162 

Chen S, Chen JZ, Zhang JQ, Chen HX, Yan ML, Huang L, Tian YF, Chen YL and Wang YD: Hypoxia induces TWIST-activated epithelial-mesenchymal transition and proliferation of pancreatic cancer cells in vitro and in nude mice. Cancer Lett. 383:73–84. 2016. View Article : Google Scholar : PubMed/NCBI

163 

Bennewith KL, Huang X, Ham CM, Graves EE, Erler JT, Kambham N, Feazell J, Yang GP, Koong A and Giaccia AJ: The role of tumor cell-derived connective tissue growth factor (CTGF/CCN2) in pancreatic tumor growth. Cancer Res. 69:775–784. 2009. View Article : Google Scholar : PubMed/NCBI

164 

Maity G, Ghosh A, Gupta V, Haque I, Sarkar S, Das A, Dhar K, Bhavanasi S, Gunewardena SS, Von Hoff DD, et al: CYR61/CCN1 Regulates dCK and CTGF and Causes Gemcitabine-resistant phenotype in pancreatic ductal adenocarcinoma. Mol Cancer Ther. 18:788–800. 2019. View Article : Google Scholar : PubMed/NCBI

165 

Cao W, Zeng Z, He Z and Lei S: Hypoxic pancreatic stellate cell-derived exosomal mirnas promote proliferation and invasion of pancreatic cancer through the PTEN/AKT pathway. Aging (Albany NY). 13:7120–7132. 2021. View Article : Google Scholar : PubMed/NCBI

166 

Yamamoto M, Kensler TW and Motohashi H: The KEAP1-NRF2 System: A Thiol-based Sensor-effector apparatus for maintaining redox homeostasis. Physiol Rev. 98:1169–1203. 2018. View Article : Google Scholar : PubMed/NCBI

167 

Ju HQ, Gocho T, Aguilar M, Wu M, Zhuang ZN, Fu J, Yanaga K, Huang P and Chiao PJ: Mechanisms of overcoming intrinsic resistance to gemcitabine in pancreatic ductal adenocarcinoma through the redox modulation. Mol Cancer Ther. 14:788–798. 2015. View Article : Google Scholar : PubMed/NCBI

168 

Arfmann-Knübel S, Struck B, Genrich G, Helm O, Sipos B, Sebens S and Schäfer H: The Crosstalk between Nrf2 and TGF-β1 in the Epithelial-mesenchymal transition of pancreatic duct epithelial cells. PLoS One. 10:e01329782015. View Article : Google Scholar : PubMed/NCBI

169 

Wu YS, Looi CY, Subramaniam KS, Masamune A and Chung I: Soluble factors from stellate cells induce pancreatic cancer cell proliferation via Nrf2-activated metabolic reprogramming and ROS detoxification. Oncotarget. 7:36719–36732. 2016. View Article : Google Scholar : PubMed/NCBI

170 

Hamada S, Taguchi K, Masamune A, Yamamoto M and Shimosegawa T: Nrf2 promotes mutant K-ras/p53-driven pancreatic carcinogenesis. Carcinogenesis. 38:661–670. 2017. View Article : Google Scholar : PubMed/NCBI

171 

Dai B, Augustine JJ, Kang Y, Roife D, Li X, Deng J, Tan L, Rusling LA, Weinstein JN, Lorenzi PL, et al: Compound NSC84167 selectively targets NRF2-activated pancreatic cancer by inhibiting asparagine synthesis pathway. Cell Death Dis. 12:6932021. View Article : Google Scholar : PubMed/NCBI

172 

Husain A, Khan SA, Iram F, Iqbal MA and Asif M: Insights into the chemistry and therapeutic potential of furanones: A versatile pharmacophore. Eur J Med Chem. 171:66–92. 2019. View Article : Google Scholar : PubMed/NCBI

173 

Sousa CM, Biancur DE, Wang X, Halbrook CJ, Sherman MH, Zhang L, Kremer D, Hwang RF, Witkiewicz AK, Ying H, et al: Pancreatic stellate cells support tumour metabolism through autophagic alanine secretion. Nature. 536:479–483. 2016. View Article : Google Scholar : PubMed/NCBI

174 

Rauf A, Imran M, Butt MS, Nadeem M, Peters DG and Mubarak MS: Resveratrol as an anti-cancer agent: A review. Crit Rev Food Sci Nutr. 58:1428–1447. 2018. View Article : Google Scholar : PubMed/NCBI

175 

Lin Z, Zheng LC, Zhang HJ, Tsang SW and Bian ZX: Anti-fibrotic effects of phenolic compounds on pancreatic stellate cells. BMC Complement Altern Med. 15:2592015. View Article : Google Scholar : PubMed/NCBI

176 

Mohapatra D, Das B, Suresh V, Parida D, Minz AP, Nayak U, Mohapatra AP, Swain RK and Senapati S: Fluvastatin sensitizes pancreatic cancer cells toward radiation therapy and suppresses radiation- and/or TGF-β-induced tumor-associated fibrosis. Lab Invest. 102:298–311. 2022. View Article : Google Scholar : PubMed/NCBI

177 

Estaras M, Ortiz-Placin C, Castillejo-Rufo A, Fernandez-Bermejo M, Blanco G, Mateos JM, Vara D, Gonzalez-Cordero PL, Chamizo S, Lopez D, et al: Melatonin controls cell proliferation and modulates mitochondrial physiology in pancreatic stellate cells. J Physiol Biochem. 79:235–249. 2022. View Article : Google Scholar : PubMed/NCBI

178 

Sada M, Ohuchida K, Horioka K, Okumura T, Moriyama T, Miyasaka Y, Ohtsuka T, Mizumoto K, Oda Y and Nakamura M: Hypoxic stellate cells of pancreatic cancer stroma regulate extracellular matrix fiber organization and cancer cell motility. Cancer Lett. 372:210–218. 2016. View Article : Google Scholar : PubMed/NCBI

179 

Amrutkar M, Aasrum M, Verbeke CS and Gladhaug IP: Secretion of fibronectin by human pancreatic stellate cells promotes chemoresistance to gemcitabine in pancreatic cancer cells. BMC Cancer. 19:5962019. View Article : Google Scholar : PubMed/NCBI

180 

Kim SW, Oh KT, Youn YS and Lee ES: Hyaluronated nanoparticles with pH- and enzyme-responsive drug release properties. Colloids Surf B Biointerfaces. 116:359–364. 2014. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Wang Z, Dong S and Zhou W: Pancreatic stellate cells: Key players in pancreatic health and diseases (Review). Mol Med Rep 30: 109, 2024.
APA
Wang, Z., Dong, S., & Zhou, W. (2024). Pancreatic stellate cells: Key players in pancreatic health and diseases (Review). Molecular Medicine Reports, 30, 109. https://doi.org/10.3892/mmr.2024.13233
MLA
Wang, Z., Dong, S., Zhou, W."Pancreatic stellate cells: Key players in pancreatic health and diseases (Review)". Molecular Medicine Reports 30.1 (2024): 109.
Chicago
Wang, Z., Dong, S., Zhou, W."Pancreatic stellate cells: Key players in pancreatic health and diseases (Review)". Molecular Medicine Reports 30, no. 1 (2024): 109. https://doi.org/10.3892/mmr.2024.13233
Copy and paste a formatted citation
x
Spandidos Publications style
Wang Z, Dong S and Zhou W: Pancreatic stellate cells: Key players in pancreatic health and diseases (Review). Mol Med Rep 30: 109, 2024.
APA
Wang, Z., Dong, S., & Zhou, W. (2024). Pancreatic stellate cells: Key players in pancreatic health and diseases (Review). Molecular Medicine Reports, 30, 109. https://doi.org/10.3892/mmr.2024.13233
MLA
Wang, Z., Dong, S., Zhou, W."Pancreatic stellate cells: Key players in pancreatic health and diseases (Review)". Molecular Medicine Reports 30.1 (2024): 109.
Chicago
Wang, Z., Dong, S., Zhou, W."Pancreatic stellate cells: Key players in pancreatic health and diseases (Review)". Molecular Medicine Reports 30, no. 1 (2024): 109. https://doi.org/10.3892/mmr.2024.13233
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team