Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
July-2024 Volume 30 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
July-2024 Volume 30 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Article Open Access

Protective effect of luteolin against oxidative stress‑mediated cell injury via enhancing antioxidant systems

  • Authors:
    • Pincha Devage Sameera Madushan Fernando
    • Dong Ok Ko
    • Mei Jing Piao
    • Kyoung Ah Kang
    • Herath Mudiyanselage Udari Lakmini Herath
    • Jin Won Hyun
  • View Affiliations / Copyright

    Affiliations: Department of Biochemistry, College of Medicine, and Jeju Research Center for Natural Medicine, Jeju National University, Jeju 63243, Republic of Korea
    Copyright: © Fernando et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 121
    |
    Published online on: May 15, 2024
       https://doi.org/10.3892/mmr.2024.13244
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Physiological stress such as excessive reactive oxygen species (ROS) production may contribute normal fibroblasts activation into cancer‑associated fibroblasts, which serve a crucial role in certain types of cancer such as pancreatic, breast, liver and lung cancer. The present study aimed to examine the cytoprotective effects of luteolin (3',4',5,7‑tetrahydroxyflavone) against hydrogen peroxide (H2O2)‑generated oxidative stress in lung fibroblasts. To examine the effects of luteolin against H2O2‑induced damages, cell viability, sub‑G1 cell population, nuclear staining with Hoechst 33342, lipid peroxidation and comet assays were performed. To evaluate the effects of luteolin on the protein expression level of apoptosis, western blot assay was performed. To assess the antioxidant effects of luteolin, detection of ROS using H2DCFDA staining, O2‑ and ·OH using electron spin resonance spectrometer and antioxidant enzyme activity was performed. In a cell‑free chemical system, luteolin scavenges superoxide anion and hydroxyl radical generated by xanthine/xanthine oxidase and the Fenton reaction (FeSO4/H2O2). Furthermore, Chinese hamster lung fibroblasts (V79‑4) treated with H2O2 showed a significant increase in cellular ROS. Intracellular ROS levels and damage to cellular components such as lipids and DNA in H2O2‑treated cells were significantly decreased by luteolin pretreatment. Luteolin increased cell viability, which was impaired following H2O2 treatment and prevented H2O2‑mediated apoptosis. Luteolin suppressed active caspase‑9 and caspase‑3 levels while increasing Bcl‑2 expression and decreasing Bax protein levels. Additionally, luteolin restored levels of glutathione that was reduced in response to H2O2. Moreover, luteolin enhanced the activity and protein expressions of superoxide dismutase, catalase, glutathione peroxidase, and heme oxygenase‑1. Overall, these results indicated that luteolin inhibits H2O2‑mediated cellular damage by upregulating antioxidant enzymes.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

View References

1 

Shah S, Sun A and Chu XP: Modulation of ASIC1a by reactive oxygen species through JFK signaling. Int J Physiol Pathophysiol Pharmacol. 14:276–280. 2022.PubMed/NCBI

2 

Banerjee S, Ghosh S, Mandal A, Ghosh N and Sil PC: ROS-associated immune response and metabolism: A mechanistic approach with implication of various diseases. Arch Toxicol. 94:2293–2317. 2020. View Article : Google Scholar : PubMed/NCBI

3 

Meher PK and Mishra KP: Radiation oxidative stress in cancer induction and prevention. J Radiat Cancer Res. 8:44–52. 2017. View Article : Google Scholar

4 

Martins SG, Zilhão R, Thorsteinsdóttir S and Carlos AR: Linking oxidative stress and DNA damage to changes in the expression of extracellular matrix components. Front Genet. 12:6730022021. View Article : Google Scholar : PubMed/NCBI

5 

Sakai T, Takagaki H, Yamagiwa N, Ui M, Hatta S and Imai J: Effects of the cytoplasm and mitochondrial specific hydroxyl radical scavengers TA293 and mitoTA293 in bleomycin-induced pulmonary fibrosis model mice. Antioxidants (Basel). 10:13982021. View Article : Google Scholar : PubMed/NCBI

6 

Ighodaro OM and Akinloye OA: First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid. Alexandria J Med. 54:287–293. 2018. View Article : Google Scholar

7 

Averill-Bates DA: The antioxidant glutathione. Vitam Horm. 121:109–141. 2023. View Article : Google Scholar : PubMed/NCBI

8 

Saxena P, Selvaraj K, Khare SK and Chaudhary N: Superoxide dismutase as multipotent therapeutic antioxidant enzyme: Role in human diseases. Biotechnol Lett. 44:1–22. 2022. View Article : Google Scholar : PubMed/NCBI

9 

Kaushal J, Mehandia S, Singh G, Raina A and Arya SK: Catalase enzyme: Application in bioremediation and food industry. Biocatal Agric Biotechnol. 16:192–199. 2018. View Article : Google Scholar

10 

Sharapov MG, Gudkov SV and Lankin VZ: Hydroperoxide-reducing enzymes in the regulation of free-radical processes. Biochemistry (Mosc). 86:1256–1274. 2021. View Article : Google Scholar : PubMed/NCBI

11 

Ryter SW: Therapeutic potential of heme oxygenase-1 and carbon monoxide in acute organ injury, critical illness, and inflammatory disorders. Antioxidants (Basel). 9:11532020. View Article : Google Scholar : PubMed/NCBI

12 

Pizzino G, Irrera N, Cucinotta M, Pallio G, Mannino F, Arcoraci V, Squadrito F, Altavilla D and Bitto A: Oxidative stress: Harms and benefits for human health. Oxid Med Cell Longev. 2017:84167632017. View Article : Google Scholar : PubMed/NCBI

13 

Nova Z, Skovierova H and Calkovska A: Alveolar-capillary membrane-related pulmonary cells as a target in endotoxin-induced acute lung injury. Int J Mol. 20:8312019. View Article : Google Scholar

14 

Sahai E, Astsaturov I, Cukierman E, DeNardo DG, Egeblad M, Evans RM, Fearon D, Greten FR, Hingorani SR, Hunter T, et al: A framework for advancing our understanding of cancer-associated fibroblasts. Nat Rev Cancer. 20:174–186. 2020. View Article : Google Scholar : PubMed/NCBI

15 

Chen C, Hou J, Yu S, Li W, Wang X, Sun H, Qin T, Claret FX, Guo H and Liu Z: Role of cancer-associated fibroblasts in the resistance to antitumor therapy, and their potential therapeutic mechanisms in non-small cell lung cancer. Oncol Lett. 21:4132021. View Article : Google Scholar : PubMed/NCBI

16 

Tan X, Liu B, Lu J, Li S, Baiyun R, Lv Y, Lu Q and Zhang Z: Dietary luteolin protects against HgCl2-induced renal injury via activation of Nrf2-mediated signaling in rat. J Inorg Biochem. 179:24–31. 2018. View Article : Google Scholar : PubMed/NCBI

17 

Lu J, Li G, He K, Jiang W, Xu C, Li Z, Wang H, Wang W, Wang H, Teng X and Teng L: Luteolin exerts a marked antitumor effect in cMet-overexpressing patient-derived tumor xenograft models of gastric cancer. J Transl Med. 13:422015. View Article : Google Scholar : PubMed/NCBI

18 

Wang H, Luo Y, Qiao T, Wu Z and Huang Z: Luteolin sensitizes the antitumor effect of cisplatin in drug-resistant ovarian cancer via induction of apoptosis and inhibition of cell migration and invasion. J Ovarian Res. 11:932018. View Article : Google Scholar : PubMed/NCBI

19 

Yu Q, Zhang M, Ying Q, Xie X, Yue S, Tong B, Wei Q, Bai Z and Ma L: Decrease of AIM2 mediated by luteolin contributes to non-small cell lung cancer treatment. Cell Death Dis. 10:2182019. View Article : Google Scholar : PubMed/NCBI

20 

Xu H, Yang T, Liu X, Tian Y, Chen X, Yuan R, Su S, Lin X and Du G: Luteolin synergizes the antitumor effects of 5-fluorouracil against human hepatocellular carcinoma cells through apoptosis induction and metabolism. Life Sci. 144:138–147. 2016. View Article : Google Scholar : PubMed/NCBI

21 

Imran M, Rauf A, Abu-Izneid T, Nadeem M, Shariati MA, Khan IA, Imran A, Orhan IE, Rizwan M, Atif M, et al: Luteolin, a flavonoid, as an anticancer agent: A review. Biomed Pharmacother. 112:1086122019. View Article : Google Scholar : PubMed/NCBI

22 

Fernando PDSM, Piao MJ, Zhen AX, Ahn MJ, Yi JM, Choi YH and Hyun JW: Extract of cornus officinalis protects keratinocytes from particulate matter-induced oxidative stress. Int J Med Sci. 17:63–70. 2020. View Article : Google Scholar : PubMed/NCBI

23 

Kang KA, Piao MJ, Ryu YS, Hyun YJ, Park JE, Shilnikova K, Zhen AX, Kang HK, Koh YS, Jeong YJ and Hyun JW: Luteolin induces apoptotic cell death via antioxidant activity in human colon cancer cells. Int J Oncol. 51:1169–1178. 2017. View Article : Google Scholar : PubMed/NCBI

24 

Cinelli G, Sbrocchi G, Iacovino S, Ambrosone L, Ceglie A, Lopez F and Cuomo F: Red wine-enriched olive oil emulsions: Role of wine polyphenols in the oxidative stability. Colloid Interfac. 3:592019. View Article : Google Scholar

25 

Herath HMUL, Piao MJ, Kang KA, Zhen AX, Fernando PDSM, Kang HK, Yi JM and Hyun JW: Hesperidin exhibits protective effects against PM2.5-mediated mitochondrial damage, cell cycle arrest, and cellular senescence in human HaCaT keratinocytes. Molecules. 27:48002022. View Article : Google Scholar : PubMed/NCBI

26 

Kang KA, Zhang R, Chae S, Lee SJ, Kim J, Kim J, Jeong J, Lee J, Shin T, Lee NH and Hyun JW: Phloroglucinol (1,3,5-trihydroxybenzene) protects against ionizing radiation-induced cell damage through inhibition of oxidative stress in vitro and in vivo. Chem Biol Interact. 185:215–226. 2010. View Article : Google Scholar : PubMed/NCBI

27 

Dias MC, Pinto DCGA and Silva AMS: Plant flavonoids: Chemical characteristics and biological activity. Molecules. 26:53772021. View Article : Google Scholar : PubMed/NCBI

28 

Rudrapal M and Chetia D: Plant flavonoids as potential source of future antimalarial leads. Sys Rev Pharm. 8:13–18. 2017. View Article : Google Scholar

29 

Ullah A, Munir S, Badshah SL, Khan N, Ghani L, Poulson BG, Emwas AH and Jaremko M: Important flavonoids and their role as a therapeutic agent. Molecules. 25:52432020. View Article : Google Scholar : PubMed/NCBI

30 

Kang KA, Zhang R, Piao MJ, Zhen AX, Herath HMUL, Fernando PDSM and Hyun JW: Luteolin triggered apoptosis in human colon cancer cells mediated by endoplasmic reticulum stress signaling. Food Suppl Biomater Health. 2:e242022. View Article : Google Scholar

31 

Kang KA, Piao MJ, Hyun YJ, Zhen AX, Cho SJ, Ahn MJ, Yi JM and Hyun JW: Luteolin promotes apoptotic cell death via upregulation of Nrf2 expression by DNA demethylase and the interaction of Nrf2 with p53 in human colon cancer cells. Exp Mol Med. 51:1–14. 2019. View Article : Google Scholar

32 

Park J, Kang KA, Zhang R, Piao MJ, Park S, Kim JS, Kang SS and Hyun JW: Antioxidant and cytotoxicity effects of luteolin. Toxicol Res. 22:391–395. 2006.

33 

Liu YS, Yang Q, Li S, Luo L, Liu HY, Li XY and Gao ZN: Luteolin attenuates angiotensin II-induced renal damage in apolipoprotein E-deficient mice. Mol Med Rep. 23:1572021. View Article : Google Scholar : PubMed/NCBI

34 

Boukhenouna S, Wilson MA, Bahmed K and Kosmider B: Reactive oxygen species in chronic obstructive pulmonary disease. Oxid Med Cell Longev. 2018:57303952018. View Article : Google Scholar : PubMed/NCBI

35 

Son B, Kwon T, Lee S, Han I, Kim W, Youn H and Youn B: CYP2E1 regulates the development of radiation-induced pulmonary fibrosis via ER stress-and ROS-dependent mechanisms. Am J Physiol Lung Cell Mol Physiol. 313:L916–L929. 2017. View Article : Google Scholar : PubMed/NCBI

36 

Su LJ, Zhang JH, Gomez H, Murugan R, Hong X, Xu D, Jiang F and Peng ZY: Reactive oxygen species-induced lipid peroxidation in apoptosis, autophagy, and ferroptosis. Oxid Med Cell Longev. 2019:50808432019. View Article : Google Scholar : PubMed/NCBI

37 

Lee JS, Kim YR, Song IG, Ha SJ, Kim YE, Baek NI and Hong EK: Cyanidin-3-glucoside isolated from mulberry fruit protects pancreatic β-cells against oxidative stress-induced apoptosis. Int J Mol Med. 35:405–412. 2015. View Article : Google Scholar : PubMed/NCBI

38 

Upadhyay S, Vaish S and Dhiman M: Hydrogen peroxide-induced oxidative stress and its impact on innate immune responses in lung carcinoma A549 cells. Mol Cell Biochem. 450:135–147. 2019. View Article : Google Scholar : PubMed/NCBI

39 

Campbell NK, Fitzgerald HK and Dunne A: Regulation of inflammation by the antioxidant haem oxygenase 1. Nat Rev Immunol. 21:411–425. 2021. View Article : Google Scholar : PubMed/NCBI

40 

Park C, Lee H, Noh JS, Jin CY, Kim GY, Hyun JW, Leem SH and Choi YH: Hemistepsin a protects human keratinocytes against hydrogen peroxide-induced oxidative stress through activation of the Nrf2/HO-1 signaling pathway. Arch Biochem Biophys. 691:1085122020. View Article : Google Scholar : PubMed/NCBI

41 

Hua W, Li S, Luo R, Wu X, Zhang Y, Liao Z, Song Y, Wang K, Zhao K, Yang S and Yang C: Icariin protects human nucleus pulposus cells from hydrogen peroxide-induced mitochondria-mediated apoptosis by activating nuclear factor erythroid 2-related factor 2. Biochim Biophys Acta Mol Basis Dis. 1866:1655752020. View Article : Google Scholar : PubMed/NCBI

42 

Oh Y, Ahn CB, Nam KH, Kim YK, Yoon NY and Je JY: Amino acid composition, antioxidant, and cytoprotective effect of blue mussel (Mytilus edulis) hydrolysate through the inhibition of caspase-3 activation in oxidative stress-mediated endothelial cell injury. Mar Drugs. 17:1352019. View Article : Google Scholar : PubMed/NCBI

43 

Kim EN, Lee HS and Jeong GS: Cudratricusxanthone O inhibits H2O2-induced cell damage by activating Nrf2/HO-1 pathway in human chondrocytes. Antioxidants (Basel). 9:7882020. View Article : Google Scholar : PubMed/NCBI

44 

Xia Y, Tan W, Yuan F, Lin M and Luo H: Luteolin attenuates oxidative stress and colonic hypermobility in water avoidance stress rats by activating the Nrf2 signaling pathway. Mol Nutr Food Res. 68:e23001262024. View Article : Google Scholar : PubMed/NCBI

45 

Tan X, Yang Y, Xu J, Zhang P, Deng R, Mao Y, He J, Chen Y, Zhang Y, Ding J, et al: Luteolin exerts neuroprotection via modulation of the p62/Keap1/Nrf2 pathway in intracerebral hemorrhage. Front Pharmacol. 10:15512020. View Article : Google Scholar : PubMed/NCBI

46 

Rajput SA, Shaukat A, Wu K, Rajput IR, Baloch DM, Akhtar RW, Raza MA, Najda A, Rafał P, Albrakati A, et al: Luteolin alleviates aflatoxinB1-induced apoptosis and oxidative stress in the liver of mice through activation of Nrf2 signaling pathway. Antioxidants (Basel). 10:12682021. View Article : Google Scholar : PubMed/NCBI

47 

Li L, Luo W, Qian Y, Zhu W, Qian J, Li J, Jin Y, Xu X and Liang G: Luteolin protects against diabetic cardiomyopathy by inhibiting NF-κB-mediated inflammation and activating the Nrf2-mediated antioxidant responses. Phytomedicine. 59:1527742019. View Article : Google Scholar : PubMed/NCBI

48 

Mapuskar KA, Pulliam CF, Zepeda-Orozco D, Griffin BR, Furqan M, Spitz DR and Allen BG: Redox regulation of Nrf2 in cisplatin-induced kidney injury. Antioxidants (Basel). 12:17282023. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Fernando P, Ko D, Piao M, Kang K, Herath H and Hyun J: Protective effect of luteolin against oxidative stress‑mediated cell injury via enhancing antioxidant systems. Mol Med Rep 30: 121, 2024.
APA
Fernando, P., Ko, D., Piao, M., Kang, K., Herath, H., & Hyun, J. (2024). Protective effect of luteolin against oxidative stress‑mediated cell injury via enhancing antioxidant systems. Molecular Medicine Reports, 30, 121. https://doi.org/10.3892/mmr.2024.13244
MLA
Fernando, P., Ko, D., Piao, M., Kang, K., Herath, H., Hyun, J."Protective effect of luteolin against oxidative stress‑mediated cell injury via enhancing antioxidant systems". Molecular Medicine Reports 30.1 (2024): 121.
Chicago
Fernando, P., Ko, D., Piao, M., Kang, K., Herath, H., Hyun, J."Protective effect of luteolin against oxidative stress‑mediated cell injury via enhancing antioxidant systems". Molecular Medicine Reports 30, no. 1 (2024): 121. https://doi.org/10.3892/mmr.2024.13244
Copy and paste a formatted citation
x
Spandidos Publications style
Fernando P, Ko D, Piao M, Kang K, Herath H and Hyun J: Protective effect of luteolin against oxidative stress‑mediated cell injury via enhancing antioxidant systems. Mol Med Rep 30: 121, 2024.
APA
Fernando, P., Ko, D., Piao, M., Kang, K., Herath, H., & Hyun, J. (2024). Protective effect of luteolin against oxidative stress‑mediated cell injury via enhancing antioxidant systems. Molecular Medicine Reports, 30, 121. https://doi.org/10.3892/mmr.2024.13244
MLA
Fernando, P., Ko, D., Piao, M., Kang, K., Herath, H., Hyun, J."Protective effect of luteolin against oxidative stress‑mediated cell injury via enhancing antioxidant systems". Molecular Medicine Reports 30.1 (2024): 121.
Chicago
Fernando, P., Ko, D., Piao, M., Kang, K., Herath, H., Hyun, J."Protective effect of luteolin against oxidative stress‑mediated cell injury via enhancing antioxidant systems". Molecular Medicine Reports 30, no. 1 (2024): 121. https://doi.org/10.3892/mmr.2024.13244
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team