You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.
I agree
International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.
International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.
Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.
Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.
Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.
Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.
Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.
International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.
Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.
Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.
Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.
An International Open Access Journal Devoted to General Medicine.
![]() |
![]() |
|
Shehjar F, Maktabi B, Rahman ZA, Bahader GA, James AW, Naqvi A, Mahajan R and Shah ZA: Stroke: Molecular mechanisms and therapies: Update on recent developments. Neurochem Int. 162:1054582023. View Article : Google Scholar : PubMed/NCBI | |
|
Wu S, Wu B, Liu M, Chen Z, Wang W, Anderson CS, Sandercock P, Wang Y, Huang Y, Cui L, et al: Stroke in China: Advances and challenges in epidemiology, prevention, and management. Lancet Neurol. 18:394–405. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Barthels D and Das H: Current advances in ischemic stroke research and therapies. Biochim Biophys Acta Mol Basis Dis. 1866:1652602020. View Article : Google Scholar : PubMed/NCBI | |
|
Martin S: Stroke: Does intensive blood sugar control improve prognosis? Dtsch med Wochenschr. 137:26282012.(In German). PubMed/NCBI | |
|
Wu X, You J, Chen X, Zhou M, Ma H, Zhang T and Huang C: An overview of hyperbaric oxygen preconditioning against ischemic stroke. Metab Brain Dis. 38:855–872. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Shin TH, Lee DY, Basith S, Manavalan B, Paik MJ, Rybinnik I, Mouradian MM, Ahn JH and Lee G: Metabolome changes in cerebral ischemia. Cells. 9:16302020. View Article : Google Scholar : PubMed/NCBI | |
|
Tuo QZ, Zhang ST and Lei P: Mechanisms of neuronal cell death in ischemic stroke and their therapeutic implications. Med Res Rev. 42:259–305. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Virani SS, Alonso A, Benjamin EJ, Bittencourt MS, Callaway CW, Carson AP, Chamberlain AM, Chang AR, Cheng S, Delling FN, et al: Heart disease and stroke statistics-2020 update: A report from the american heart association. Circulation. 141:e139–e596. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Przykaza Ł: Understanding the connection between common stroke comorbidities, their associated inflammation, and the course of the cerebral ischemia/reperfusion cascade. Front Immunol. 12:7825692021. View Article : Google Scholar : PubMed/NCBI | |
|
Rothwell PM, Algra A and Amarenco P: Medical treatment in acute and long-term secondary prevention after transient ischaemic attack and ischaemic stroke. Lancet. 377:1681–1692. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Guo J, Tuo Q and Lei P: Iron, ferroptosis, and ischemic stroke. J Neurochem. 165:487–520. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Li J, Cao F, Yin H, Huang ZJ, Lin ZT, Mao N, Sun B and Wang G: Ferroptosis: Past, present and future. Cell Death Dis. 11:882020. View Article : Google Scholar : PubMed/NCBI | |
|
Xie Y, Hou W, Song X, Yu Y, Huang J, Sun X, Kang R and Tang D: Ferroptosis: Process and function. Cell Death Differ. 23:369–379. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Xu L, Liu Y, Chen X, Zhong H and Wang Y: Ferroptosis in life: To be or not to be. Biomed Pharmacother. 159:1142412023. View Article : Google Scholar : PubMed/NCBI | |
|
Sun Y, Li Q, Guo H and He Q: Ferroptosis and iron metabolism after intracerebral hemorrhage. Cells. 12:902022. View Article : Google Scholar : PubMed/NCBI | |
|
Chen GH, Song CC, Pantopoulos K, Wei XL, Zheng H and Luo Z: Mitochondrial oxidative stress mediated Fe-induced ferroptosis via the NRF2-ARE pathway. Free Radic Biol Med. 180:95–107. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Sun Y, Chen P, Zhai B, Zhang M, Xiang Y, Fang J, Xu S, Gao Y, Chen X, Sui X and Li G: The emerging role of ferroptosis in inflammation. Biomed Pharmacother. 127:1101082020. View Article : Google Scholar : PubMed/NCBI | |
|
Liu Y, Wan Y, Jiang Y, Zhang L and Cheng W: GPX4: The hub of lipid oxidation, ferroptosis, disease and treatment. Biochim Biophys Acta Rev Cancer. 1878:1888902023. View Article : Google Scholar : PubMed/NCBI | |
|
Wang X, Shen T, Lian J, Deng K, Qu C, Li E, Li G, Ren Y, Wang Z, Jiang Z, et al: Resveratrol reduces ROS-induced ferroptosis by activating SIRT3 and compensating the GSH/GPX4 pathway. Mol Med. 29:1372023. View Article : Google Scholar : PubMed/NCBI | |
|
Snezhkina AV, Kudryavtseva AV, Kardymon OL, Savvateeva MV, Melnikova NV, Krasnov GS and Dmitriev AA: ROS generation and antioxidant defense systems in normal and malignant cells. Oxid Med Cell Longev. 2019:61758042019. View Article : Google Scholar : PubMed/NCBI | |
|
Fu C, Wu Y, Liu S, Luo C, Lu Y, Liu M, Wang L, Zhang Y and Liu X: Rehmannioside A improves cognitive impairment and alleviates ferroptosis via activating PI3K/AKT/Nrf2 and SLC7A11/GPX4 signaling pathway after ischemia. J Ethnopharmacol. 289:1150212022. View Article : Google Scholar : PubMed/NCBI | |
|
Henning Y, Blind US, Larafa S, Matschke J and Fandrey J: Hypoxia aggravates ferroptosis in RPE cells by promoting the Fenton reaction. Cell Death Dis. 13:6622022. View Article : Google Scholar : PubMed/NCBI | |
|
Kosman DJ: Redox cycling in iron uptake, efflux, and trafficking. J Biol Chem. 285:26729–26735. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Lee J and Hyun DH: The interplay between intracellular iron homeostasis and neuroinflammation in neurodegenerative diseases. Antioxidants (Basel). 12:9182023. View Article : Google Scholar : PubMed/NCBI | |
|
Recalcati S, Gammella E and Cairo G: Dysregulation of iron metabolism in cancer stem cells. Free Radic Biol Med. 133:216–220. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Pan F, Xu W, Ding J and Wang C: Elucidating the progress and impact of ferroptosis in hemorrhagic stroke. Front Cell Neurosci. 16:10675702023. View Article : Google Scholar : PubMed/NCBI | |
|
Weiland A, Wang Y, Wu W, Lan X, Han X, Li Q and Wang J: Ferroptosis and its role in diverse brain diseases. Mol Neurobiol. 56:4880–4893. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Li Q, Han X, Lan X, Gao Y, Wan J, Durham F, Cheng T, Yang J, Wang Z, Jiang C, et al: Inhibition of neuronal ferroptosis protects hemorrhagic brain. JCI Insight. 2:e907772017. View Article : Google Scholar : PubMed/NCBI | |
|
Speer RE, Karuppagounder SS, Basso M, Sleiman SF, Kumar A, Brand D, Smirnova N, Gazaryan I, Khim SJ and Ratan RR: Hypoxia-inducible factor prolyl hydroxylases as targets for neuroprotection by ‘antioxidant’ metal chelators: From ferroptosis to stroke. Free Radic Biol Med. 62:26–36. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Xu Y, Li K, Zhao Y, Zhou L, Liu Y and Zhao J: Role of ferroptosis in stroke. Cell Mol Neurobiol. 43:205–222. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Liu J, Guo ZN, Yan XL, Huang S, Ren JX, Luo Y and Yang Y: Crosstalk between autophagy and ferroptosis and its putative role in ischemic stroke. Front Cell Neurosci. 14:5774032020. View Article : Google Scholar : PubMed/NCBI | |
|
Bao WD, Pang P, Zhou XT, Hu F, Xiong W, Chen K, Wang J, Wang F, Xie D, Hu YZ, et al: Loss of ferroportin induces memory impairment by promoting ferroptosis in Alzheimer's disease. Cell Death Differ. 28:1548–1562. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Mahoney-Sánchez L, Bouchaoui H, Ayton S, Devos D, Duce JA and Devedjian JC: Ferroptosis and its potential role in the physiopathology of Parkinson's disease. Prog Neurobiol. 196:1018902021. View Article : Google Scholar : PubMed/NCBI | |
|
Wang Y, Chen G and Shao W: Identification of ferroptosis-related genes in Alzheimer's disease based on bioinformatic analysis. Front Neurosci. 16:8237412022. View Article : Google Scholar : PubMed/NCBI | |
|
Wang C, Chen S, Guo H, Jiang H, Liu H, Fu H and Wang D: Forsythoside A mitigates Alzheimer's-like pathology by inhibiting ferroptosis-mediated neuroinflammation via Nrf2/GPX4 axis activation. Int J Biol Sci. 18:2075–2090. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Jakaria M, Belaidi AA, Bush AI and Ayton S: Ferroptosis as a mechanism of neurodegeneration in Alzheimer's disease. J Neurochem. 159:804–825. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Jiang X, Stockwell BR and Conrad M: Ferroptosis: Mechanisms, biology and role in disease. Nat Rev Mol Cell Biol. 22:266–282. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, Patel DN, Bauer AJ, Cantley AM, Yang WS, et al: Ferroptosis: An iron-dependent form of nonapoptotic cell death. Cell. 149:1060–1072. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Mao C, Liu X, Zhang Y, Lei G, Yan Y, Lee H, Koppula P, Wu S, Zhuang L, Fang B, et al: DHODH-mediated ferroptosis defence is a targetable vulnerability in cancer. Nature. 593:586–590. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Alim I, Caulfield JT, Chen Y, Swarup V, Geschwind DH, Ivanova E, Seravalli J, Ai Y, Sansing LH, Ste Marie EJ, et al: Selenium drives a transcriptional adaptive program to block ferroptosis and treat stroke. Cell. 177:1262–1279.e25. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Ren JX, Li C, Yan XL, Qu Y, Yang Y and Guo ZN: Crosstalk between oxidative stress and ferroptosis/oxytosis in ischemic stroke: Possible targets and molecular mechanisms. Oxid Med Cell Longev. 2021:66433822021. View Article : Google Scholar : PubMed/NCBI | |
|
Si W, Sun B, Luo J, Li Z, Dou Y and Wang Q: Snap25 attenuates neuronal injury via reducing ferroptosis in acute ischemic stroke. Exp Neurol. 367:1144762023. View Article : Google Scholar : PubMed/NCBI | |
|
Kuriakose D and Xiao Z: Pathophysiology and treatment of stroke: Present status and future perspectives. Int J Mol Sci. 21:76092020. View Article : Google Scholar : PubMed/NCBI | |
|
Liu Y, Fang Y, Zhang Z, Luo Y, Zhang A, Lenahan C and Chen S: Ferroptosis: An emerging therapeutic target in stroke. J Neurochem. 160:64–73. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Prajapati M, Conboy HL, Hojyo S, Fukada T, Budnik B and Bartnikas TB: Biliary excretion of excess iron in mice requires hepatocyte iron import by Slc39a14. J Biol Chem. 297:1008352021. View Article : Google Scholar : PubMed/NCBI | |
|
Chen Y, Fang ZM, Yi X, Wei X and Jiang DS: The interaction between ferroptosis and inflammatory signaling pathways. Cell Death Dis. 14:2052023. View Article : Google Scholar : PubMed/NCBI | |
|
Wang W, Jing X, Du T, Ren J, Liu X, Chen F, Shao Y, Sun S, Yang G and Cui X: Iron overload promotes intervertebral disc degeneration via inducing oxidative stress and ferroptosis in endplate chondrocytes. Free Radic Biol Med. 190:234–246. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Shi F, Zhang Z, Cui H, Wang J, Wang Y, Tang Y, Yang W, Zou P, Ling X, Han F, et al: Analysis by transcriptomics and metabolomics for the proliferation inhibition and dysfunction through redox imbalance-mediated DNA damage response and ferroptosis in male reproduction of mice and TM4 Sertoli cells exposed to PM2.5. Ecotoxicol Environ Saf. 238:1135692022. View Article : Google Scholar : PubMed/NCBI | |
|
Lin Q, Li S, Jin H, Cai H, Zhu X, Yang Y, Wu J, Qi C, Shao X, Li J, et al: Mitophagy alleviates cisplatin-induced renal tubular epithelial cell ferroptosis through ROS/HO-1/GPX4 axis. Int J Biol Sci. 19:1192–1210. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Su LJ, Zhang JH, Gomez H, Murugan R, Hong X, Xu D, Jiang F and Peng ZY: Reactive oxygen species-induced lipid peroxidation in apoptosis, autophagy, and ferroptosis. Oxid Med Cell Longev. 2019:50808432019. View Article : Google Scholar : PubMed/NCBI | |
|
Yuan Y, Zhai Y, Chen J, Xu X and Wang H: Kaempferol ameliorates oxygen-glucose deprivation/reoxygenation-induced neuronal ferroptosis by activating Nrf2/SLC7A11/GPX4 axis. Biomolecules. 11:9232021. View Article : Google Scholar : PubMed/NCBI | |
|
Liu H, Zhang T, Zhang WY, Huang SR, Hu Y and Sun J: Rhein attenuates cerebral ischemia-reperfusion injury via inhibition of ferroptosis through NRF2/SLC7A11/GPX4 pathway. Exp Neurol. 369:1145412023. View Article : Google Scholar : PubMed/NCBI | |
|
Ursini F and Maiorino M: Lipid peroxidation and ferroptosis: The role of GSH and GPx4. Free Radic Biol Med. 152:175–185. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Ralhan I, Chang J, Moulton MJ, Goodman LD, Lee NYJ, Plummer G, Pasolli HA, Matthies D, Bellen HJ and Ioannou MS: Autolysosomal exocytosis of lipids protect neurons from ferroptosis. J Cell Biol. 222:e2022071302023. View Article : Google Scholar : PubMed/NCBI | |
|
Mamais A, Kluss JH, Bonet-Ponce L, Landeck N, Langston RG, Smith N, Beilina A, Kaganovich A, Ghosh MC, Pellegrini L, et al: Correction: Mutations in LRRK2 linked to Parkinson disease sequester Rab8a to damaged lysosomes and regulate transferrin-mediated iron uptake in microglia. PLoS Biol. 20:e30016212022. View Article : Google Scholar : PubMed/NCBI | |
|
Reyhani A, McKenzie TG, Fu Q and Qiao GG: Fenton-chemistry-mediated radical polymerization. Macromol Rapid Commun. 40:19002202019. View Article : Google Scholar : PubMed/NCBI | |
|
Chen Y, Yang Z, Wang S, Ma Q, Li L, Wu X, Guo Q, Tao L and Shen X: Boosting ROS-mediated lysosomal membrane permeabilization for cancer ferroptosis therapy. Adv Healthc Mater. 12:22021502023. View Article : Google Scholar | |
|
Von Krusenstiern AN, Robson RN, Qian N, Qiu B, Hu F, Reznik E, Smith N, Zandkarimi F, Estes VM, Dupont M, et al: Identification of essential sites of lipid peroxidation in ferroptosis. Nat Chem Biol. 19:719–730. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Ayala A, Muñoz MF and Argüelles S: Lipid peroxidation: Production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxid Med Cell Longev. 2014:3604382014. View Article : Google Scholar : PubMed/NCBI | |
|
Zhu G, Chi H, Liu M, Yin Y, Diao H, Liu Z, Guo Z, Xu W, Xu J, Cui C, et al: Multifunctional ‘ball-rod’ Janus nanoparticles boosting Fenton reaction for ferroptosis therapy of non-small cell lung cancer. J Colloid Interface Sci. 621:12–23. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Kajarabille N and Latunde-Dada GO: Programmed cell-death by ferroptosis: Antioxidants as mitigators. Int J Mol Sci. 20:49682019. View Article : Google Scholar : PubMed/NCBI | |
|
Li J, Jia B, Cheng Y, Song Y, Li Q and Luo C: Targeting Molecular mediators of ferroptosis and oxidative stress for neurological disorders. Oxid Med Cell Longev. 2022:39990832022.PubMed/NCBI | |
|
Wan J, Ren H and Wang J: Iron toxicity, lipid peroxidation and ferroptosis after intracerebral haemorrhage. Stroke Vasc Neurol. 4:93–95. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Garton T, Keep RF, Hua Y and Xi G: CD163, a hemoglobin/haptoglobin scavenger receptor, after intracerebral hemorrhage: Functions in microglia/macrophages versus neurons. Transl Stroke Res. 8:612–616. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Hare D, Ayton S, Bush A and Lei P: A delicate balance: Iron metabolism and diseases of the brain. Front Aging Neurosci. 5:342013. View Article : Google Scholar : PubMed/NCBI | |
|
Yang C, Hawkins KE, Doré S and Candelario-Jalil E: Neuroinflammatory mechanisms of blood-brain barrier damage in ischemic stroke. Am J Physiol Cell Physiol. 316:C135–C153. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Bouchaoui H, Mahoney-Sanchez L, Garçon G, Berdeaux O, Alleman LY, Devos D, Duce JA and Devedjian JC: ACSL4 and the lipoxygenases 15/15B are pivotal for ferroptosis induced by iron and PUFA dyshomeostasis in dopaminergic neurons. Free Radic Biol Med. 195:145–157. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Rock C and Moos PJ: Selenoprotein P protects cells from lipid hydroperoxides generated by 15-LOX-1. Prostaglandins Leukot Essent Fatty Acids. 83:203–210. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Karuppagounder SS, Alim I, Khim SJ, Bourassa MW, Sleiman SF, John R, Thinnes CC, Yeh TL, Demetriades M, Neitemeier S, et al: Therapeutic targeting of oxygen-sensing prolyl hydroxylases abrogates ATF4-dependent neuronal death and improves outcomes after brain hemorrhage in several rodent models. Sci Transl Med. 8:328ra292016. View Article : Google Scholar : PubMed/NCBI | |
|
Wang H, Xu L, Tang X, Jiang Z and Feng X: Lipid peroxidation-induced ferroptosis as a therapeutic target for mitigating neuronal injury and inflammation in sepsis-associated encephalopathy: Insights into the hippocampal PEBP-1/15-LOX/GPX4 pathway. Lipids Health Dis. 23:1282024. View Article : Google Scholar : PubMed/NCBI | |
|
Shah R, Shchepinov MS and Pratt DA: Resolving the role of lipoxygenases in the initiation and execution of ferroptosis. ACS Cent Sci. 4:387–396. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Martami F and Holton KF: Targeting glutamate neurotoxicity through dietary manipulation: Potential treatment for migraine. Nutrients. 15:39522023. View Article : Google Scholar : PubMed/NCBI | |
|
Saini KK, Chaturvedi P, Sinha A, Singh MP, Khan MA, Verma A, Nengroo MA, Satrusal SR, Meena S, Singh A, et al: Loss of PERK function promotes ferroptosis by downregulating SLC7A11 (System Xc-) in colorectal cancer. Redox Biol. 65:1028332023. View Article : Google Scholar : PubMed/NCBI | |
|
Koppula P, Zhuang L and Gan B: Cystine transporter SLC7A11/xCT in cancer: Ferroptosis, nutrient dependency, and cancer therapy. Protein Cell. 12:599–620. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Dahlmanns M, Dahlmanns JK, Savaskan N, Steiner HH and Yakubov E: Glial glutamate transporter-mediated plasticity: System xc-/xCT/SLC7A11 and EAAT1/2 in brain diseases. Front Biosci (Landmark Ed). 28:572023. View Article : Google Scholar : PubMed/NCBI | |
|
Albrecht P, Lewerenz J, Dittmer S, Noack R, Maher P and Methner A: Mechanisms of oxidative glutamate toxicity: The glutamate/cystine antiporter system xc-as a neuroprotective drug target. CNS Neurol Disord Drug Targets. 9:373–382. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Puka-Sundvall M, Eriksson P, Nilsson M, Sandberg M and Lehmann A: Neurotoxicity of cysteine: interaction with glutamate. Brain Res. 705:65–70. 1995. View Article : Google Scholar : PubMed/NCBI | |
|
Yuan Y, Yucai L, Lu L, Hui L, Yong P and Haiyang Y: Acrylamide induces ferroptosis in HSC-T6 cells by causing antioxidant imbalance of the XCT-GSH-GPX4 signaling and mitochondrial dysfunction. Toxicol Lett. 368:24–32. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang W, Niu C, Liu Y and Chen B: Glutathione redox balance in hibernating Chinese soft-shelled turtle Pelodiscus sinensis hatchlings. Comp Biochem Physiol B Biochem Mol Biol. 207:9–14. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Iskusnykh IY, Zakharova AA and Pathak D: Glutathione in brain disorders and aging. Molecules. 27:3242022. View Article : Google Scholar : PubMed/NCBI | |
|
Miladinovic T and Singh G: Spinal microglia contribute to cancer-induced pain through system xC−-mediated glutamate release. Pain Rep. 4:e7382019. View Article : Google Scholar : PubMed/NCBI | |
|
Shen SY, Yu R, Li W, Liang LF, Han QQ, Huang HJ, Li B, Xu SF, Wu GC, Zhang YQ and Yu J: The neuroprotective effects of GPR55 against hippocampal neuroinflammation and impaired adult neurogenesis in CSDS mice. Neurobiol Dis. 169:1057432022. View Article : Google Scholar : PubMed/NCBI | |
|
Chen Z and Trapp BD: Microglia and neuroprotection. J Neurochem. 136 (Suppl 1):S10–S17. 2016. View Article : Google Scholar | |
|
Frank D, Gruenbaum BF, Grinshpun J, Melamed I, Severynovska O, Kuts R, Semyonov M, Brotfain E, Zlotnik A and Boyko M: Measuring post-stroke cerebral edema, infarct zone and blood-brain barrier breakdown in a single set of rodent brain samples. J Vis Exp. 2020:e613092020. | |
|
Raper DMS and Abla AA: Commentary: Encephalodu-roarteriosynangiosis averts stroke in atherosclerotic patients with border-zone infarct: Post hoc analysis from a performance criterion phase II trial. Neurosurgery. 88:E319–E320. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Fan G, Liu M, Liu J and Huang Y: The initiator of neuroexcitotoxicity and ferroptosis in ischemic stroke: Glutamate accumulation. Front Mol Neurosci. 16:11130812023. View Article : Google Scholar : PubMed/NCBI | |
|
Bridges R, Lutgen V, Lobner D and Baker DA: Thinking outside the cleft to understand synaptic activity: Contribution of the cystine-glutamate antiporter (System xc-) to normal and pathological glutamatergic signaling. Pharmacol Rev. 64:780–802. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Seibt TM, Proneth B and Conrad M: Role of GPX4 in ferroptosis and its pharmacological implication. Free Radic Biol Med. 133:144–152. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Liu J, Yang G and Zhang H: Glyphosate-triggered hepatocyte ferroptosis via suppressing Nrf2/GSH/GPX4 axis exacerbates hepatotoxicity. Sci Total Environ. 862:1608392023. View Article : Google Scholar : PubMed/NCBI | |
|
Jin M, Shi C, Li T, Wu Y, Hu C and Huang G: Solasonine promotes ferroptosis of hepatoma carcinoma cells via glutathione peroxidase 4-induced destruction of the glutathione redox system. Biomed Pharmacother. 129:1102822020. View Article : Google Scholar : PubMed/NCBI | |
|
Delesderrier E, Monteiro JDC, Freitas S, Pinheiro IC, Batista MS and Citelli M: Can iron and polyunsaturated fatty acid supplementation induce ferroptosis? Cell Physiol Biochem. 57:24–41. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Xie G, Liang Y, Gao W, Wu L, Zhang Y, Ye Z and Qin C: Artesunate alleviates intracerebral haemorrhage secondary injury by inducing ferroptosis in M1-polarized microglia and suppressing inflammation through AMPK/mTORC1/GPX4 pathway. Basic Clin Pharmacol Toxicol. 132:369–383. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Steinberg GR and Hardie DG: New insights into activation and function of the AMPK. Nat Rev Mol Cell Biol. 24:255–272. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Muraleedharan R and Dasgupta B: AMPK in the brain: Its roles in glucose and neural metabolism. FEBS J. 289:2247–2262. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Taghiyar S, Pourrajab F and Aarabi MH: Astaxanthin improves fatty acid dysregulation in diabetes by controlling the AMPK-SIRT1 pathway. EXCLI J. 22:502–515. 2023.PubMed/NCBI | |
|
Malik N, Ferreira BI, Hollstein PE, Curtis SD, Trefts E, Weiser Novak S, Yu J, Gilson R, Hellberg K, Fang L, et al: Induction of lysosomal and mitochondrial biogenesis by AMPK phosphorylation of FNIP1. Science. 380:eabj55592023. View Article : Google Scholar : PubMed/NCBI | |
|
Bae SJ, Bak SB and Kim YW: Coordination of AMPK and YAP by Spatholobi caulis and procyanidin B2 provides antioxidant effects in vitro and in vivo. Int J Mol Sci. 23:137302022. View Article : Google Scholar : PubMed/NCBI | |
|
Lee H, Zandkarimi F, Zhang Y, Meena JK, Kim J, Zhuang L, Tyagi S, Ma L, Westbrook TF, Steinberg GR, et al: Energy-stress-mediated AMPK activation inhibits ferroptosis. Nat Cell Biol. 22:225–234. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Chen X, Kang R, Kroemer G and Tang D: Broadening horizons: The role of ferroptosis in cancer. Nat Rev Clin Oncol. 18:280–296. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Gao J, Li Y and Song R: SIRT2 inhibition exacerbates p53-mediated ferroptosis in mice following experimental traumatic brain injury. Neuroreport. 32:1001–1008. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Lu W, Ji H and Wu D: SIRT2 plays complex roles in neuroinflammation neuroimmunology-associated disorders. Front Immunol. 14:11741802023. View Article : Google Scholar : PubMed/NCBI | |
|
Wu H, Liu Q, Shan X, Gao W and Chen Q: ATM orchestrates ferritinophagy and ferroptosis by phosphorylating NCOA4. Autophagy. 19:2062–2077. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Mi Y, Wei C, Sun L, Liu H, Zhang J, Luo J, Yu X, He J, Ge H and Liu P: Melatonin inhibits ferroptosis and delays age-related cataract by regulating SIRT6/p-Nrf2/GPX4 and SIRT6/NCOA4/FTH1 pathways. Biomed Pharmacother. 157:1140482023. View Article : Google Scholar : PubMed/NCBI | |
|
Jin Y, Qiu J, Lu X and Li G: C-MYC inhibited ferroptosis and promoted immune evasion in ovarian cancer cells through NCOA4 mediated ferritin autophagy. Cells. 11:41272022. View Article : Google Scholar : PubMed/NCBI | |
|
Li C, Sun G, Chen B, Xu L, Ye Y, He J, Bao Z, Zhao P, Miao Z, Zhao L, et al: Nuclear receptor coactivator 4-mediated ferritinophagy contributes to cerebral ischemia-induced ferroptosis in ischemic stroke. Pharmacol Res. 174:1059332021. View Article : Google Scholar : PubMed/NCBI | |
|
Santana-Codina N, Gikandi A and Mancias JD: The role of NCOA4-mediated ferritinophagy in ferroptosis. Ferroptosis: Mechanism and Diseases. Vol. 1301. Florez AF and Alborzinia H: Springer International Publishing; Cham: pp. 41–57. 2021, PubMed/NCBI | |
|
Fang Y, Chen X, Tan Q, Zhou H, Xu J and Gu Q: Inhibiting ferroptosis through disrupting the NCOA4-FTH1 interaction: A new mechanism of action. ACS Cent Sci. 7:980–989. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Santana-Codina N, Gableske S, Quiles del Rey M, Małachowska B, Jedrychowski MP, Biancur DE, Schmidt PJ, Fleming MD, Fendler W, Harper JW, et al: NCOA4 maintains murine erythropoiesis via cell autonomous and non-autonomous mechanisms. Haematologica. 104:1342–1354. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Bellelli R, Federico G, Matte' A, Colecchia D, Iolascon A, Chiariello M, Santoro M, De Franceschi L and Carlomagno F: NCOA4 deficiency impairs systemic iron homeostasis. Cell Rep. 14:411–421. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Nai A, Lidonnici MR, Federico G, Pettinato M, Olivari V, Carrillo F, Geninatti Crich S, Ferrari G, Camaschella C, Silvestri L and Carlomagno F: NCOA4-mediated ferritinophagy in macrophages is crucial to sustain erythropoiesis in mice. Haematologica. 106:795–805. 2021.PubMed/NCBI | |
|
Xu W, Guo ZN and Shao A: Editorial: Ferroptosis in stroke, neurotrauma and neurodegeneration, volume II. Front Cell Neurosci. 17:12384252023. View Article : Google Scholar : PubMed/NCBI | |
|
Rochette L, Dogon G, Rigal E, Zeller M, Cottin Y and Vergely C: Lipid peroxidation and iron metabolism: Two corner stones in the homeostasis control of ferroptosis. Int J Mol Sci. 24:4492022. View Article : Google Scholar : PubMed/NCBI | |
|
Wang L, Liu Y, Du T, Yang H, Lei L, Guo M, Ding HF, Zhang J, Wang H, Chen X and Yan C: ATF3 promotes erastin-induced ferroptosis by suppressing system Xc. Cell Death Differ. 27:662–675. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Verbruggen L, Sprimont L, Bentea E, Janssen P, Gharib A, Deneyer L, De Pauw L, Lara O, Sato H, Nicaise C and Massie A: Chronic sulfasalazine treatment in mice induces system xc−-independent adverse effects. Front Pharmacol. 12:6256992021. View Article : Google Scholar : PubMed/NCBI | |
|
de Baat A, Meier DT, Fontana A, Böni-Schnetzler M and Donath MY: Cystine/Glutamate antiporter system xc- deficiency impairs macrophage glutathione metabolism and cytokine production. PLoS One. 18:e02919502023. View Article : Google Scholar : PubMed/NCBI | |
|
Sui X, Zhang R, Liu S, Duan T, Zhai L, Zhang M, Han X, Xiang Y, Huang X, Lin H and Xie T: RSL3 drives ferroptosis through GPX4 inactivation and ROS production in colorectal cancer. Front Pharmacol. 9:13712018. View Article : Google Scholar : PubMed/NCBI | |
|
Cui C, Yang F and Li Q: Post-translational modification of GPX4 is a promising target for treating ferroptosis-related diseases. Front Mol Biosci. 9:9015652022. View Article : Google Scholar : PubMed/NCBI | |
|
Zhou J, Zhang L, Yan J, Hou A, Sui W and Sun M: Curcumin induces ferroptosis in A549 CD133+ cells through the GSH-GPX4 and FSP1-CoQ10-NAPH pathways. Discov Med. 35:251–263. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Almahi WA, Yu KN, Mohammed F, Kong P and Han W: Hemin enhances radiosensitivity of lung cancer cells through ferroptosis. Exp Cell Res. 410:1129462022. View Article : Google Scholar : PubMed/NCBI | |
|
Ma S, Henson ES, Chen Y and Gibson SB: Ferroptosis is induced following siramesine and lapatinib treatment of breast cancer cells. Cell Death Dis. 7:e23072016. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang X, Yu K, Ma L, Qian Z, Tian X, Miao Y, Niu Y, Xu X, Guo S, Yang Y, et al: Endogenous glutamate determines ferroptosis sensitivity via ADCY10-dependent YAP suppression in lung adenocarcinoma. Theranostics. 11:5650–5674. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Sun S, Guo C, Gao T, Ma D, Su X, Pang Q and Zhang R: Hypoxia enhances glioma resistance to sulfasalazine-induced ferroptosis by upregulating SLC7A11 via PI3K/AKT/HIF-1α axis. Oxid Med Cell Longev. 2022:78624302022. View Article : Google Scholar : PubMed/NCBI | |
|
Zhao Y, Li Y, Zhang R, Wang F, Wang T and Jiao Y: The role of erastin in ferroptosis and its prospects in cancer therapy. Onco Targets Ther. 13:5429–5441. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang Y, Tan H, Daniels JD, Zandkarimi F, Liu H, Brown LM, Uchida K, O'Connor OA and Stockwell BR: Imidazole ketone erastin induces ferroptosis and slows tumor growth in a mouse lymphoma model. Cell Chem Biol. 26:623–633.e9. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Duan L, Zhang Y, Yang Y, Su S, Zhou L, Lo PC, Cai J, Qiao Y, Li M, Huang S, et al: Baicalin inhibits ferroptosis in intracerebral hemorrhage. Front Pharmacol. 12:6293792021. View Article : Google Scholar : PubMed/NCBI | |
|
Li J, Wei G, Song Z, Chen Z, Gu J, Zhang L and Wang Z: SIRT5 regulates ferroptosis through the Nrf2/HO-1 signaling axis to participate in ischemia-reperfusion injury in ischemic stroke. Neurochem Res. 49:998–1007. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Li Y, Bao Y, Li Y, Duan X, Dong S, Lin J, Chang X, Tan Y, Zhang H and Shan H: RSL3 inhibits porcine epidemic diarrhea virus replication by activating ferroptosis. Viruses. 15:20802023. View Article : Google Scholar : PubMed/NCBI | |
|
Cheff DM, Huang C, Scholzen KC, Gencheva R, Ronzetti MH, Cheng Q, Hall MD and Arnér ESJ: The ferroptosis inducing compounds RSL3 and ML162 are not direct inhibitors of GPX4 but of TXNRD1. Redox Biol. 62:1027032023. View Article : Google Scholar : PubMed/NCBI | |
|
Hu J, Gu W, Ma N, Fan X and Ci X: Leonurine alleviates ferroptosis in cisplatin-induced acute kidney injury by activating the Nrf2 signalling pathway. Br J Pharmacol. 179:3991–4009. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Yang J, Mo J, Dai J, Ye C, Cen W, Zheng X, Jiang L and Ye L: Cetuximab promotes RSL3-induced ferroptosis by suppressing the Nrf2/HO-1 signalling pathway in KRAS mutant colorectal cancer. Cell Death Dis. 12:10792021. View Article : Google Scholar : PubMed/NCBI | |
|
Li S, He Y, Chen K, Sun J, Zhang L, He Y, Yu H and Li Q: RSL3 drives ferroptosis through NF-κB pathway activation and GPX4 depletion in glioblastoma. Oxid Med Cell Longev. 2021:29150192021. View Article : Google Scholar : PubMed/NCBI | |
|
Sun X, Huang N, Li P, Dong X, Yang J, Zhang X, Zong WX, Gao S and Xin H: TRIM21 ubiquitylates GPX4 and promotes ferroptosis to aggravate ischemia/reperfusion-induced acute kidney injury. Life Sci. 321:1216082023. View Article : Google Scholar : PubMed/NCBI | |
|
Li M, Meng Z, Yu S, Li J, Wang Y, Yang W and Wu H: Baicalein ameliorates cerebral ischemia-reperfusion injury by inhibiting ferroptosis via regulating GPX4/ACSL4/ACSL3 axis. Chem Biol Interact. 366:1101372022. View Article : Google Scholar : PubMed/NCBI | |
|
Nakamura T, Hipp C, Santos Dias Mourão A, Borggräfe J, Aldrovandi M, Henkelmann B, Wanninger J, Mishima E, Lytton E, Emler D, et al: Phase separation of FSP1 promotes ferroptosis. Nature. 619:371–377. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Yao X, Xie R, Cao Y, Tang J, Men Y, Peng H and Yang W: Simvastatin induced ferroptosis for triple-negative breast cancer therapy. J Nanobiotechnology. 19:3112021. View Article : Google Scholar : PubMed/NCBI | |
|
Shu X and Wu J, Zhang T, Ma X, Du Z, Xu J, You J, Wang L, Chen N, Luo M and Wu J: Statin-induced geranylgeranyl pyrophosphate depletion promotes ferroptosis-related senescence in adipose tissue. Nutrients. 14:43652022. View Article : Google Scholar : PubMed/NCBI | |
|
Miyamoto HD, Ikeda M, Ide T, Tadokoro T, Furusawa S, Abe K, Ishimaru K, Enzan N, Sada M, Yamamoto T, et al: Iron overload via heme degradation in the endoplasmic reticulum triggers ferroptosis in myocardial ischemia-reperfusion injury. JACC Basic Transl Sci. 7:800–819. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Chen GQ, Benthani FA, Wu J, Liang D, Bian ZX and Jiang X: Artemisinin compounds sensitize cancer cells to ferroptosis by regulating iron homeostasis. Cell Death Differ. 27:242–254. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Pei X, Tian M, Wang Y, Xin Y, Jiang J, Wang Y and Gong Y: Advances in the knowledge on the role of apoptosis repressor with caspase recruitment domain in hemorrhagic stroke. J Intensive Med. 3:138–143. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Zille M, Karuppagounder SS, Chen Y, Gough PJ, Bertin J, Finger J, Milner TA, Jonas EA and Ratan RR: Neuronal death after hemorrhagic stroke in vitro and in vivo shares features of ferroptosis and necroptosis. Stroke. 48:1033–1043. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Fu K, Xu W, Lenahan C, Mo Y, Wen J, Deng T, Huang Q, Guo F, Mo L and Yan J: Autophagy regulates inflammation in intracerebral hemorrhage: Enemy or friend? Front Cell Neurosci. 16:10363132023. View Article : Google Scholar : PubMed/NCBI | |
|
Wang X, Mori T, Sumii T and Lo EH: Hemoglobin-induced cytotoxicity in rat cerebral cortical neurons: Caspase activation and oxidative stress. Stroke. 33:1882–1888. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
Xu Y, Liu Y, Li K, Yuan D, Yang S, Zhou L, Zhao Y, Miao S, Lv C and Zhao J: COX-2/PGE2 pathway inhibits the ferroptosis induced by cerebral ischemia reperfusion. Mol Neurobiol. 59:1619–1631. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Dendorfer A, Heidbreder M, Hellwig-Bürgel T, Jöhren O, Qadri F and Dominiak P: Deferoxamine induces prolonged cardiac preconditioning via accumulation of oxygen radicals. Free Radic Biol Med. 38:117–124. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Wang C, Xie L, Xing Y, Liu M, Yang J, Gao N and Cai Y: Iron-overload-induced ferroptosis in mouse cerebral toxoplasmosis promotes brain injury and could be inhibited by Deferiprone. PLoS Negl Trop Dis. 17:e00116072023. View Article : Google Scholar : PubMed/NCBI | |
|
Miotto G, Rossetto M, Di Paolo ML, Orian L, Venerando R, Roveri A, Vučković AM, Bosello Travain V, Zaccarin M, Zennaro L, et al: Insight into the mechanism of ferroptosis inhibition by ferrostatin-1. Redox Biol. 28:1013282020. View Article : Google Scholar : PubMed/NCBI | |
|
Gao Z, Zhang Z, Gu D, Li Y, Zhang K, Dong X, Liu L, Zhang J, Chen J, Wu D and Zeng M: Hemin mitigates contrast-induced nephropathy by inhibiting ferroptosis via HO-1/Nrf2/GPX4 pathway. Clin Exp Pharma Physio. 49:858–870. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Mishima E, Ito J, Wu Z, Nakamura T, Wahida A, Doll S, Tonnus W, Nepachalovich P, Eggenhofer E, Aldrovandi M, et al: A non-canonical vitamin K cycle is a potent ferroptosis suppressor. Nature. 608:778–783. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Sun W, Lv Z, Li W, Lu J, Xie Y, Wang P, Jiang R, Dong J, Guo H, Liu Z, et al: XJB-5-131 protects chondrocytes from ferroptosis to alleviate osteoarthritis progression via restoring Pebp1 expression. J Orthop Translat. 44:114–124. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Bersuker K, Hendricks JM, Li Z, Magtanong L, Ford B, Tang PH, Roberts MA, Tong B, Maimone TJ, Zoncu R, et al: The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis. Nature. 575:688–692. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Doll S, Proneth B, Tyurina YY, Panzilius E, Kobayashi S, Ingold I, Irmler M, Beckers J, Aichler M, Walch A, et al: ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition. Nat Chem Biol. 13:91–98. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Liu Y, Wang W, Li Y, Xiao Y, Cheng J and Jia J: The 5-lipoxygenase inhibitor zileuton confers neuroprotection against glutamate oxidative damage by inhibiting ferroptosis. Biol Pharm Bull. 38:1234–1239. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Kosyakovsky J, Fine JM, Frey WH II and Hanson LR: Mechanisms of intranasal deferoxamine in neurodegenerative and neurovascular disease. Pharmaceuticals (Basel). 14:952021. View Article : Google Scholar : PubMed/NCBI | |
|
Huang Z and Huang S: Reposition of the fungicide ciclopirox for cancer treatment. Recent Pat Anticancer Drug Discov. 16:122–135. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Averill-Bates DA: The antioxidant glutathione. Vitam Horm. 121:109–141. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Chen J, Yang L, Geng L, He J, Chen L, Sun Q, Zhao J and Wang X: Inhibition of Acyl-CoA synthetase long-chain family member 4 facilitates neurological recovery after stroke by regulation ferroptosis. Front Cell Neurosci. 15:6323542021. View Article : Google Scholar : PubMed/NCBI | |
|
Shen L, Lin D, Li X, Wu H, Lenahan C, Pan Y, Xu W, Chen Y, Shao A and Zhang J: Ferroptosis in acute central nervous system injuries: The future direction? Front Cell Dev Biol. 8:5942020. View Article : Google Scholar : PubMed/NCBI | |
|
Guo Z, Lin J, Sun K, Guo J, Yao X, Wang G, Hou L, Xu J, Guo J and Guo F: Deferoxamine alleviates osteoarthritis by inhibiting chondrocyte ferroptosis and activating the Nrf2 pathway. Front Pharmacol. 13:7913762022. View Article : Google Scholar : PubMed/NCBI | |
|
Xue Q, Yan D, Chen X, Li X, Kang R, Klionsky DJ, Kroemer G, Chen X, Tang D and Liu J: Copper-dependent autophagic degradation of GPX4 drives ferroptosis. Autophagy. 19:1982–1996. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Wang L, Zhang X, Xu M, Zheng G, Chen J, Li S, Cui J and Zhang S: Implication of ferroptosis in hepatic toxicity upon single or combined exposure to polystyrene microplastics and cadmium. Environ Pollut. 334:1222502023. View Article : Google Scholar : PubMed/NCBI | |
|
Chen Y, He W, Wei H, Chang C, Yang L, Meng J, Long T, Xu Q and Zhang C: Srs11-92, a ferrostatin-1 analog, improves oxidative stress and neuroinflammation via Nrf2 signal following cerebral ischemia/reperfusion injury. CNS Neurosci Ther. 29:1667–1677. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Holden P and Nair LS: Deferoxamine: An angiogenic and antioxidant molecule for tissue regeneration. Tissue Eng Part B Rev. 25:461–470. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Kim JL, Lee DH, Na YJ, Kim BR, Jeong YA, Lee SI, Kang S, Joung SY, Lee SY, Oh SC and Min BW: Iron chelator-induced apoptosis via the ER stress pathway in gastric cancer cells. Tumor Biol. 37:9709–9719. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Lin S, Gao W, Zhu C, Lou Q, Ye C, Ren Y, Mehmood R, Huang B and Nan K: Efficiently suppress of ferroptosis using deferoxamine nanoparticles as a new method for retinal ganglion cell protection after traumatic optic neuropathy. Biomater Adv. 138:2129362022. View Article : Google Scholar : PubMed/NCBI | |
|
You H, Wang D, Wei L, Chen J, Li H and Liu Y: Deferoxamine inhibits acute lymphoblastic leukemia progression through repression of ROS/HIF-1α, Wnt/β-catenin, and p38MAPK/ERK pathways. J Oncol. 2022:82812672022. View Article : Google Scholar : PubMed/NCBI | |
|
Abdul Y, Li W, Ward R, Abdelsaid M, Hafez S, Dong G, Jamil S, Wolf V, Johnson MH, Fagan SC and Ergul A: Deferoxamine treatment prevents post-stroke vasoregression and neurovascular unit remodeling leading to improved functional outcomes in type 2 male diabetic rats: Role of endothelial ferroptosis. Transl Stroke Res. 12:615–630. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Jones G, Zeng L and Kim J: Mechanism-based pharmacokinetic modeling of absorption and disposition of a deferoxamine-based nanochelator in rats. Mol Pharm. 20:481–490. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Chen X, Li D, Sun H, Wang W, Wu H and Kong W and Kong W: Relieving ferroptosis may partially reverse neurodegeneration of the auditory cortex. FEBS J. 287:4747–4766. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Tuo Q, Lei P, Jackman KA, Li XL, Xiong H, Li XL, Liuyang ZY, Roisman L, Zhang ST, Ayton S, et al: Tau-mediated iron export prevents ferroptotic damage after ischemic stroke. Mol Psychiatry. 22:1520–1530. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Kannan M, Sil S, Oladapo A, Thangaraj A, Periyasamy P and Buch S: HIV-1 Tat-mediated microglial ferroptosis involves the miR-204-ACSL4 signaling axis. Redox Biol. 62:1026892023. View Article : Google Scholar : PubMed/NCBI | |
|
Li Y, Zeng X, Lu D, Yin M, Shan M and Gao Y: Erastin induces ferroptosis via ferroportin-mediated iron accumulation in endometriosis. Hum Reprod. 36:951–964. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Xie B, Wang Y, Lin Y, Mao Q, Feng J, Gao G and Jiang J: Inhibition of ferroptosis attenuates tissue damage and improves long-term outcomes after traumatic brain injury in mice. CNS Neurosci Ther. 25:465–475. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Carbonell T and Rama R: Iron, oxidative stress and early neurological deterioration in ischemic stroke. Curr Med Chem. 14:857–874. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Silver MK, Lozoff B and Meeker JD: Blood cadmium is elevated in iron deficient U.S. children: A cross-sectional study. Environ Health. 12:1172013. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang Q, Luo C, Li Z, Huang W, Zheng S, Liu C, Shi X, Ma Y, Ni Q, Tan W, et al: Astaxanthin activates the Nrf2/Keap1/HO-1 pathway to inhibit oxidative stress and ferroptosis, reducing triphenyl phosphate (TPhP)-induced neurodevelopmental toxicity. Ecotoxicol Environ Saf. 271:1159602024. View Article : Google Scholar : PubMed/NCBI | |
|
Liu X, Du Y, Liu J, Cheng L, He W and Zhang W: Ferrostatin-1 alleviates cerebral ischemia/reperfusion injury through activation of the AKT/GSK3β signaling pathway. Brain Res Bull. 193:146–157. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Chen B and Jin W: A comprehensive review of stroke-related signaling pathways and treatment in western medicine and traditional Chinese medicine. Front Neurosci. 17:12000612023. View Article : Google Scholar : PubMed/NCBI | |
|
Lou Y, Ma M, Jiang Y, Xu H, Gao Z, Gao L and Wang Y: Ferroptosis: A new strategy for traditional Chinese medicine treatment of stroke. Biomed Pharmacother. 156:1138062022. View Article : Google Scholar : PubMed/NCBI | |
|
Li J, Zhao X, Zhang Y, Wan H, He Y, Li X, Yu L and Jin W: Comparison of traditional Chinese medicine in the long-term secondary prevention for patients with ischemic stroke: A systematical analysis. Front Pharmacol. 12:7229752021. View Article : Google Scholar : PubMed/NCBI | |
|
Zhu T, Wang L, Wang L and Wan Q: Therapeutic targets of neuroprotection and neurorestoration in ischemic stroke: Applications for natural compounds from medicinal herbs. Biomed Pharmacother. 148:1127192022. View Article : Google Scholar : PubMed/NCBI | |
|
Wang J, Hu J, Chen X, Lei X, Feng H, Wan F and Tan L: Traditional Chinese medicine monomers: Novel strategy for endogenous neural stem cells activation after stroke. Front Cell Neurosci. 15:6281152021. View Article : Google Scholar : PubMed/NCBI | |
|
Zhan S, Liang J, Lin H, Cai J, Yang X, Wu H, Wei J, Wang S and Xian M: SATB1/SLC7A11/HO-1 axis ameliorates ferroptosis in neuron cells after ischemic stroke by danhong injection. Mol Neurobiol. 60:413–427. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Ko G, Kim J, Jeon YJ, Lee D, Baek HM and Chang KA: Salvia miltiorrhiza alleviates memory deficit induced by ischemic brain injury in a transient MCAO mouse model by inhibiting ferroptosis. Antioxidants (Basel). 12:7852023. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang J, Cai W, Wei X, Shi Y, Zhang K, Hu C, Wan J, Luo K and Shen W: Moxibustion ameliorates cerebral ischemia-reperfusion injury by regulating ferroptosis in rats. Clin Exp Pharmacol Physiol. 50:779–788. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Liu J, Jiang G, He P, Du X, Hu Z and Li F: Mechanism of ferroptosis in traditional chinese medicine for clinical treatment: A review. Front Pharmacol. 13:11088362023. View Article : Google Scholar : PubMed/NCBI | |
|
Wang L, Liu C, Wang L and Tang B: Astragaloside IV mitigates cerebral ischaemia-reperfusion injury via inhibition of P62/Keap1/Nrf2 pathway-mediated ferroptosis. Eur J Pharmacol. 944:1755162023. View Article : Google Scholar : PubMed/NCBI | |
|
Jiang Y, Zhao S, Zhou Y and Wei Z: Research progress of traditional Chinese medicine in ferroptosis-related diseases. Med Nov Technol Devices. 16:1001932022. View Article : Google Scholar : PubMed/NCBI | |
|
Yang K, Zeng L, Zeng J, Deng Y, Wang S, Xu H, He Q, Yuan M, Luo Y, Ge A and Ge J: Research progress in the molecular mechanism of ferroptosis in Parkinson's disease and regulation by natural plant products. Ageing Res Rev. 91:1020632023. View Article : Google Scholar : PubMed/NCBI | |
|
Wu C, Duan F, Yang R, Dai Y, Chen X and Li S: 15, 16-Dihydrotanshinone I protects against ischemic stroke by inhibiting ferroptosis via the activation of nuclear factor erythroid 2-related factor 2. Phytomedicine. 114:1547902023. View Article : Google Scholar : PubMed/NCBI | |
|
Bai X, Zheng E, Tong L, Liu Y, Li X and Yang H, Jiang J, Chang Z and Yang H: Angong Niuhuang Wan inhibit ferroptosis on ischemic and hemorrhagic stroke by activating PPARγ/AKT/GPX4 pathway. J Ethnopharmacol. 321:1174382024. View Article : Google Scholar : PubMed/NCBI | |
|
Jin Z, Gao W, Guo F, Liao S, Hu M, Yu T, Yu S and Shi Q: Astragaloside IV alleviates neuronal ferroptosis in ischemic stroke by regulating fat mass and obesity-associated-N6-methyladenosine-acyl-CoA synthetase long-chain family member 4 axis. J Neurochem. 166:328–345. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Hirata Y, Cai R, Volchuk A, Steinberg BE, Saito Y, Matsuzawa A, Grinstein S and Freeman SA: Lipid peroxidation increases membrane tension, Piezo1 gating, and cation permeability to execute ferroptosis. Curr Biol. 33:1282–1294.e5. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Gao W, Wang X, Zhou Y, Wang X and Yu Y: Autophagy, ferroptosis, pyroptosis, and necroptosis in tumor immunotherapy. Sig Transduct Target Ther. 7:1962022. View Article : Google Scholar : PubMed/NCBI | |
|
Zhou Y, Liao J, Mei Z, Liu X and Ge J: Insight into crosstalk between ferroptosis and necroptosis: Novel therapeutics in ischemic stroke. Oxid Med Cell Longev. 2021:99910012021. View Article : Google Scholar : PubMed/NCBI | |
|
Yu Y, Yan Y, Niu F, Wang Y, Chen X, Su G, Liu Y, Zhao X, Qian L, Liu P and Xiong Y: Ferroptosis: A cell death connecting oxidative stress, inflammation and cardiovascular diseases. Cell Death Discov. 7:1932021. View Article : Google Scholar : PubMed/NCBI | |
|
Battaglia AM, Chirillo R, Aversa I, Sacco A, Costanzo F and Biamonte F: Ferroptosis and cancer: Mitochondria meet the ‘iron maiden’ cell death. Cells. 9:15052020. View Article : Google Scholar : PubMed/NCBI | |
|
Jeong SY and Seol DW: The role of mitochondria in apoptosis. BMB Rep. 41:11–22. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Cui Y, Zhang Y, Zhao X, Shao L, Liu G, Sun C, Xu R and Zhang Z: ACSL4 exacerbates ischemic stroke by promoting ferroptosis-induced brain injury and neuroinflammation. Brain Behav Immun. 93:312–321. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Wang ZL, Yuan L, Li W and Li JY: Ferroptosis in Parkinson's disease: Glia-neuron crosstalk. Trends Mol Med. 28:258–269. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Ren JX, Sun X, Yan XL, Guo ZN and Yang Y: Ferroptosis in neurological diseases. Front Cell Neurosci. 14:2182020. View Article : Google Scholar : PubMed/NCBI | |
|
Chen Y, Long T, Xu Q and Zhang C: Bibliometric analysis of ferroptosis in stroke from 2013 to 2021. Front Pharmacol. 12:8173642022. View Article : Google Scholar : PubMed/NCBI | |
|
Jin Y, Zhuang Y, Liu M, Che J and Dong X: Inhibiting ferroptosis: A novel approach for stroke therapeutics. Drug Discov Today. 26:916–930. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Yang K, Zeng L, Yuan X, Wang S, Ge A, Xu H, Zeng J and Ge J: The mechanism of ferroptosis regulating oxidative stress in ischemic stroke and the regulation mechanism of natural pharmacological active components. Biomed Pharmacother. 154:1136112022. View Article : Google Scholar : PubMed/NCBI | |
|
Xing G, Meng L, Cao S, Liu S, Wu J, Li Q, Huang W and Zhang L: PPARα alleviates iron overload-induced ferroptosis in mouse liver. EMBO Rep. 23:e522802022. View Article : Google Scholar : PubMed/NCBI |