Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
July-2024 Volume 30 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
July-2024 Volume 30 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Recent advances in potential therapeutic targets of ferroptosis‑associated pathways for the treatment of stroke (Review)

  • Authors:
    • Hao Dong
    • Ya-Ping Ma
    • Mei-Mei Cui
    • Zheng-Hao Qiu
    • Mao-Tao He
    • Bao-Gang Zhang
  • View Affiliations / Copyright

    Affiliations: Department of Diagnostic Pathology, School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261042, P.R. China
    Copyright: © Dong et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 128
    |
    Published online on: May 22, 2024
       https://doi.org/10.3892/mmr.2024.13252
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Stroke is a severe neurological disease that is associated with high rates of morbidity and mortality, and the underlying pathological processes are complex. Ferroptosis fulfills a significant role in the progression and treatment of stroke. It is well established that ferroptosis is a type of programmed cell death that is distinct from other forms or types of cell death. The process of ferroptosis involves multiple signaling pathways and regulatory mechanisms that interact with mechanisms inherent to stroke development. Inducers and inhibitors of ferroptosis have been shown to exert a role in the onset of this cell death process. Furthermore, it has been shown that interfering with ferroptosis affects the occurrence of stroke, indicating that targeting ferroptosis may offer a promising therapeutic approach for treating patients of stroke. Hence, the present review aimed to summarize the latest progress that has been made in terms of using therapeutic interventions for ferroptosis as treatment targets in cases of stroke. It provides an overview of the relevant pathways and molecular mechanisms that have been investigated in recent years, highlighting the roles of inducers and inhibitors of ferroptosis in stroke. Additionally, the intervention potential of various types of Traditional Chinese Medicine is also summarized. In conclusion, the present review provides a comprehensive overview of the potential therapeutic targets afforded by ferroptosis‑associated pathways in stroke, offering new insights into how ferroptosis may be exploited in the treatment of stroke.
View Figures

Figure 1

Figure 2

View References

1 

Shehjar F, Maktabi B, Rahman ZA, Bahader GA, James AW, Naqvi A, Mahajan R and Shah ZA: Stroke: Molecular mechanisms and therapies: Update on recent developments. Neurochem Int. 162:1054582023. View Article : Google Scholar : PubMed/NCBI

2 

Wu S, Wu B, Liu M, Chen Z, Wang W, Anderson CS, Sandercock P, Wang Y, Huang Y, Cui L, et al: Stroke in China: Advances and challenges in epidemiology, prevention, and management. Lancet Neurol. 18:394–405. 2019. View Article : Google Scholar : PubMed/NCBI

3 

Barthels D and Das H: Current advances in ischemic stroke research and therapies. Biochim Biophys Acta Mol Basis Dis. 1866:1652602020. View Article : Google Scholar : PubMed/NCBI

4 

Martin S: Stroke: Does intensive blood sugar control improve prognosis? Dtsch med Wochenschr. 137:26282012.(In German). PubMed/NCBI

5 

Wu X, You J, Chen X, Zhou M, Ma H, Zhang T and Huang C: An overview of hyperbaric oxygen preconditioning against ischemic stroke. Metab Brain Dis. 38:855–872. 2023. View Article : Google Scholar : PubMed/NCBI

6 

Shin TH, Lee DY, Basith S, Manavalan B, Paik MJ, Rybinnik I, Mouradian MM, Ahn JH and Lee G: Metabolome changes in cerebral ischemia. Cells. 9:16302020. View Article : Google Scholar : PubMed/NCBI

7 

Tuo QZ, Zhang ST and Lei P: Mechanisms of neuronal cell death in ischemic stroke and their therapeutic implications. Med Res Rev. 42:259–305. 2022. View Article : Google Scholar : PubMed/NCBI

8 

Virani SS, Alonso A, Benjamin EJ, Bittencourt MS, Callaway CW, Carson AP, Chamberlain AM, Chang AR, Cheng S, Delling FN, et al: Heart disease and stroke statistics-2020 update: A report from the american heart association. Circulation. 141:e139–e596. 2020. View Article : Google Scholar : PubMed/NCBI

9 

Przykaza Ł: Understanding the connection between common stroke comorbidities, their associated inflammation, and the course of the cerebral ischemia/reperfusion cascade. Front Immunol. 12:7825692021. View Article : Google Scholar : PubMed/NCBI

10 

Rothwell PM, Algra A and Amarenco P: Medical treatment in acute and long-term secondary prevention after transient ischaemic attack and ischaemic stroke. Lancet. 377:1681–1692. 2011. View Article : Google Scholar : PubMed/NCBI

11 

Guo J, Tuo Q and Lei P: Iron, ferroptosis, and ischemic stroke. J Neurochem. 165:487–520. 2023. View Article : Google Scholar : PubMed/NCBI

12 

Li J, Cao F, Yin H, Huang ZJ, Lin ZT, Mao N, Sun B and Wang G: Ferroptosis: Past, present and future. Cell Death Dis. 11:882020. View Article : Google Scholar : PubMed/NCBI

13 

Xie Y, Hou W, Song X, Yu Y, Huang J, Sun X, Kang R and Tang D: Ferroptosis: Process and function. Cell Death Differ. 23:369–379. 2016. View Article : Google Scholar : PubMed/NCBI

14 

Xu L, Liu Y, Chen X, Zhong H and Wang Y: Ferroptosis in life: To be or not to be. Biomed Pharmacother. 159:1142412023. View Article : Google Scholar : PubMed/NCBI

15 

Sun Y, Li Q, Guo H and He Q: Ferroptosis and iron metabolism after intracerebral hemorrhage. Cells. 12:902022. View Article : Google Scholar : PubMed/NCBI

16 

Chen GH, Song CC, Pantopoulos K, Wei XL, Zheng H and Luo Z: Mitochondrial oxidative stress mediated Fe-induced ferroptosis via the NRF2-ARE pathway. Free Radic Biol Med. 180:95–107. 2022. View Article : Google Scholar : PubMed/NCBI

17 

Sun Y, Chen P, Zhai B, Zhang M, Xiang Y, Fang J, Xu S, Gao Y, Chen X, Sui X and Li G: The emerging role of ferroptosis in inflammation. Biomed Pharmacother. 127:1101082020. View Article : Google Scholar : PubMed/NCBI

18 

Liu Y, Wan Y, Jiang Y, Zhang L and Cheng W: GPX4: The hub of lipid oxidation, ferroptosis, disease and treatment. Biochim Biophys Acta Rev Cancer. 1878:1888902023. View Article : Google Scholar : PubMed/NCBI

19 

Wang X, Shen T, Lian J, Deng K, Qu C, Li E, Li G, Ren Y, Wang Z, Jiang Z, et al: Resveratrol reduces ROS-induced ferroptosis by activating SIRT3 and compensating the GSH/GPX4 pathway. Mol Med. 29:1372023. View Article : Google Scholar : PubMed/NCBI

20 

Snezhkina AV, Kudryavtseva AV, Kardymon OL, Savvateeva MV, Melnikova NV, Krasnov GS and Dmitriev AA: ROS generation and antioxidant defense systems in normal and malignant cells. Oxid Med Cell Longev. 2019:61758042019. View Article : Google Scholar : PubMed/NCBI

21 

Fu C, Wu Y, Liu S, Luo C, Lu Y, Liu M, Wang L, Zhang Y and Liu X: Rehmannioside A improves cognitive impairment and alleviates ferroptosis via activating PI3K/AKT/Nrf2 and SLC7A11/GPX4 signaling pathway after ischemia. J Ethnopharmacol. 289:1150212022. View Article : Google Scholar : PubMed/NCBI

22 

Henning Y, Blind US, Larafa S, Matschke J and Fandrey J: Hypoxia aggravates ferroptosis in RPE cells by promoting the Fenton reaction. Cell Death Dis. 13:6622022. View Article : Google Scholar : PubMed/NCBI

23 

Kosman DJ: Redox cycling in iron uptake, efflux, and trafficking. J Biol Chem. 285:26729–26735. 2010. View Article : Google Scholar : PubMed/NCBI

24 

Lee J and Hyun DH: The interplay between intracellular iron homeostasis and neuroinflammation in neurodegenerative diseases. Antioxidants (Basel). 12:9182023. View Article : Google Scholar : PubMed/NCBI

25 

Recalcati S, Gammella E and Cairo G: Dysregulation of iron metabolism in cancer stem cells. Free Radic Biol Med. 133:216–220. 2019. View Article : Google Scholar : PubMed/NCBI

26 

Pan F, Xu W, Ding J and Wang C: Elucidating the progress and impact of ferroptosis in hemorrhagic stroke. Front Cell Neurosci. 16:10675702023. View Article : Google Scholar : PubMed/NCBI

27 

Weiland A, Wang Y, Wu W, Lan X, Han X, Li Q and Wang J: Ferroptosis and its role in diverse brain diseases. Mol Neurobiol. 56:4880–4893. 2019. View Article : Google Scholar : PubMed/NCBI

28 

Li Q, Han X, Lan X, Gao Y, Wan J, Durham F, Cheng T, Yang J, Wang Z, Jiang C, et al: Inhibition of neuronal ferroptosis protects hemorrhagic brain. JCI Insight. 2:e907772017. View Article : Google Scholar : PubMed/NCBI

29 

Speer RE, Karuppagounder SS, Basso M, Sleiman SF, Kumar A, Brand D, Smirnova N, Gazaryan I, Khim SJ and Ratan RR: Hypoxia-inducible factor prolyl hydroxylases as targets for neuroprotection by ‘antioxidant’ metal chelators: From ferroptosis to stroke. Free Radic Biol Med. 62:26–36. 2013. View Article : Google Scholar : PubMed/NCBI

30 

Xu Y, Li K, Zhao Y, Zhou L, Liu Y and Zhao J: Role of ferroptosis in stroke. Cell Mol Neurobiol. 43:205–222. 2023. View Article : Google Scholar : PubMed/NCBI

31 

Liu J, Guo ZN, Yan XL, Huang S, Ren JX, Luo Y and Yang Y: Crosstalk between autophagy and ferroptosis and its putative role in ischemic stroke. Front Cell Neurosci. 14:5774032020. View Article : Google Scholar : PubMed/NCBI

32 

Bao WD, Pang P, Zhou XT, Hu F, Xiong W, Chen K, Wang J, Wang F, Xie D, Hu YZ, et al: Loss of ferroportin induces memory impairment by promoting ferroptosis in Alzheimer's disease. Cell Death Differ. 28:1548–1562. 2021. View Article : Google Scholar : PubMed/NCBI

33 

Mahoney-Sánchez L, Bouchaoui H, Ayton S, Devos D, Duce JA and Devedjian JC: Ferroptosis and its potential role in the physiopathology of Parkinson's disease. Prog Neurobiol. 196:1018902021. View Article : Google Scholar : PubMed/NCBI

34 

Wang Y, Chen G and Shao W: Identification of ferroptosis-related genes in Alzheimer's disease based on bioinformatic analysis. Front Neurosci. 16:8237412022. View Article : Google Scholar : PubMed/NCBI

35 

Wang C, Chen S, Guo H, Jiang H, Liu H, Fu H and Wang D: Forsythoside A mitigates Alzheimer's-like pathology by inhibiting ferroptosis-mediated neuroinflammation via Nrf2/GPX4 axis activation. Int J Biol Sci. 18:2075–2090. 2022. View Article : Google Scholar : PubMed/NCBI

36 

Jakaria M, Belaidi AA, Bush AI and Ayton S: Ferroptosis as a mechanism of neurodegeneration in Alzheimer's disease. J Neurochem. 159:804–825. 2021. View Article : Google Scholar : PubMed/NCBI

37 

Jiang X, Stockwell BR and Conrad M: Ferroptosis: Mechanisms, biology and role in disease. Nat Rev Mol Cell Biol. 22:266–282. 2021. View Article : Google Scholar : PubMed/NCBI

38 

Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, Patel DN, Bauer AJ, Cantley AM, Yang WS, et al: Ferroptosis: An iron-dependent form of nonapoptotic cell death. Cell. 149:1060–1072. 2012. View Article : Google Scholar : PubMed/NCBI

39 

Mao C, Liu X, Zhang Y, Lei G, Yan Y, Lee H, Koppula P, Wu S, Zhuang L, Fang B, et al: DHODH-mediated ferroptosis defence is a targetable vulnerability in cancer. Nature. 593:586–590. 2021. View Article : Google Scholar : PubMed/NCBI

40 

Alim I, Caulfield JT, Chen Y, Swarup V, Geschwind DH, Ivanova E, Seravalli J, Ai Y, Sansing LH, Ste Marie EJ, et al: Selenium drives a transcriptional adaptive program to block ferroptosis and treat stroke. Cell. 177:1262–1279.e25. 2019. View Article : Google Scholar : PubMed/NCBI

41 

Ren JX, Li C, Yan XL, Qu Y, Yang Y and Guo ZN: Crosstalk between oxidative stress and ferroptosis/oxytosis in ischemic stroke: Possible targets and molecular mechanisms. Oxid Med Cell Longev. 2021:66433822021. View Article : Google Scholar : PubMed/NCBI

42 

Si W, Sun B, Luo J, Li Z, Dou Y and Wang Q: Snap25 attenuates neuronal injury via reducing ferroptosis in acute ischemic stroke. Exp Neurol. 367:1144762023. View Article : Google Scholar : PubMed/NCBI

43 

Kuriakose D and Xiao Z: Pathophysiology and treatment of stroke: Present status and future perspectives. Int J Mol Sci. 21:76092020. View Article : Google Scholar : PubMed/NCBI

44 

Liu Y, Fang Y, Zhang Z, Luo Y, Zhang A, Lenahan C and Chen S: Ferroptosis: An emerging therapeutic target in stroke. J Neurochem. 160:64–73. 2022. View Article : Google Scholar : PubMed/NCBI

45 

Prajapati M, Conboy HL, Hojyo S, Fukada T, Budnik B and Bartnikas TB: Biliary excretion of excess iron in mice requires hepatocyte iron import by Slc39a14. J Biol Chem. 297:1008352021. View Article : Google Scholar : PubMed/NCBI

46 

Chen Y, Fang ZM, Yi X, Wei X and Jiang DS: The interaction between ferroptosis and inflammatory signaling pathways. Cell Death Dis. 14:2052023. View Article : Google Scholar : PubMed/NCBI

47 

Wang W, Jing X, Du T, Ren J, Liu X, Chen F, Shao Y, Sun S, Yang G and Cui X: Iron overload promotes intervertebral disc degeneration via inducing oxidative stress and ferroptosis in endplate chondrocytes. Free Radic Biol Med. 190:234–246. 2022. View Article : Google Scholar : PubMed/NCBI

48 

Shi F, Zhang Z, Cui H, Wang J, Wang Y, Tang Y, Yang W, Zou P, Ling X, Han F, et al: Analysis by transcriptomics and metabolomics for the proliferation inhibition and dysfunction through redox imbalance-mediated DNA damage response and ferroptosis in male reproduction of mice and TM4 Sertoli cells exposed to PM2.5. Ecotoxicol Environ Saf. 238:1135692022. View Article : Google Scholar : PubMed/NCBI

49 

Lin Q, Li S, Jin H, Cai H, Zhu X, Yang Y, Wu J, Qi C, Shao X, Li J, et al: Mitophagy alleviates cisplatin-induced renal tubular epithelial cell ferroptosis through ROS/HO-1/GPX4 axis. Int J Biol Sci. 19:1192–1210. 2023. View Article : Google Scholar : PubMed/NCBI

50 

Su LJ, Zhang JH, Gomez H, Murugan R, Hong X, Xu D, Jiang F and Peng ZY: Reactive oxygen species-induced lipid peroxidation in apoptosis, autophagy, and ferroptosis. Oxid Med Cell Longev. 2019:50808432019. View Article : Google Scholar : PubMed/NCBI

51 

Yuan Y, Zhai Y, Chen J, Xu X and Wang H: Kaempferol ameliorates oxygen-glucose deprivation/reoxygenation-induced neuronal ferroptosis by activating Nrf2/SLC7A11/GPX4 axis. Biomolecules. 11:9232021. View Article : Google Scholar : PubMed/NCBI

52 

Liu H, Zhang T, Zhang WY, Huang SR, Hu Y and Sun J: Rhein attenuates cerebral ischemia-reperfusion injury via inhibition of ferroptosis through NRF2/SLC7A11/GPX4 pathway. Exp Neurol. 369:1145412023. View Article : Google Scholar : PubMed/NCBI

53 

Ursini F and Maiorino M: Lipid peroxidation and ferroptosis: The role of GSH and GPx4. Free Radic Biol Med. 152:175–185. 2020. View Article : Google Scholar : PubMed/NCBI

54 

Ralhan I, Chang J, Moulton MJ, Goodman LD, Lee NYJ, Plummer G, Pasolli HA, Matthies D, Bellen HJ and Ioannou MS: Autolysosomal exocytosis of lipids protect neurons from ferroptosis. J Cell Biol. 222:e2022071302023. View Article : Google Scholar : PubMed/NCBI

55 

Mamais A, Kluss JH, Bonet-Ponce L, Landeck N, Langston RG, Smith N, Beilina A, Kaganovich A, Ghosh MC, Pellegrini L, et al: Correction: Mutations in LRRK2 linked to Parkinson disease sequester Rab8a to damaged lysosomes and regulate transferrin-mediated iron uptake in microglia. PLoS Biol. 20:e30016212022. View Article : Google Scholar : PubMed/NCBI

56 

Reyhani A, McKenzie TG, Fu Q and Qiao GG: Fenton-chemistry-mediated radical polymerization. Macromol Rapid Commun. 40:19002202019. View Article : Google Scholar : PubMed/NCBI

57 

Chen Y, Yang Z, Wang S, Ma Q, Li L, Wu X, Guo Q, Tao L and Shen X: Boosting ROS-mediated lysosomal membrane permeabilization for cancer ferroptosis therapy. Adv Healthc Mater. 12:22021502023. View Article : Google Scholar

58 

Von Krusenstiern AN, Robson RN, Qian N, Qiu B, Hu F, Reznik E, Smith N, Zandkarimi F, Estes VM, Dupont M, et al: Identification of essential sites of lipid peroxidation in ferroptosis. Nat Chem Biol. 19:719–730. 2023. View Article : Google Scholar : PubMed/NCBI

59 

Ayala A, Muñoz MF and Argüelles S: Lipid peroxidation: Production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxid Med Cell Longev. 2014:3604382014. View Article : Google Scholar : PubMed/NCBI

60 

Zhu G, Chi H, Liu M, Yin Y, Diao H, Liu Z, Guo Z, Xu W, Xu J, Cui C, et al: Multifunctional ‘ball-rod’ Janus nanoparticles boosting Fenton reaction for ferroptosis therapy of non-small cell lung cancer. J Colloid Interface Sci. 621:12–23. 2022. View Article : Google Scholar : PubMed/NCBI

61 

Kajarabille N and Latunde-Dada GO: Programmed cell-death by ferroptosis: Antioxidants as mitigators. Int J Mol Sci. 20:49682019. View Article : Google Scholar : PubMed/NCBI

62 

Li J, Jia B, Cheng Y, Song Y, Li Q and Luo C: Targeting Molecular mediators of ferroptosis and oxidative stress for neurological disorders. Oxid Med Cell Longev. 2022:39990832022.PubMed/NCBI

63 

Wan J, Ren H and Wang J: Iron toxicity, lipid peroxidation and ferroptosis after intracerebral haemorrhage. Stroke Vasc Neurol. 4:93–95. 2019. View Article : Google Scholar : PubMed/NCBI

64 

Garton T, Keep RF, Hua Y and Xi G: CD163, a hemoglobin/haptoglobin scavenger receptor, after intracerebral hemorrhage: Functions in microglia/macrophages versus neurons. Transl Stroke Res. 8:612–616. 2017. View Article : Google Scholar : PubMed/NCBI

65 

Hare D, Ayton S, Bush A and Lei P: A delicate balance: Iron metabolism and diseases of the brain. Front Aging Neurosci. 5:342013. View Article : Google Scholar : PubMed/NCBI

66 

Yang C, Hawkins KE, Doré S and Candelario-Jalil E: Neuroinflammatory mechanisms of blood-brain barrier damage in ischemic stroke. Am J Physiol Cell Physiol. 316:C135–C153. 2019. View Article : Google Scholar : PubMed/NCBI

67 

Bouchaoui H, Mahoney-Sanchez L, Garçon G, Berdeaux O, Alleman LY, Devos D, Duce JA and Devedjian JC: ACSL4 and the lipoxygenases 15/15B are pivotal for ferroptosis induced by iron and PUFA dyshomeostasis in dopaminergic neurons. Free Radic Biol Med. 195:145–157. 2023. View Article : Google Scholar : PubMed/NCBI

68 

Rock C and Moos PJ: Selenoprotein P protects cells from lipid hydroperoxides generated by 15-LOX-1. Prostaglandins Leukot Essent Fatty Acids. 83:203–210. 2010. View Article : Google Scholar : PubMed/NCBI

69 

Karuppagounder SS, Alim I, Khim SJ, Bourassa MW, Sleiman SF, John R, Thinnes CC, Yeh TL, Demetriades M, Neitemeier S, et al: Therapeutic targeting of oxygen-sensing prolyl hydroxylases abrogates ATF4-dependent neuronal death and improves outcomes after brain hemorrhage in several rodent models. Sci Transl Med. 8:328ra292016. View Article : Google Scholar : PubMed/NCBI

70 

Wang H, Xu L, Tang X, Jiang Z and Feng X: Lipid peroxidation-induced ferroptosis as a therapeutic target for mitigating neuronal injury and inflammation in sepsis-associated encephalopathy: Insights into the hippocampal PEBP-1/15-LOX/GPX4 pathway. Lipids Health Dis. 23:1282024. View Article : Google Scholar : PubMed/NCBI

71 

Shah R, Shchepinov MS and Pratt DA: Resolving the role of lipoxygenases in the initiation and execution of ferroptosis. ACS Cent Sci. 4:387–396. 2018. View Article : Google Scholar : PubMed/NCBI

72 

Martami F and Holton KF: Targeting glutamate neurotoxicity through dietary manipulation: Potential treatment for migraine. Nutrients. 15:39522023. View Article : Google Scholar : PubMed/NCBI

73 

Saini KK, Chaturvedi P, Sinha A, Singh MP, Khan MA, Verma A, Nengroo MA, Satrusal SR, Meena S, Singh A, et al: Loss of PERK function promotes ferroptosis by downregulating SLC7A11 (System Xc-) in colorectal cancer. Redox Biol. 65:1028332023. View Article : Google Scholar : PubMed/NCBI

74 

Koppula P, Zhuang L and Gan B: Cystine transporter SLC7A11/xCT in cancer: Ferroptosis, nutrient dependency, and cancer therapy. Protein Cell. 12:599–620. 2021. View Article : Google Scholar : PubMed/NCBI

75 

Dahlmanns M, Dahlmanns JK, Savaskan N, Steiner HH and Yakubov E: Glial glutamate transporter-mediated plasticity: System xc-/xCT/SLC7A11 and EAAT1/2 in brain diseases. Front Biosci (Landmark Ed). 28:572023. View Article : Google Scholar : PubMed/NCBI

76 

Albrecht P, Lewerenz J, Dittmer S, Noack R, Maher P and Methner A: Mechanisms of oxidative glutamate toxicity: The glutamate/cystine antiporter system xc-as a neuroprotective drug target. CNS Neurol Disord Drug Targets. 9:373–382. 2010. View Article : Google Scholar : PubMed/NCBI

77 

Puka-Sundvall M, Eriksson P, Nilsson M, Sandberg M and Lehmann A: Neurotoxicity of cysteine: interaction with glutamate. Brain Res. 705:65–70. 1995. View Article : Google Scholar : PubMed/NCBI

78 

Yuan Y, Yucai L, Lu L, Hui L, Yong P and Haiyang Y: Acrylamide induces ferroptosis in HSC-T6 cells by causing antioxidant imbalance of the XCT-GSH-GPX4 signaling and mitochondrial dysfunction. Toxicol Lett. 368:24–32. 2022. View Article : Google Scholar : PubMed/NCBI

79 

Zhang W, Niu C, Liu Y and Chen B: Glutathione redox balance in hibernating Chinese soft-shelled turtle Pelodiscus sinensis hatchlings. Comp Biochem Physiol B Biochem Mol Biol. 207:9–14. 2017. View Article : Google Scholar : PubMed/NCBI

80 

Iskusnykh IY, Zakharova AA and Pathak D: Glutathione in brain disorders and aging. Molecules. 27:3242022. View Article : Google Scholar : PubMed/NCBI

81 

Miladinovic T and Singh G: Spinal microglia contribute to cancer-induced pain through system xC−-mediated glutamate release. Pain Rep. 4:e7382019. View Article : Google Scholar : PubMed/NCBI

82 

Shen SY, Yu R, Li W, Liang LF, Han QQ, Huang HJ, Li B, Xu SF, Wu GC, Zhang YQ and Yu J: The neuroprotective effects of GPR55 against hippocampal neuroinflammation and impaired adult neurogenesis in CSDS mice. Neurobiol Dis. 169:1057432022. View Article : Google Scholar : PubMed/NCBI

83 

Chen Z and Trapp BD: Microglia and neuroprotection. J Neurochem. 136 (Suppl 1):S10–S17. 2016. View Article : Google Scholar

84 

Frank D, Gruenbaum BF, Grinshpun J, Melamed I, Severynovska O, Kuts R, Semyonov M, Brotfain E, Zlotnik A and Boyko M: Measuring post-stroke cerebral edema, infarct zone and blood-brain barrier breakdown in a single set of rodent brain samples. J Vis Exp. 2020:e613092020.

85 

Raper DMS and Abla AA: Commentary: Encephalodu-roarteriosynangiosis averts stroke in atherosclerotic patients with border-zone infarct: Post hoc analysis from a performance criterion phase II trial. Neurosurgery. 88:E319–E320. 2021. View Article : Google Scholar : PubMed/NCBI

86 

Fan G, Liu M, Liu J and Huang Y: The initiator of neuroexcitotoxicity and ferroptosis in ischemic stroke: Glutamate accumulation. Front Mol Neurosci. 16:11130812023. View Article : Google Scholar : PubMed/NCBI

87 

Bridges R, Lutgen V, Lobner D and Baker DA: Thinking outside the cleft to understand synaptic activity: Contribution of the cystine-glutamate antiporter (System xc-) to normal and pathological glutamatergic signaling. Pharmacol Rev. 64:780–802. 2012. View Article : Google Scholar : PubMed/NCBI

88 

Seibt TM, Proneth B and Conrad M: Role of GPX4 in ferroptosis and its pharmacological implication. Free Radic Biol Med. 133:144–152. 2019. View Article : Google Scholar : PubMed/NCBI

89 

Liu J, Yang G and Zhang H: Glyphosate-triggered hepatocyte ferroptosis via suppressing Nrf2/GSH/GPX4 axis exacerbates hepatotoxicity. Sci Total Environ. 862:1608392023. View Article : Google Scholar : PubMed/NCBI

90 

Jin M, Shi C, Li T, Wu Y, Hu C and Huang G: Solasonine promotes ferroptosis of hepatoma carcinoma cells via glutathione peroxidase 4-induced destruction of the glutathione redox system. Biomed Pharmacother. 129:1102822020. View Article : Google Scholar : PubMed/NCBI

91 

Delesderrier E, Monteiro JDC, Freitas S, Pinheiro IC, Batista MS and Citelli M: Can iron and polyunsaturated fatty acid supplementation induce ferroptosis? Cell Physiol Biochem. 57:24–41. 2023. View Article : Google Scholar : PubMed/NCBI

92 

Xie G, Liang Y, Gao W, Wu L, Zhang Y, Ye Z and Qin C: Artesunate alleviates intracerebral haemorrhage secondary injury by inducing ferroptosis in M1-polarized microglia and suppressing inflammation through AMPK/mTORC1/GPX4 pathway. Basic Clin Pharmacol Toxicol. 132:369–383. 2023. View Article : Google Scholar : PubMed/NCBI

93 

Steinberg GR and Hardie DG: New insights into activation and function of the AMPK. Nat Rev Mol Cell Biol. 24:255–272. 2023. View Article : Google Scholar : PubMed/NCBI

94 

Muraleedharan R and Dasgupta B: AMPK in the brain: Its roles in glucose and neural metabolism. FEBS J. 289:2247–2262. 2022. View Article : Google Scholar : PubMed/NCBI

95 

Taghiyar S, Pourrajab F and Aarabi MH: Astaxanthin improves fatty acid dysregulation in diabetes by controlling the AMPK-SIRT1 pathway. EXCLI J. 22:502–515. 2023.PubMed/NCBI

96 

Malik N, Ferreira BI, Hollstein PE, Curtis SD, Trefts E, Weiser Novak S, Yu J, Gilson R, Hellberg K, Fang L, et al: Induction of lysosomal and mitochondrial biogenesis by AMPK phosphorylation of FNIP1. Science. 380:eabj55592023. View Article : Google Scholar : PubMed/NCBI

97 

Bae SJ, Bak SB and Kim YW: Coordination of AMPK and YAP by Spatholobi caulis and procyanidin B2 provides antioxidant effects in vitro and in vivo. Int J Mol Sci. 23:137302022. View Article : Google Scholar : PubMed/NCBI

98 

Lee H, Zandkarimi F, Zhang Y, Meena JK, Kim J, Zhuang L, Tyagi S, Ma L, Westbrook TF, Steinberg GR, et al: Energy-stress-mediated AMPK activation inhibits ferroptosis. Nat Cell Biol. 22:225–234. 2020. View Article : Google Scholar : PubMed/NCBI

99 

Chen X, Kang R, Kroemer G and Tang D: Broadening horizons: The role of ferroptosis in cancer. Nat Rev Clin Oncol. 18:280–296. 2021. View Article : Google Scholar : PubMed/NCBI

100 

Gao J, Li Y and Song R: SIRT2 inhibition exacerbates p53-mediated ferroptosis in mice following experimental traumatic brain injury. Neuroreport. 32:1001–1008. 2021. View Article : Google Scholar : PubMed/NCBI

101 

Lu W, Ji H and Wu D: SIRT2 plays complex roles in neuroinflammation neuroimmunology-associated disorders. Front Immunol. 14:11741802023. View Article : Google Scholar : PubMed/NCBI

102 

Wu H, Liu Q, Shan X, Gao W and Chen Q: ATM orchestrates ferritinophagy and ferroptosis by phosphorylating NCOA4. Autophagy. 19:2062–2077. 2023. View Article : Google Scholar : PubMed/NCBI

103 

Mi Y, Wei C, Sun L, Liu H, Zhang J, Luo J, Yu X, He J, Ge H and Liu P: Melatonin inhibits ferroptosis and delays age-related cataract by regulating SIRT6/p-Nrf2/GPX4 and SIRT6/NCOA4/FTH1 pathways. Biomed Pharmacother. 157:1140482023. View Article : Google Scholar : PubMed/NCBI

104 

Jin Y, Qiu J, Lu X and Li G: C-MYC inhibited ferroptosis and promoted immune evasion in ovarian cancer cells through NCOA4 mediated ferritin autophagy. Cells. 11:41272022. View Article : Google Scholar : PubMed/NCBI

105 

Li C, Sun G, Chen B, Xu L, Ye Y, He J, Bao Z, Zhao P, Miao Z, Zhao L, et al: Nuclear receptor coactivator 4-mediated ferritinophagy contributes to cerebral ischemia-induced ferroptosis in ischemic stroke. Pharmacol Res. 174:1059332021. View Article : Google Scholar : PubMed/NCBI

106 

Santana-Codina N, Gikandi A and Mancias JD: The role of NCOA4-mediated ferritinophagy in ferroptosis. Ferroptosis: Mechanism and Diseases. Vol. 1301. Florez AF and Alborzinia H: Springer International Publishing; Cham: pp. 41–57. 2021, PubMed/NCBI

107 

Fang Y, Chen X, Tan Q, Zhou H, Xu J and Gu Q: Inhibiting ferroptosis through disrupting the NCOA4-FTH1 interaction: A new mechanism of action. ACS Cent Sci. 7:980–989. 2021. View Article : Google Scholar : PubMed/NCBI

108 

Santana-Codina N, Gableske S, Quiles del Rey M, Małachowska B, Jedrychowski MP, Biancur DE, Schmidt PJ, Fleming MD, Fendler W, Harper JW, et al: NCOA4 maintains murine erythropoiesis via cell autonomous and non-autonomous mechanisms. Haematologica. 104:1342–1354. 2019. View Article : Google Scholar : PubMed/NCBI

109 

Bellelli R, Federico G, Matte' A, Colecchia D, Iolascon A, Chiariello M, Santoro M, De Franceschi L and Carlomagno F: NCOA4 deficiency impairs systemic iron homeostasis. Cell Rep. 14:411–421. 2016. View Article : Google Scholar : PubMed/NCBI

110 

Nai A, Lidonnici MR, Federico G, Pettinato M, Olivari V, Carrillo F, Geninatti Crich S, Ferrari G, Camaschella C, Silvestri L and Carlomagno F: NCOA4-mediated ferritinophagy in macrophages is crucial to sustain erythropoiesis in mice. Haematologica. 106:795–805. 2021.PubMed/NCBI

111 

Xu W, Guo ZN and Shao A: Editorial: Ferroptosis in stroke, neurotrauma and neurodegeneration, volume II. Front Cell Neurosci. 17:12384252023. View Article : Google Scholar : PubMed/NCBI

112 

Rochette L, Dogon G, Rigal E, Zeller M, Cottin Y and Vergely C: Lipid peroxidation and iron metabolism: Two corner stones in the homeostasis control of ferroptosis. Int J Mol Sci. 24:4492022. View Article : Google Scholar : PubMed/NCBI

113 

Wang L, Liu Y, Du T, Yang H, Lei L, Guo M, Ding HF, Zhang J, Wang H, Chen X and Yan C: ATF3 promotes erastin-induced ferroptosis by suppressing system Xc. Cell Death Differ. 27:662–675. 2020. View Article : Google Scholar : PubMed/NCBI

114 

Verbruggen L, Sprimont L, Bentea E, Janssen P, Gharib A, Deneyer L, De Pauw L, Lara O, Sato H, Nicaise C and Massie A: Chronic sulfasalazine treatment in mice induces system xc−-independent adverse effects. Front Pharmacol. 12:6256992021. View Article : Google Scholar : PubMed/NCBI

115 

de Baat A, Meier DT, Fontana A, Böni-Schnetzler M and Donath MY: Cystine/Glutamate antiporter system xc- deficiency impairs macrophage glutathione metabolism and cytokine production. PLoS One. 18:e02919502023. View Article : Google Scholar : PubMed/NCBI

116 

Sui X, Zhang R, Liu S, Duan T, Zhai L, Zhang M, Han X, Xiang Y, Huang X, Lin H and Xie T: RSL3 drives ferroptosis through GPX4 inactivation and ROS production in colorectal cancer. Front Pharmacol. 9:13712018. View Article : Google Scholar : PubMed/NCBI

117 

Cui C, Yang F and Li Q: Post-translational modification of GPX4 is a promising target for treating ferroptosis-related diseases. Front Mol Biosci. 9:9015652022. View Article : Google Scholar : PubMed/NCBI

118 

Zhou J, Zhang L, Yan J, Hou A, Sui W and Sun M: Curcumin induces ferroptosis in A549 CD133+ cells through the GSH-GPX4 and FSP1-CoQ10-NAPH pathways. Discov Med. 35:251–263. 2023. View Article : Google Scholar : PubMed/NCBI

119 

Almahi WA, Yu KN, Mohammed F, Kong P and Han W: Hemin enhances radiosensitivity of lung cancer cells through ferroptosis. Exp Cell Res. 410:1129462022. View Article : Google Scholar : PubMed/NCBI

120 

Ma S, Henson ES, Chen Y and Gibson SB: Ferroptosis is induced following siramesine and lapatinib treatment of breast cancer cells. Cell Death Dis. 7:e23072016. View Article : Google Scholar : PubMed/NCBI

121 

Zhang X, Yu K, Ma L, Qian Z, Tian X, Miao Y, Niu Y, Xu X, Guo S, Yang Y, et al: Endogenous glutamate determines ferroptosis sensitivity via ADCY10-dependent YAP suppression in lung adenocarcinoma. Theranostics. 11:5650–5674. 2021. View Article : Google Scholar : PubMed/NCBI

122 

Sun S, Guo C, Gao T, Ma D, Su X, Pang Q and Zhang R: Hypoxia enhances glioma resistance to sulfasalazine-induced ferroptosis by upregulating SLC7A11 via PI3K/AKT/HIF-1α axis. Oxid Med Cell Longev. 2022:78624302022. View Article : Google Scholar : PubMed/NCBI

123 

Zhao Y, Li Y, Zhang R, Wang F, Wang T and Jiao Y: The role of erastin in ferroptosis and its prospects in cancer therapy. Onco Targets Ther. 13:5429–5441. 2020. View Article : Google Scholar : PubMed/NCBI

124 

Zhang Y, Tan H, Daniels JD, Zandkarimi F, Liu H, Brown LM, Uchida K, O'Connor OA and Stockwell BR: Imidazole ketone erastin induces ferroptosis and slows tumor growth in a mouse lymphoma model. Cell Chem Biol. 26:623–633.e9. 2019. View Article : Google Scholar : PubMed/NCBI

125 

Duan L, Zhang Y, Yang Y, Su S, Zhou L, Lo PC, Cai J, Qiao Y, Li M, Huang S, et al: Baicalin inhibits ferroptosis in intracerebral hemorrhage. Front Pharmacol. 12:6293792021. View Article : Google Scholar : PubMed/NCBI

126 

Li J, Wei G, Song Z, Chen Z, Gu J, Zhang L and Wang Z: SIRT5 regulates ferroptosis through the Nrf2/HO-1 signaling axis to participate in ischemia-reperfusion injury in ischemic stroke. Neurochem Res. 49:998–1007. 2024. View Article : Google Scholar : PubMed/NCBI

127 

Li Y, Bao Y, Li Y, Duan X, Dong S, Lin J, Chang X, Tan Y, Zhang H and Shan H: RSL3 inhibits porcine epidemic diarrhea virus replication by activating ferroptosis. Viruses. 15:20802023. View Article : Google Scholar : PubMed/NCBI

128 

Cheff DM, Huang C, Scholzen KC, Gencheva R, Ronzetti MH, Cheng Q, Hall MD and Arnér ESJ: The ferroptosis inducing compounds RSL3 and ML162 are not direct inhibitors of GPX4 but of TXNRD1. Redox Biol. 62:1027032023. View Article : Google Scholar : PubMed/NCBI

129 

Hu J, Gu W, Ma N, Fan X and Ci X: Leonurine alleviates ferroptosis in cisplatin-induced acute kidney injury by activating the Nrf2 signalling pathway. Br J Pharmacol. 179:3991–4009. 2022. View Article : Google Scholar : PubMed/NCBI

130 

Yang J, Mo J, Dai J, Ye C, Cen W, Zheng X, Jiang L and Ye L: Cetuximab promotes RSL3-induced ferroptosis by suppressing the Nrf2/HO-1 signalling pathway in KRAS mutant colorectal cancer. Cell Death Dis. 12:10792021. View Article : Google Scholar : PubMed/NCBI

131 

Li S, He Y, Chen K, Sun J, Zhang L, He Y, Yu H and Li Q: RSL3 drives ferroptosis through NF-κB pathway activation and GPX4 depletion in glioblastoma. Oxid Med Cell Longev. 2021:29150192021. View Article : Google Scholar : PubMed/NCBI

132 

Sun X, Huang N, Li P, Dong X, Yang J, Zhang X, Zong WX, Gao S and Xin H: TRIM21 ubiquitylates GPX4 and promotes ferroptosis to aggravate ischemia/reperfusion-induced acute kidney injury. Life Sci. 321:1216082023. View Article : Google Scholar : PubMed/NCBI

133 

Li M, Meng Z, Yu S, Li J, Wang Y, Yang W and Wu H: Baicalein ameliorates cerebral ischemia-reperfusion injury by inhibiting ferroptosis via regulating GPX4/ACSL4/ACSL3 axis. Chem Biol Interact. 366:1101372022. View Article : Google Scholar : PubMed/NCBI

134 

Nakamura T, Hipp C, Santos Dias Mourão A, Borggräfe J, Aldrovandi M, Henkelmann B, Wanninger J, Mishima E, Lytton E, Emler D, et al: Phase separation of FSP1 promotes ferroptosis. Nature. 619:371–377. 2023. View Article : Google Scholar : PubMed/NCBI

135 

Yao X, Xie R, Cao Y, Tang J, Men Y, Peng H and Yang W: Simvastatin induced ferroptosis for triple-negative breast cancer therapy. J Nanobiotechnology. 19:3112021. View Article : Google Scholar : PubMed/NCBI

136 

Shu X and Wu J, Zhang T, Ma X, Du Z, Xu J, You J, Wang L, Chen N, Luo M and Wu J: Statin-induced geranylgeranyl pyrophosphate depletion promotes ferroptosis-related senescence in adipose tissue. Nutrients. 14:43652022. View Article : Google Scholar : PubMed/NCBI

137 

Miyamoto HD, Ikeda M, Ide T, Tadokoro T, Furusawa S, Abe K, Ishimaru K, Enzan N, Sada M, Yamamoto T, et al: Iron overload via heme degradation in the endoplasmic reticulum triggers ferroptosis in myocardial ischemia-reperfusion injury. JACC Basic Transl Sci. 7:800–819. 2022. View Article : Google Scholar : PubMed/NCBI

138 

Chen GQ, Benthani FA, Wu J, Liang D, Bian ZX and Jiang X: Artemisinin compounds sensitize cancer cells to ferroptosis by regulating iron homeostasis. Cell Death Differ. 27:242–254. 2020. View Article : Google Scholar : PubMed/NCBI

139 

Pei X, Tian M, Wang Y, Xin Y, Jiang J, Wang Y and Gong Y: Advances in the knowledge on the role of apoptosis repressor with caspase recruitment domain in hemorrhagic stroke. J Intensive Med. 3:138–143. 2023. View Article : Google Scholar : PubMed/NCBI

140 

Zille M, Karuppagounder SS, Chen Y, Gough PJ, Bertin J, Finger J, Milner TA, Jonas EA and Ratan RR: Neuronal death after hemorrhagic stroke in vitro and in vivo shares features of ferroptosis and necroptosis. Stroke. 48:1033–1043. 2017. View Article : Google Scholar : PubMed/NCBI

141 

Fu K, Xu W, Lenahan C, Mo Y, Wen J, Deng T, Huang Q, Guo F, Mo L and Yan J: Autophagy regulates inflammation in intracerebral hemorrhage: Enemy or friend? Front Cell Neurosci. 16:10363132023. View Article : Google Scholar : PubMed/NCBI

142 

Wang X, Mori T, Sumii T and Lo EH: Hemoglobin-induced cytotoxicity in rat cerebral cortical neurons: Caspase activation and oxidative stress. Stroke. 33:1882–1888. 2002. View Article : Google Scholar : PubMed/NCBI

143 

Xu Y, Liu Y, Li K, Yuan D, Yang S, Zhou L, Zhao Y, Miao S, Lv C and Zhao J: COX-2/PGE2 pathway inhibits the ferroptosis induced by cerebral ischemia reperfusion. Mol Neurobiol. 59:1619–1631. 2022. View Article : Google Scholar : PubMed/NCBI

144 

Dendorfer A, Heidbreder M, Hellwig-Bürgel T, Jöhren O, Qadri F and Dominiak P: Deferoxamine induces prolonged cardiac preconditioning via accumulation of oxygen radicals. Free Radic Biol Med. 38:117–124. 2005. View Article : Google Scholar : PubMed/NCBI

145 

Wang C, Xie L, Xing Y, Liu M, Yang J, Gao N and Cai Y: Iron-overload-induced ferroptosis in mouse cerebral toxoplasmosis promotes brain injury and could be inhibited by Deferiprone. PLoS Negl Trop Dis. 17:e00116072023. View Article : Google Scholar : PubMed/NCBI

146 

Miotto G, Rossetto M, Di Paolo ML, Orian L, Venerando R, Roveri A, Vučković AM, Bosello Travain V, Zaccarin M, Zennaro L, et al: Insight into the mechanism of ferroptosis inhibition by ferrostatin-1. Redox Biol. 28:1013282020. View Article : Google Scholar : PubMed/NCBI

147 

Gao Z, Zhang Z, Gu D, Li Y, Zhang K, Dong X, Liu L, Zhang J, Chen J, Wu D and Zeng M: Hemin mitigates contrast-induced nephropathy by inhibiting ferroptosis via HO-1/Nrf2/GPX4 pathway. Clin Exp Pharma Physio. 49:858–870. 2022. View Article : Google Scholar : PubMed/NCBI

148 

Mishima E, Ito J, Wu Z, Nakamura T, Wahida A, Doll S, Tonnus W, Nepachalovich P, Eggenhofer E, Aldrovandi M, et al: A non-canonical vitamin K cycle is a potent ferroptosis suppressor. Nature. 608:778–783. 2022. View Article : Google Scholar : PubMed/NCBI

149 

Sun W, Lv Z, Li W, Lu J, Xie Y, Wang P, Jiang R, Dong J, Guo H, Liu Z, et al: XJB-5-131 protects chondrocytes from ferroptosis to alleviate osteoarthritis progression via restoring Pebp1 expression. J Orthop Translat. 44:114–124. 2024. View Article : Google Scholar : PubMed/NCBI

150 

Bersuker K, Hendricks JM, Li Z, Magtanong L, Ford B, Tang PH, Roberts MA, Tong B, Maimone TJ, Zoncu R, et al: The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis. Nature. 575:688–692. 2019. View Article : Google Scholar : PubMed/NCBI

151 

Doll S, Proneth B, Tyurina YY, Panzilius E, Kobayashi S, Ingold I, Irmler M, Beckers J, Aichler M, Walch A, et al: ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition. Nat Chem Biol. 13:91–98. 2017. View Article : Google Scholar : PubMed/NCBI

152 

Liu Y, Wang W, Li Y, Xiao Y, Cheng J and Jia J: The 5-lipoxygenase inhibitor zileuton confers neuroprotection against glutamate oxidative damage by inhibiting ferroptosis. Biol Pharm Bull. 38:1234–1239. 2015. View Article : Google Scholar : PubMed/NCBI

153 

Kosyakovsky J, Fine JM, Frey WH II and Hanson LR: Mechanisms of intranasal deferoxamine in neurodegenerative and neurovascular disease. Pharmaceuticals (Basel). 14:952021. View Article : Google Scholar : PubMed/NCBI

154 

Huang Z and Huang S: Reposition of the fungicide ciclopirox for cancer treatment. Recent Pat Anticancer Drug Discov. 16:122–135. 2021. View Article : Google Scholar : PubMed/NCBI

155 

Averill-Bates DA: The antioxidant glutathione. Vitam Horm. 121:109–141. 2023. View Article : Google Scholar : PubMed/NCBI

156 

Chen J, Yang L, Geng L, He J, Chen L, Sun Q, Zhao J and Wang X: Inhibition of Acyl-CoA synthetase long-chain family member 4 facilitates neurological recovery after stroke by regulation ferroptosis. Front Cell Neurosci. 15:6323542021. View Article : Google Scholar : PubMed/NCBI

157 

Shen L, Lin D, Li X, Wu H, Lenahan C, Pan Y, Xu W, Chen Y, Shao A and Zhang J: Ferroptosis in acute central nervous system injuries: The future direction? Front Cell Dev Biol. 8:5942020. View Article : Google Scholar : PubMed/NCBI

158 

Guo Z, Lin J, Sun K, Guo J, Yao X, Wang G, Hou L, Xu J, Guo J and Guo F: Deferoxamine alleviates osteoarthritis by inhibiting chondrocyte ferroptosis and activating the Nrf2 pathway. Front Pharmacol. 13:7913762022. View Article : Google Scholar : PubMed/NCBI

159 

Xue Q, Yan D, Chen X, Li X, Kang R, Klionsky DJ, Kroemer G, Chen X, Tang D and Liu J: Copper-dependent autophagic degradation of GPX4 drives ferroptosis. Autophagy. 19:1982–1996. 2023. View Article : Google Scholar : PubMed/NCBI

160 

Wang L, Zhang X, Xu M, Zheng G, Chen J, Li S, Cui J and Zhang S: Implication of ferroptosis in hepatic toxicity upon single or combined exposure to polystyrene microplastics and cadmium. Environ Pollut. 334:1222502023. View Article : Google Scholar : PubMed/NCBI

161 

Chen Y, He W, Wei H, Chang C, Yang L, Meng J, Long T, Xu Q and Zhang C: Srs11-92, a ferrostatin-1 analog, improves oxidative stress and neuroinflammation via Nrf2 signal following cerebral ischemia/reperfusion injury. CNS Neurosci Ther. 29:1667–1677. 2023. View Article : Google Scholar : PubMed/NCBI

162 

Holden P and Nair LS: Deferoxamine: An angiogenic and antioxidant molecule for tissue regeneration. Tissue Eng Part B Rev. 25:461–470. 2019. View Article : Google Scholar : PubMed/NCBI

163 

Kim JL, Lee DH, Na YJ, Kim BR, Jeong YA, Lee SI, Kang S, Joung SY, Lee SY, Oh SC and Min BW: Iron chelator-induced apoptosis via the ER stress pathway in gastric cancer cells. Tumor Biol. 37:9709–9719. 2016. View Article : Google Scholar : PubMed/NCBI

164 

Lin S, Gao W, Zhu C, Lou Q, Ye C, Ren Y, Mehmood R, Huang B and Nan K: Efficiently suppress of ferroptosis using deferoxamine nanoparticles as a new method for retinal ganglion cell protection after traumatic optic neuropathy. Biomater Adv. 138:2129362022. View Article : Google Scholar : PubMed/NCBI

165 

You H, Wang D, Wei L, Chen J, Li H and Liu Y: Deferoxamine inhibits acute lymphoblastic leukemia progression through repression of ROS/HIF-1α, Wnt/β-catenin, and p38MAPK/ERK pathways. J Oncol. 2022:82812672022. View Article : Google Scholar : PubMed/NCBI

166 

Abdul Y, Li W, Ward R, Abdelsaid M, Hafez S, Dong G, Jamil S, Wolf V, Johnson MH, Fagan SC and Ergul A: Deferoxamine treatment prevents post-stroke vasoregression and neurovascular unit remodeling leading to improved functional outcomes in type 2 male diabetic rats: Role of endothelial ferroptosis. Transl Stroke Res. 12:615–630. 2021. View Article : Google Scholar : PubMed/NCBI

167 

Jones G, Zeng L and Kim J: Mechanism-based pharmacokinetic modeling of absorption and disposition of a deferoxamine-based nanochelator in rats. Mol Pharm. 20:481–490. 2023. View Article : Google Scholar : PubMed/NCBI

168 

Chen X, Li D, Sun H, Wang W, Wu H and Kong W and Kong W: Relieving ferroptosis may partially reverse neurodegeneration of the auditory cortex. FEBS J. 287:4747–4766. 2020. View Article : Google Scholar : PubMed/NCBI

169 

Tuo Q, Lei P, Jackman KA, Li XL, Xiong H, Li XL, Liuyang ZY, Roisman L, Zhang ST, Ayton S, et al: Tau-mediated iron export prevents ferroptotic damage after ischemic stroke. Mol Psychiatry. 22:1520–1530. 2017. View Article : Google Scholar : PubMed/NCBI

170 

Kannan M, Sil S, Oladapo A, Thangaraj A, Periyasamy P and Buch S: HIV-1 Tat-mediated microglial ferroptosis involves the miR-204-ACSL4 signaling axis. Redox Biol. 62:1026892023. View Article : Google Scholar : PubMed/NCBI

171 

Li Y, Zeng X, Lu D, Yin M, Shan M and Gao Y: Erastin induces ferroptosis via ferroportin-mediated iron accumulation in endometriosis. Hum Reprod. 36:951–964. 2021. View Article : Google Scholar : PubMed/NCBI

172 

Xie B, Wang Y, Lin Y, Mao Q, Feng J, Gao G and Jiang J: Inhibition of ferroptosis attenuates tissue damage and improves long-term outcomes after traumatic brain injury in mice. CNS Neurosci Ther. 25:465–475. 2019. View Article : Google Scholar : PubMed/NCBI

173 

Carbonell T and Rama R: Iron, oxidative stress and early neurological deterioration in ischemic stroke. Curr Med Chem. 14:857–874. 2007. View Article : Google Scholar : PubMed/NCBI

174 

Silver MK, Lozoff B and Meeker JD: Blood cadmium is elevated in iron deficient U.S. children: A cross-sectional study. Environ Health. 12:1172013. View Article : Google Scholar : PubMed/NCBI

175 

Zhang Q, Luo C, Li Z, Huang W, Zheng S, Liu C, Shi X, Ma Y, Ni Q, Tan W, et al: Astaxanthin activates the Nrf2/Keap1/HO-1 pathway to inhibit oxidative stress and ferroptosis, reducing triphenyl phosphate (TPhP)-induced neurodevelopmental toxicity. Ecotoxicol Environ Saf. 271:1159602024. View Article : Google Scholar : PubMed/NCBI

176 

Liu X, Du Y, Liu J, Cheng L, He W and Zhang W: Ferrostatin-1 alleviates cerebral ischemia/reperfusion injury through activation of the AKT/GSK3β signaling pathway. Brain Res Bull. 193:146–157. 2023. View Article : Google Scholar : PubMed/NCBI

177 

Chen B and Jin W: A comprehensive review of stroke-related signaling pathways and treatment in western medicine and traditional Chinese medicine. Front Neurosci. 17:12000612023. View Article : Google Scholar : PubMed/NCBI

178 

Lou Y, Ma M, Jiang Y, Xu H, Gao Z, Gao L and Wang Y: Ferroptosis: A new strategy for traditional Chinese medicine treatment of stroke. Biomed Pharmacother. 156:1138062022. View Article : Google Scholar : PubMed/NCBI

179 

Li J, Zhao X, Zhang Y, Wan H, He Y, Li X, Yu L and Jin W: Comparison of traditional Chinese medicine in the long-term secondary prevention for patients with ischemic stroke: A systematical analysis. Front Pharmacol. 12:7229752021. View Article : Google Scholar : PubMed/NCBI

180 

Zhu T, Wang L, Wang L and Wan Q: Therapeutic targets of neuroprotection and neurorestoration in ischemic stroke: Applications for natural compounds from medicinal herbs. Biomed Pharmacother. 148:1127192022. View Article : Google Scholar : PubMed/NCBI

181 

Wang J, Hu J, Chen X, Lei X, Feng H, Wan F and Tan L: Traditional Chinese medicine monomers: Novel strategy for endogenous neural stem cells activation after stroke. Front Cell Neurosci. 15:6281152021. View Article : Google Scholar : PubMed/NCBI

182 

Zhan S, Liang J, Lin H, Cai J, Yang X, Wu H, Wei J, Wang S and Xian M: SATB1/SLC7A11/HO-1 axis ameliorates ferroptosis in neuron cells after ischemic stroke by danhong injection. Mol Neurobiol. 60:413–427. 2023. View Article : Google Scholar : PubMed/NCBI

183 

Ko G, Kim J, Jeon YJ, Lee D, Baek HM and Chang KA: Salvia miltiorrhiza alleviates memory deficit induced by ischemic brain injury in a transient MCAO mouse model by inhibiting ferroptosis. Antioxidants (Basel). 12:7852023. View Article : Google Scholar : PubMed/NCBI

184 

Zhang J, Cai W, Wei X, Shi Y, Zhang K, Hu C, Wan J, Luo K and Shen W: Moxibustion ameliorates cerebral ischemia-reperfusion injury by regulating ferroptosis in rats. Clin Exp Pharmacol Physiol. 50:779–788. 2023. View Article : Google Scholar : PubMed/NCBI

185 

Liu J, Jiang G, He P, Du X, Hu Z and Li F: Mechanism of ferroptosis in traditional chinese medicine for clinical treatment: A review. Front Pharmacol. 13:11088362023. View Article : Google Scholar : PubMed/NCBI

186 

Wang L, Liu C, Wang L and Tang B: Astragaloside IV mitigates cerebral ischaemia-reperfusion injury via inhibition of P62/Keap1/Nrf2 pathway-mediated ferroptosis. Eur J Pharmacol. 944:1755162023. View Article : Google Scholar : PubMed/NCBI

187 

Jiang Y, Zhao S, Zhou Y and Wei Z: Research progress of traditional Chinese medicine in ferroptosis-related diseases. Med Nov Technol Devices. 16:1001932022. View Article : Google Scholar : PubMed/NCBI

188 

Yang K, Zeng L, Zeng J, Deng Y, Wang S, Xu H, He Q, Yuan M, Luo Y, Ge A and Ge J: Research progress in the molecular mechanism of ferroptosis in Parkinson's disease and regulation by natural plant products. Ageing Res Rev. 91:1020632023. View Article : Google Scholar : PubMed/NCBI

189 

Wu C, Duan F, Yang R, Dai Y, Chen X and Li S: 15, 16-Dihydrotanshinone I protects against ischemic stroke by inhibiting ferroptosis via the activation of nuclear factor erythroid 2-related factor 2. Phytomedicine. 114:1547902023. View Article : Google Scholar : PubMed/NCBI

190 

Bai X, Zheng E, Tong L, Liu Y, Li X and Yang H, Jiang J, Chang Z and Yang H: Angong Niuhuang Wan inhibit ferroptosis on ischemic and hemorrhagic stroke by activating PPARγ/AKT/GPX4 pathway. J Ethnopharmacol. 321:1174382024. View Article : Google Scholar : PubMed/NCBI

191 

Jin Z, Gao W, Guo F, Liao S, Hu M, Yu T, Yu S and Shi Q: Astragaloside IV alleviates neuronal ferroptosis in ischemic stroke by regulating fat mass and obesity-associated-N6-methyladenosine-acyl-CoA synthetase long-chain family member 4 axis. J Neurochem. 166:328–345. 2023. View Article : Google Scholar : PubMed/NCBI

192 

Hirata Y, Cai R, Volchuk A, Steinberg BE, Saito Y, Matsuzawa A, Grinstein S and Freeman SA: Lipid peroxidation increases membrane tension, Piezo1 gating, and cation permeability to execute ferroptosis. Curr Biol. 33:1282–1294.e5. 2023. View Article : Google Scholar : PubMed/NCBI

193 

Gao W, Wang X, Zhou Y, Wang X and Yu Y: Autophagy, ferroptosis, pyroptosis, and necroptosis in tumor immunotherapy. Sig Transduct Target Ther. 7:1962022. View Article : Google Scholar : PubMed/NCBI

194 

Zhou Y, Liao J, Mei Z, Liu X and Ge J: Insight into crosstalk between ferroptosis and necroptosis: Novel therapeutics in ischemic stroke. Oxid Med Cell Longev. 2021:99910012021. View Article : Google Scholar : PubMed/NCBI

195 

Yu Y, Yan Y, Niu F, Wang Y, Chen X, Su G, Liu Y, Zhao X, Qian L, Liu P and Xiong Y: Ferroptosis: A cell death connecting oxidative stress, inflammation and cardiovascular diseases. Cell Death Discov. 7:1932021. View Article : Google Scholar : PubMed/NCBI

196 

Battaglia AM, Chirillo R, Aversa I, Sacco A, Costanzo F and Biamonte F: Ferroptosis and cancer: Mitochondria meet the ‘iron maiden’ cell death. Cells. 9:15052020. View Article : Google Scholar : PubMed/NCBI

197 

Jeong SY and Seol DW: The role of mitochondria in apoptosis. BMB Rep. 41:11–22. 2008. View Article : Google Scholar : PubMed/NCBI

198 

Cui Y, Zhang Y, Zhao X, Shao L, Liu G, Sun C, Xu R and Zhang Z: ACSL4 exacerbates ischemic stroke by promoting ferroptosis-induced brain injury and neuroinflammation. Brain Behav Immun. 93:312–321. 2021. View Article : Google Scholar : PubMed/NCBI

199 

Wang ZL, Yuan L, Li W and Li JY: Ferroptosis in Parkinson's disease: Glia-neuron crosstalk. Trends Mol Med. 28:258–269. 2022. View Article : Google Scholar : PubMed/NCBI

200 

Ren JX, Sun X, Yan XL, Guo ZN and Yang Y: Ferroptosis in neurological diseases. Front Cell Neurosci. 14:2182020. View Article : Google Scholar : PubMed/NCBI

201 

Chen Y, Long T, Xu Q and Zhang C: Bibliometric analysis of ferroptosis in stroke from 2013 to 2021. Front Pharmacol. 12:8173642022. View Article : Google Scholar : PubMed/NCBI

202 

Jin Y, Zhuang Y, Liu M, Che J and Dong X: Inhibiting ferroptosis: A novel approach for stroke therapeutics. Drug Discov Today. 26:916–930. 2021. View Article : Google Scholar : PubMed/NCBI

203 

Yang K, Zeng L, Yuan X, Wang S, Ge A, Xu H, Zeng J and Ge J: The mechanism of ferroptosis regulating oxidative stress in ischemic stroke and the regulation mechanism of natural pharmacological active components. Biomed Pharmacother. 154:1136112022. View Article : Google Scholar : PubMed/NCBI

204 

Xing G, Meng L, Cao S, Liu S, Wu J, Li Q, Huang W and Zhang L: PPARα alleviates iron overload-induced ferroptosis in mouse liver. EMBO Rep. 23:e522802022. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Dong H, Ma Y, Cui M, Qiu Z, He M and Zhang B: Recent advances in potential therapeutic targets of ferroptosis‑associated pathways for the treatment of stroke (Review). Mol Med Rep 30: 128, 2024.
APA
Dong, H., Ma, Y., Cui, M., Qiu, Z., He, M., & Zhang, B. (2024). Recent advances in potential therapeutic targets of ferroptosis‑associated pathways for the treatment of stroke (Review). Molecular Medicine Reports, 30, 128. https://doi.org/10.3892/mmr.2024.13252
MLA
Dong, H., Ma, Y., Cui, M., Qiu, Z., He, M., Zhang, B."Recent advances in potential therapeutic targets of ferroptosis‑associated pathways for the treatment of stroke (Review)". Molecular Medicine Reports 30.1 (2024): 128.
Chicago
Dong, H., Ma, Y., Cui, M., Qiu, Z., He, M., Zhang, B."Recent advances in potential therapeutic targets of ferroptosis‑associated pathways for the treatment of stroke (Review)". Molecular Medicine Reports 30, no. 1 (2024): 128. https://doi.org/10.3892/mmr.2024.13252
Copy and paste a formatted citation
x
Spandidos Publications style
Dong H, Ma Y, Cui M, Qiu Z, He M and Zhang B: Recent advances in potential therapeutic targets of ferroptosis‑associated pathways for the treatment of stroke (Review). Mol Med Rep 30: 128, 2024.
APA
Dong, H., Ma, Y., Cui, M., Qiu, Z., He, M., & Zhang, B. (2024). Recent advances in potential therapeutic targets of ferroptosis‑associated pathways for the treatment of stroke (Review). Molecular Medicine Reports, 30, 128. https://doi.org/10.3892/mmr.2024.13252
MLA
Dong, H., Ma, Y., Cui, M., Qiu, Z., He, M., Zhang, B."Recent advances in potential therapeutic targets of ferroptosis‑associated pathways for the treatment of stroke (Review)". Molecular Medicine Reports 30.1 (2024): 128.
Chicago
Dong, H., Ma, Y., Cui, M., Qiu, Z., He, M., Zhang, B."Recent advances in potential therapeutic targets of ferroptosis‑associated pathways for the treatment of stroke (Review)". Molecular Medicine Reports 30, no. 1 (2024): 128. https://doi.org/10.3892/mmr.2024.13252
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team