|
1
|
Nguyen TT, Kosciolek T, Eyler LT, Knight R
and Jeste DV: Overview and systematic review of studies of
microbiome in schizophrenia and bipolar disorder. J Psychiatr Res.
99:50–61. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Van Ameringen M, Turna J, Patterson B,
Pipe A, Mao RQ, Anglin R and Surette MG: The gut microbiome in
psychiatry: A primer for clinicians. Depress Anxiety. 36:1004–1025.
2019. View
Article : Google Scholar : PubMed/NCBI
|
|
3
|
Liu JCW, Gorbovskaya I, Hahn MK and Müller
DJ: The gut microbiome in schizophrenia and the potential benefits
of prebiotic and probiotic treatment. Nutrients. 13:11522021.
View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Gómez-Eguílaz M, Ramón-Trapero JL,
Pérez-Martínez L and Blanco JR: The microbiota-gut-brain axis and
its large projections. Rev Neurol. 68:111–117. 2019.(In Spanish).
PubMed/NCBI
|
|
5
|
Strandwitz P: Neurotransmitter modulation
by the gut microbiota. Brain Res. 1693:128–133. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Chen Y, Xu J and Chen Y: Regulation of
Neurotransmitters by the gut microbiota and effects on cognition in
neurological disorders. Nutrients. 13:20992021. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Stopińska K, Radziwoń-Zaleska M and
Domitrz I: The microbiota gut-brain axis as a key to
neuropsychiatric disorders: A mini review. J Clin Med. 10:46402021.
View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Michel L and Prat A: One more role for the
gut: Microbiota and blood brain barrier. Ann Transl Med.
4:152016.PubMed/NCBI
|
|
9
|
Giannopoulou I, Georgiades S, Stefanou MI,
Spandidos DA and Rizos E: Links between trauma and psychosis
(Review). Exp Ther Med. 26:3862023. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Kang DW, Adams JB, Coleman DM, Pollard EL,
Maldonado J, McDonough-Means S, Caporaso JG and Krajmalnik-Brown R:
Long-term benefit of microbiota transfer therapy on autism symptoms
and gut microbiota. SciRep. 9:58212019.
|
|
11
|
Rantala MJ, Luoto S, Borraz-Leon JI and
Krams I: Schizophrenia: The new etiological synthesis. Neurosci
Biobehav Rev. 142:1048942022. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Munawar N, Ahmad A, Anwar MA and Muhammad
K: Modulation of gut microbial diversity through non-pharmaceutical
approaches to treat schizophrenia. Int J Mol Sci. 23:26252022.
View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Roth W, Zadeh K, Vekariya R, Ge Y and
Mohamadzadeh M: Tryptophan metabolism and gut brain homeostasis.
Int J Mol Sci. 22:29232021. View Article : Google Scholar
|
|
14
|
Zhu F, Guo R, Wang W, Ju Y, Wang Q, Ma Q,
Sun Q, Fan Y, Xie Y, Yang Z, et al: Transplantation of microbiota
from drug-free patients with schizophrenia causes
schizophrenia-like abnormal behaviors and dysregulated kynurenine
metabolism in mice. Mol Psychiatry. 25:2905–2918. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Agus A, Planchais J and Sokol H: Gut
microbiota regulation of tryptophan metabolism in health and
disease. Cell Host Microbe. 23:716–724. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Ghorbani M, Rajandas H, Parimannan S,
Stephen Joseph GB, Tew MM, Ramly SS, Muhamad Rasat MA and Lee SY:
Understanding the role of gut microbiota in the pathogenesis of
schizophrenia. Psychiatr Genet. 31:39–49. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Mikulska J, Juszczyk G, Gawrońska-Grzywacz
M and Herbet M: Brain sciences HPA Axis in the pathomechanism of
depression and schizophrenia: New therapeutic strategies based on
its participation. Brain Sci. 11:12982021. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Zheng P, Zeng B, Liu M, Chen J, Pan J, Han
Y, Liu Y, Cheng K, Zhou C, Wang H, et al: The gut microbiome from
patients with schizophrenia modulates the glutamate-glutamine-GABA
cycle and schizophrenia-relevant behaviors in mice. Sci Adv.
5:eaau83172019. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Krystal JH, Karper LP, Seibyl JP, Freeman
GK, Delaney R, Bremner JD, Heninger GR, Bowers MB Jr and Charney
DS: Subanesthetic effects of the non-competitive NMDA antagonist,
ketamine, in humans: Psychotomimetic, perceptual, cognitive, and
neuroendocrine responses. Arch Gen Psychiatry. 51:199–214. 1994.
View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Jodo E: The role of the
hippocampo-prefrontal cortex system in phencyclidine-induced
psychosis: A model for schizophrenia. J Physiol Paris. 107:434–440.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Luqman A, Nega M, Nguyen MT, Ebner P and
Götz F: SadA: Expressing staphylococci in the human gut show
increased cell adherence and internalization. Cell Rep. 22:535–545.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Li Y, Luo ZY, Hu YY, Bi YW, Yang JM, Zou
WJ, Song YL, Li S, Shen T, Li SJ, et al: The gut microbiota
regulates autism-like behavior by mediating vitamin B6 homeostasis
in EphB6-deficient mice. Microbiome. 8:1202020. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Severance EG, Alaedini A, Yang S, Halling
M, Gressitt KL, Stallings CR, Origoni AE, Vaughan C, Khushalani S,
Leweke FM, et al: Gastrointestinal inflammation and associated
immune activation in schizophrenia. Schizophr Res. 138:48–53. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Severance EG, Gressitt KL, Yang S,
Stallings CR, Origoni AE, Vaughan C, Khushalani S, Alaedini A,
Dickerson FB and Yolken RH: Seroreactive marker for inflammatory
bowel disease and associations with antibodies to dietary proteins
in bipolar disorder. Bipolar Disord. 16:230–240. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Severance EG, Gressitt KL, Stallings CR,
Origoni AE, Khushalani S, Leweke FM, Dickerson FB and Yolken RH:
Discordant patterns of bacterial translocation markers and
implications for innate immune imbalances in schizophrenia.
Schizophr Res. 148:130–137. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Severance EG, Yolken RH and Eaton WW:
Autoimmune diseases, gastrointestinal disorders and the microbiome
in schizophrenia: More than a gut feeling. Schizophr Res.
176:23–35. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Zhu F, Ju Y, Wang W, Wang Q, Guo R, Ma Q,
Sun Q, Fan Y, Xie Y, Yang Z, et al: Metagenome-Wide association of
gut microbiome features for schizophrenia. Nat Commun. 11:16122020.
View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Shen Y, Xu J, Li Z, Huang Y, Yuan Y, Wang
J, Zhang M, Hu S and Liang Y: Analysis of gut microbiota diversity
and auxiliary diagnosis as a biomarker in patients with
schizophrenia: A cross-sectional study. Schizophr Res. 197:470–477.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Li S, Zhuo M, Huang X, Huang Y, Zho J,
Xiong D, Li J, Liu Y, Pan Z, Li H, et al: Altered gut microbiota
associated with symptom severity in schizophrenia. PeerJ.
8:e95742020. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Xu R, Wu B, Liang J, He F, Gu W, Li K, Luo
Y, Chen J, Gao Y, Wu Z, et al: altered gut microbiota and mucosal
immunity in patients with schizophrenia. Brain Behav Immun.
85:120–127. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Nguyen TT, Kosciolek T, Maldonado Y, Daly
RE, Martin AS, McDonald D, Knight R and Jeste DV: Differences in
gut microbiome composition between persons with chronic
schizophrenia and healthy comparison subjects. Schizophr Res.
204:23–29. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Nocera A and Nasrallah HA: The association
of the gut microbiota with clinical features in schizophrenia.
Behav Sci (Basel). 12:892022. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Sen P, Prandovszky E, Honkanen JK, Chen O,
Yolken R and Suvisaari J: Dysregulation of microbiota in patients
with first-episode psychosis is associated with symptom severity
and treatment response. Biol Psychiatry. 95:370–379. 2024.
View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Schwarz E, Maukonen J, Hyytiäinen T,
Kieseppä T, Orešič M, Sabunciyan S, Mantere O, Saarela M, Yolken R
and Suvisaari J: Analysis of microbiota in first episode psychosis
identifies preliminary associations with symptom severity and
treatment response. Schizophr Res. 192:398–403. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
He Y, Kosciolek T, Tang J, Zhou Y, Li Z,
Ma X, Zhu Q, Yuan N, Yuan L, Li C, et al: Gut microbiome and
magnetic resonance spectroscopy study of subjects at ultra-high
risk for psychosis may support the membrane hypothesis. Eur
Psychiatry. 53:37–45. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Yuan X, Zhang P, Wang Y, Liu Y, Li X,
Kumar BU, Hei G, Lv L, Huang XF, Fan X and Song X: Changes in
metabolism and microbiota after 24-week risperidone treatment in
drug naïve, normal weight patients with first episode
schizophrenia. Schizophr Res. 201:299–306. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Zhang X, Pan LY, Zhang Z, Zhou YY, Jiang
HY and Ruan B: Analysis of gut mycobiota in first-episode,
drug-naïve Chinese patients with schizophrenia: A pilot study.
Behav Brain Res. 379:1123742020. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Ma X, Asif H, Dai L, He Y, Zheng W, Wang
D, Ren H, Tang J, Li C, Jin K, et al: Alteration of the gut
microbiome in first-episode drug-naïve and chronic medicated
schizophrenia correlate with regional brain volumes. J Psychiatr
Res. 123:136–144. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Zhu C, Zheng M, Ali U, Xia Q, Wang Z,
Chenlong, Yao L, Chen Y, Yan J, Wang K, et al: Association between
abundance of haemophilus in the gut microbiota and negative
symptoms of schizophrenia. Front Psychiatry. 12:6859102021.
View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Yuan X, Wang Y, Li X, Jiang J, Kang Y,
Pang L, Zhang P, Li A, Lv L, Andreassen OA, et al: Gut microbial
biomarkers for the treatment response in first-episode, drug-naïve
schizophrenia: A 24-week follow-up study. Transl Psychiatry.
11:4222021. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Li X, Fan X, Yuan X, Pang L, Hu S, Wang Y,
Huang X and Song X: The role of butyric acid in treatment response
in drug-naïve first episode schizophrenia. Front Psychiatry.
12:7246642021. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Yuan X, Li X, Kang Y, Pang L, Hei G, Zhang
X, Wang S, Zhao X, Zhang S, Tao Q, et al: Gut mycobiota dysbiosis
in drug-naïve, first-episode schizophrenia. Schizophr Res.
250:76–86. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Wang Z, Yuan X, Zhu Z, Pang L, Ding S, Li
X, Kang Y, Hei G, Zhang L, Zhang X, et al: Multiomics analyses
reveal microbiome-gut-brain crosstalk centered on aberrant
gamma-aminobutyric acid and tryptophan metabolism in drug-naïve
patients with first-episode schizophrenia. Schizophr Bull.
50:187–198. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
García-Bueno B, Bioque M, Mac-Dowell KS,
Barcones MF, Martínez-Cengotitabengoa M, Pina-Camacho L,
Rodríguez-Jiménez R, Sáiz PA, Castro C, Lafuente A, et al:
Pro-/anti-inflammatory dysregulation in patients with first episode
of psychosis: Toward an integrative inflammatory hypothesis of
schizophrenia. Schizophr Bull. 40:376–387. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
García-Bueno B, Bioque M, MacDowell KS,
Santabárbara J, Martínez-Cengotitabengoa M, Moreno C, Sáiz PA,
Berrocoso E, Gassó P, Fe Barcones M, et al: Pro-/antiinflammatory
dysregulation in early psychosis: Results from a 1-year
follow-upstudy. Int J Neuropsychopharmacol. 18:pyu0372014.
View Article : Google Scholar : PubMed/NCBI
|
|
46
|
O'Mahony SM, Marchesi JR, Scully P,
Codling C, Ceolho AM, Quigley EM, Cryan JF and Dinan TG: Early life
stress alters behavior, immunity, and microbiota in rats:
implications for irritable bowel syndrome and psychiatric
illnesses. Biol Psychiatry. 65:263–267. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Plotsky PM, Thrivikraman KV, Nemeroff CB,
Caldji C, Sharma S and Meaney MJ: Long-term consequences of
neonatal rearing on central corticotropin releasing factor systems
in adult male rat offspring. Neuropsychopharmacology. 30:2192–2204.
2005. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Ko CY and Liu YP: Isolation rearing
impaired sensorimotor gating but increased pro-inflammatory
cytokines and disrupted metabolic parameters in both sexes of rats.
Psychoneuroendocrinology. 55:173–183. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Dunphy-Doherty F, O'Mahony SM, Peterson
VL, O'Sullivan O, Crispie F, Cotter PD, Wigmore P, King MV, Cryan
JF and Fone KCF: Post-weaning social isolation of rats leads to
long-term disruption of the gut microbiota-immune-brain axis. Brain
Behav Immun. 68:261–273. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Morgan C, Charalambides M, Hutchinson G
and Murray RM: Migration, ethnicity, and psychosis: Toward a
sociodevelop-mental model. Schizophr Bull. 36:655–664. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Davis EG, Humphreys KL, McEwen LM, Sacchet
MD, Camacho MC, MacIsaac JL, Lin DTS, Kobor MS and Gotlib IH:
Accelerated DNA methylation age in adolescent girls: Associations
with elevated diurnal cortisol and reduced hippocampal volume.
Transl Psychiatry. 7:e12232017. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Chen Q, Li D, Jin W, Shi Y, Li Z, Ma P,
Sun J, Chen S, Li P and Lin P: Research progress on the correlation
between epigenetics and schizophrenia. Front Neurosci.
15:6887272021. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Alameda L, Rodriguez V, Carr E, Aas M,
Trotta G, Marino P, Vorontsova N, Herane-Vives A, Gadelrab R,
Spinazzola E, et al: A systematic review on mediators between
adversity and psychosis: Potential targets for treatment. Psychol
Med. 50:1966–1976. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Bayer TA, Falkai P and Maier W: Genetic
and non-genetic vulnerability factors in schizophrenia: The basis
of the ‘two hit hypothesis.’. J Psychiatr Res. 33:543–548. 1999.
View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Charmandari E, Kino T, Souvatzoglou E and
Chrousos GP: Pediatric stress: Hormonal mediators and human
development. Horm Res. 59:161–179. 2003.PubMed/NCBI
|
|
56
|
Lardinois M, Lataster T, Mengelers R, Van
Os J and Myin-Germeys I: Childhood trauma and increased stress
sensitivity in psychosis. Acta Psychiatr Scand. 23:28–35. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Walker EF, Brennan PA, Esterberg M,
Brasfield J, Pearce B and Compton MT: Longitudinal changes in
cortisol secretion and conversion to psychosis in at-risk youth. J
Abnorm Psychol. 119:401–408. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Walker EF, Trotman HD, Pearce BD,
Addington J, Cadenhead KS, Cornblatt BA, Heinssen R, Mathalon DH,
Perkins DO, Seidman LJ, et al: Cortisol levels and risk for
psychosis: Initial findings from the North American prodrome
longitudinal study. Biol Psychiatry. 74:410–417. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Sapolsky RM: Glucocorticoids and
hippocampal atrophy in neuropsychiatric disorders. Arch Gen
Psychiatry. 57:925–935. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Vita A, De Peri L, Silenzi C and Dieci M:
Brain morphology in first-episode schizophrenia: A meta-analysis of
quantitative magnetic resonance imaging studies. Schizophr Res.
82:75–88. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Thompson Ray M, Weickert CS, Wyatt E and
Webster MJ: Decreased BDNF, trkB-TK+ and GAD67 mRNA expression in
the hippo-campus of individuals with schizophrenia and mood
disorders. J Psychiatry Neurosci. 36:195–203. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Daskalakis NP, De Kloet ER, Yehuda R,
Malaspina D and Kranz TM: Early life stress effects on
Glucocorticoid-BDNF interplay in the hippocampus. Front Mol
Neurosci. 8:682015. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Rizos EN, Rontos I, Laskos E, Arsenis G,
Michalopoulou PG, Vasilopoulos D, Gournellis R and Lykouras L:
Investigation of serum BDNF levels in drug-naive patients with
schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry.
32:1308–1311. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Rizos EN, Papathanasiou M, Michalopoulou
PG, Mazioti A, Douzenis A, Kastania A, Nikolaidou P, Laskos E,
Vasilopoulou K and Lykouras L: Association of serum BDNF levels
with hippocampal volumes in first psychotic episode drug-naive
schizophrenic patients. Schizophr Res. 129:201–204. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Rizos EN, Michalopoulou PG, Siafakas N,
Stefanis N, Douzenis A, Rontos I, Laskos E, Kastania A, Zoumpourlis
V and Lykouras L: Association of serum brain-derived neurotrophic
factor and duration of untreated psychosis in first-episode
patients with schizophrenia. Neuropsychobiology. 62:87–90. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Theleritis C, Fisher HL, Shäfer I, Winters
L, Stahl D, Morgan C, Dazzan P, Breedvelt J, Sambath I, Vitoratou
S, et al: Brain derived Neurotropic Factor (BDNF) is associated
with childhood abuse but not cognitive domains in first episode
psychosis. Schizophr Res. 159:56–61. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Ghaderi A, Banafshe HR, Mirhosseini N,
Moradi M, Karimi MA, Mehrzad F, Bahmani F and Asemi Z: Clinical and
metabolic response to vitamin D plus Probiotic in schizophrenia
patients. BMC Psychiatry. 19:772019. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Okubo R, Koga M, Katsumata N, Odamaki T,
Matsuyama S, Oka M, Narita H, Hashimoto N, Kusumi I, Xiao J and
Matsuoka YJ: Effect of bifidobacterium breve A-1 on anxiety and
depressive symptoms in schizophrenia: A proof-of-concept study. J
Affect Disord. 245:377–385. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Bravo JA, Forsythe P, Chew MV, Escaravage
E, Savignac HM, Dinan TG, Bienenstock J and Cryan JF: Ingestion of
Lactobacillus strain regulates emotional behavior and central GABA
receptor expression in a mouse via the vagus nerve. Proc Natl Acad
Sci USA. 108:16050–16055. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Kao ACC, Spitzer S, Anthony DC, Lennox B
and Burnet PWJ: Prebiotic attenuation of olanzapine-induced weight
gain in rats: Analysis of central and peripheral biomarkers and gut
microbiota. Transl Psychiatry. 8:662018. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Hinton R: A case report looking at the
effects of faecal microbiota transplantation in a patient with
bipolar disorder. Aust N Z J Psychiatry. 54:649–650. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Parker G, Spoelma MJ and Rhodes N: Faecal
microbiota transplantation for bipolar disorder: A detailed case
study. Bipolar Disord. 24:559–563. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Patrono E, Svoboda J and Stuchlík A:
Schizophrenia, the gut microbiota, and new opportunities from
optogenetic manipulations of the gut-brain axis. Behav Brain Funct.
17:72021. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Nuncio-Mora L, Lanzagorta N, Nicolini H,
Sarmiento E, Ortiz G, Sosa F and Genis-Mendoza AD: The role of the
microbiome in first episode of psychosis. Biomedicines.
11:17702023. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Aschner M, Skalny AV, Gritsenko VA,
Kartashova OL, Santamaria A, Rocha JBT, Spandidos DA, Zaitseva IP,
Tsatsakis A and Tinkov AA: Role of gut microbiota in the modulation
of the health effects of advanced glycation end-products (Review).
Int J Mol Med. 51:442023. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Tsamakis K, Galinaki S, Alevyzakis E,
Hortis I, Tsiptsios D, Kollintza E, Kympouropoulos S, Triantafyllou
K, Smyrnis N and Rizos E: Gut Microbiome: A brief review on its
role in schizophrenia and first episode of psychosis.
Microorganisms. 10:11212022. View Article : Google Scholar : PubMed/NCBI
|