Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
July-2024 Volume 30 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
July-2024 Volume 30 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Research progress in the metabolic reprogramming of hepatocellular carcinoma (Review)

  • Authors:
    • Wenyue Gao
    • Jing Wang
    • Yuting Xu
    • Hongbo Yu
    • Sitong Yi
    • Changchuan Bai
    • Qingwei Cong
    • Ying Zhu
  • View Affiliations / Copyright

    Affiliations: Department of Infectious Diseases, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116000, P.R China, Internal Department of Chinese Medicine, Dalian Hospital of Traditional Chinese Medicine, Dalian, Liaoning 116000, P.R China
    Copyright: © Gao et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 131
    |
    Published online on: May 24, 2024
       https://doi.org/10.3892/mmr.2024.13255
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Hepatocellular carcinoma (HCC) is the most common primary liver malignancy and its morbidity is increasing worldwide due to increasing prevalence. Metabolic reprogramming has been recognized as a hallmark of cancer and serves a role in cancer progression. Glucose, lipids and amino acids are three major components whose altered metabolism can directly affect the energy production of cells, including liver cancer cells. Nutrients and energy are indispensable for the growth and proliferation of cancer cells, thus altering the metabolism of hepatoma cells can inhibit the progression of HCC. The present review summarizes recent studies on tumour regulatory molecules, including numerous noncoding RNAs, oncogenes and tumour suppressors, which regulate the metabolic activities of glucose, lipids and amino acids by targeting key enzymes, signalling pathways or interactions between the two. These regulatory molecules can regulate the rapid proliferation of cancer cells, tumour progression and treatment resistance. It is thought that these tumour regulatory factors may serve as therapeutic targets or valuable biomarkers for HCC, with the potential to mitigate HCC drug resistance. Furthermore, the advantages and disadvantages of metabolic inhibitors as a treatment approach for HCC, as well as possible solutions are discussed, providing insights for developing more effective treatment strategies for HCC.
View Figures

Figure 1

View References

1 

Llovet JM, Kelley RK, Villanueva A, Singal AG, Pikarsky E, Roayaie S, Lencioni R, Koike K, Zucman-Rossi J and Finn RS: Hepatocellular carcinoma. Nat Rev Dis Primers. 7:62021. View Article : Google Scholar : PubMed/NCBI

2 

Xing Y, Zhao S, Zhou BP and Mi J: Metabolic reprogramming of the tumour microenvironment. FEBS J. 282:3892–3898. 2015. View Article : Google Scholar : PubMed/NCBI

3 

Martínez-Reyes I and Chandel NS: Cancer metabolism: Looking forward. Nat Rev Cancer. 21:669–680. 2021. View Article : Google Scholar : PubMed/NCBI

4 

Ward PS and Thompson CB: Metabolic reprogramming: A cancer hallmark even warburg did not anticipate. Cancer Cell. 21:297–308. 2021. View Article : Google Scholar : PubMed/NCBI

5 

Vander Heiden MG, Cantley LC and Thompson CB: Understanding the Warburg effect: The metabolic requirements of cell proliferation. Science. 324:1029–1033. 2009. View Article : Google Scholar : PubMed/NCBI

6 

Warburg O: On the origin of cancer cells. Science. 123:309–314. 1956. View Article : Google Scholar : PubMed/NCBI

7 

Li C, Chen J, Li Y, Wu B, Ye Z, Tian X, Wei Y, Hao Z, Pan Y, Zhou H, et al: 6-Phosphogluconolactonase promotes hepatocellular carcinogenesis by activating pentose phosphate pathway. Front Cell Dev Biol. 9:7531962021. View Article : Google Scholar : PubMed/NCBI

8 

Liu Y, Lu LL, Wen D, Liu DL, Dong LL, Gao DM, Bian XY, Zhou J, Fan J and Wu WZ: MiR-612 regulates invadopodia of hepatocellular carcinoma by HADHA-mediated lipid reprogramming. J Hematol Oncol. 13:122020. View Article : Google Scholar : PubMed/NCBI

9 

Vettore L, Westbrook RL and Tennant DA: New aspects of amino acid metabolism in cancer. Br J Cancer. 122:150–156. 2020. View Article : Google Scholar : PubMed/NCBI

10 

Zhuang X, Chen Y, Wu Z, Xu Q, Chen M, Shao M, Cao X, Zhou Y, Xie M, Shi Y, et al: Mitochondrial miR-181a-5p promotes glucose metabolism reprogramming in liver cancer by regulating the electron transport chain. Carcinogenesis. 41:972–983. 2020. View Article : Google Scholar : PubMed/NCBI

11 

Xia L, Oyang L, Lin J, Tan S, Han Y, Wu N, Yi P, Tang L, Pan Q, Rao S, et al: The cancer metabolic reprogramming and immune response. Mol Cancer. 20:282021. View Article : Google Scholar : PubMed/NCBI

12 

Vaupel P, Schmidberger H and Mayer A: The Warburg effect: essential part of metabolic reprogramming and central contributor to cancer progression. Int J Radiat Biol. 95:912–919. 2019. View Article : Google Scholar : PubMed/NCBI

13 

Enzo E, Santinon G, Pocaterra A, Aragona M, Bresolin S, Forcato M, Grifoni D, Pession A, Zanconato F, Guzzo G, et al: Aerobic glycolysis tunes YAP/TAZ transcriptional activity. EMBO J. 34:1349–1370. 2015. View Article : Google Scholar : PubMed/NCBI

14 

Liao W, Du J, Wang Z, Feng Q, Liao M, Liu H, Yuan K and Zeng Y: The role and mechanism of noncoding RNAs in regulation of metabolic reprogramming in hepatocellular carcinoma. Int J Cancer. 151:337–347. 2022. View Article : Google Scholar : PubMed/NCBI

15 

Li J, Eu JQ, Kong LR, Wang L, Lim YC, Goh BC and Wong ALA: Targeting Metabolism in Cancer Cells and the Tumour Microenvironment for Cancer Therapy. Molecules. 25:48312020. View Article : Google Scholar : PubMed/NCBI

16 

Amann T, Maegdefrau U, Hartmann A, Agaimy A, Marienhagen J, Weiss TS, Stoeltzing O, Warnecke C, Schölmerich J, Oefner PJ, et al: GLUT1 expression is increased in hepatocellular carcinoma and promotes tumorigenesis. Am J Pathol. 174:1544–1552. 2009. View Article : Google Scholar : PubMed/NCBI

17 

Yao J, Tang S, Shi C, Lin Y, Ge L, Chen Q, Ou B, Liu D, Miao Y, Xie Q, et al: Isoginkgetin, a potential CDK6 inhibitor, suppresses SLC2A1/GLUT1 enhancer activity to induce AMPK-ULK1-mediated cytotoxic autophagy in hepatocellular carcinoma. Autophagy. 19:1221–1238. 2023. View Article : Google Scholar : PubMed/NCBI

18 

Shang R, Pu M, Li Y and Wang D: FOXM1 regulates glycolysis in hepatocellular carcinoma by transactivating glucose transporter 1 expression. Oncol Rep. 37:2261–2269. 2017. View Article : Google Scholar : PubMed/NCBI

19 

Wang P, Sun J, Sun C, Zhao H, Zhang Y and Chen J: BTF3 promotes proliferation and glycolysis in hepatocellular carcinoma by regulating GLUT1. Cancer Biol Ther. 24:22258842023. View Article : Google Scholar : PubMed/NCBI

20 

Shang R, Wang M, Dai B, Du J, Wang J, Liu Z, Qu S, Yang X, Liu J, Xia C, et al: Long noncoding RNA SLC2A1-AS1 regulates aerobic glycolysis and progression in hepatocellular carcinoma via inhibiting the STAT3/FOXM1/GLUT1 pathway. Mol Oncol. 14:1381–1396. 2020. View Article : Google Scholar : PubMed/NCBI

21 

Yang H, Zhang MZ, Sun HW, Chai YT, Li X, Jiang Q and Hou J: A Novel Microcrystalline BAY-876 formulation achieves long-acting antitumor activity against aerobic glycolysis and proliferation of hepatocellular carcinoma. Front Oncol. 11:7831942021. View Article : Google Scholar : PubMed/NCBI

22 

DeWaal D, Nogueira V, Terry AR, Patra KC, Jeon SM, Guzman G, Au J, Long CP, Antoniewicz MR and Hay N: Hexokinase-2 depletion inhibits glycolysis and induces oxidative phosphorylation in hepatocellular carcinoma and sensitizes to metformin. Nat Commun. 9:4462018. View Article : Google Scholar : PubMed/NCBI

23 

Garcia SN, Guedes RC and Marques MM: Unlocking the Potential of HK2 in Cancer Metabolism and Therapeutics. Curr Med Chem. 26:7285–7322. 2019. View Article : Google Scholar : PubMed/NCBI

24 

Zhao L, Kang M, Liu X, Wang Z, Wang Y, Chen H, Liu W, Liu S, Li B, Li C, et al: UBR7 inhibits HCC tumorigenesis by targeting Keap1/Nrf2/Bach1/HK2 and glycolysis. J Exp Clin Cancer Res. 41:3302022. View Article : Google Scholar : PubMed/NCBI

25 

Ding Z, Guo L, Deng Z and Li P: Circ-PRMT5 enhances the proliferation, migration and glycolysis of hepatoma cells by targeting miR-188-5p/HK2 axis. Ann Hepatol. 19:269–279. 2020. View Article : Google Scholar : PubMed/NCBI

26 

Wang J, Chen J, Sun F, Wang Z, Xu W, Yu Y, Ding F and Shen H: miR-202 functions as a tumor suppressor in hepatocellular carcinoma by targeting HK2. Oncol Lett. 19:2265–2271. 2020.PubMed/NCBI

27 

Lv B, Zhu W and Feng C: Coptisine Blocks Secretion of Exosomal circCCT3 from cancer-associated fibroblasts to reprogram glucose metabolism in hepatocellular carcinoma. DNA Cell Biol. Oct 2–2020.(Epub ahead of print). View Article : Google Scholar

28 

Wu Q, Wang SP, Sun XX, Tao YF, Yuan XQ, Chen QM, Dai L, Li CL, Zhang JY and Yang AL: HuaChanSu suppresses tumor growth and interferes with glucose metabolism in hepatocellular carcinoma cells by restraining Hexokinase-2. Int J Biochem Cell Biol. 142:1061232022. View Article : Google Scholar : PubMed/NCBI

29 

Huang J, Chen F, Zhong Z, Tan HY, Wang N, Liu Y, Fang X, Yang T and Feng Y: Interpreting the pharmacological mechanisms of huachansu capsules on hepatocellular carcinoma through combining network pharmacology and experimental evaluation. Front Pharmacol. 11:4142020. View Article : Google Scholar : PubMed/NCBI

30 

Laussel C and Léon S: Cellular toxicity of the metabolic inhibitor 2-deoxyglucose and associated resistance mechanisms. Biochem Pharmacol. 182:1142132020. View Article : Google Scholar : PubMed/NCBI

31 

Ma WK, Voss DM, Scharner J, Costa ASH, Lin KT, Jeon HY, Wilkinson JE, Jackson M, Rigo F, Bennett CF and Krainer AR: ASO-Based PKM splice-switching therapy inhibits hepatocellular carcinoma growth. Cancer Res. 82:900–915. 2022. View Article : Google Scholar : PubMed/NCBI

32 

Israelsen WJ and Vander Heiden MG: Pyruvate kinase: Function, regulation and role in cancer. Semin Cell Dev Biol. 43:43–51. 2015. View Article : Google Scholar : PubMed/NCBI

33 

Chen D, Wang Y, Lu R, Jiang X, Chen X, Meng N, Chen M, Xie S and Yan GR: E3 ligase ZFP91 inhibits Hepatocellular Carcinoma Metabolism Reprogramming by regulating PKM splicing. Theranostics. 10:8558–8572. 2020. View Article : Google Scholar : PubMed/NCBI

34 

Tan HW, Leung CO, Chan KK, Ho DW, Leung MS, Wong CM, Ng IO and Lo RC: Deregulated GATA6 modulates stem cell-like properties and metabolic phenotype in hepatocellular carcinoma. Int J Cancer. 145:1860–1873. 2019. View Article : Google Scholar : PubMed/NCBI

35 

Panda AC: Circular RNAs Act as miRNA Sponges. Adv Exp Med Biol. 1087:67–79. 2018. View Article : Google Scholar : PubMed/NCBI

36 

Li Q, Pan X, Zhu D, Deng Z, Jiang R and Wang X: Circular RNA MAT2B promotes glycolysis and malignancy of hepatocellular carcinoma through the miR-338-3p/PKM2 axis under hypoxic stress. Hepatology. 70:1298–1316. 2019. View Article : Google Scholar : PubMed/NCBI

37 

Zhang M, Zhang H, Hong H and Zhang Z: MiR-374b re-sensitizes hepatocellular carcinoma cells to sorafenib therapy by antagonizing PKM2-mediated glycolysis pathway. Am J Cancer Res. 9:765–778. 2019.PubMed/NCBI

38 

Tang W, Chen Z, Zhang W, Cheng Y, Zhang B, Wu F, Wang Q, Wang S, Rong D, Reiter FP, et al: The mechanisms of sorafenib resistance in hepatocellular carcinoma: theoretical basis and therapeutic aspects. Signal Transduct Target Ther. 5:872020. View Article : Google Scholar : PubMed/NCBI

39 

Chen M, Liu H, Li Z, Ming AL and Chen H: Mechanism of PKM2 affecting cancer immunity and metabolism in tumor microenvironment. J Cancer. 12:3566–3574. 2021. View Article : Google Scholar : PubMed/NCBI

40 

Feng Y, Xiong Y, Qiao T, Li X, Jia L and Han Y: Lactate dehydrogenase A: A key player in carcinogenesis and potential target in cancer therapy. Cancer Med. 7:6124–6136. 2018. View Article : Google Scholar : PubMed/NCBI

41 

Malvi P, Rawat V, Gupta R and Wajapeyee N: Transcriptional, chromatin, and metabolic landscapes of LDHA inhibitor-resistant pancreatic ductal adenocarcinoma. Front Oncol. 12:9264372022. View Article : Google Scholar : PubMed/NCBI

42 

Wang S, Zhou L, Ji N, Sun C, Sun L, Sun J, Du Y, Zhang N, Li Y, Liu W and Lu W: Targeting ACYP1-mediated glycolysis reverses lenvatinib resistance and restricts hepatocellular carcinoma progression. Drug Resist Updat. 69:1009762023. View Article : Google Scholar : PubMed/NCBI

43 

Wang X, Zhang P and Deng K: MYC Promotes LDHA Expression through MicroRNA-122-5p to potentiate glycolysis in hepatocellular carcinoma. Anal Cell Pathol (Amst). 2022:14351732022.PubMed/NCBI

44 

Zhang HF, Wang YC and Han YD: MicroRNA-34a inhibits liver cancer cell growth by reprogramming glucose metabolism. Mol Med Rep. 17:4483–4489. 2018.PubMed/NCBI

45 

Hua S, Liu C, Liu L and Wu D: miR-142-3p inhibits aerobic glycolysis and cell proliferation in hepatocellular carcinoma via targeting LDHA. Biochem Biophys Res Commun. 496:947–954. 2018. View Article : Google Scholar : PubMed/NCBI

46 

Cai J, Chen Z, Zhang Y, Wang J, Zhang Z, Wu J, Mao J and Zuo X: CircRHBDD1 augments metabolic rewiring and restricts immunotherapy efficacy via m(6)A modification in hepatocellular carcinoma. Mol Ther Oncolytics. 24:755–771. 2022. View Article : Google Scholar : PubMed/NCBI

47 

Luo X, Zheng E, Wei L, Zeng H, Qin H, Zhang X, Liao M, Chen L, Zhao L, Ruan XZ, et al: The fatty acid receptor CD36 promotes HCC progression through activating Src/PI3K/AKT axis-dependent aerobic glycolysis. Cell Death Dis. 12:3282021. View Article : Google Scholar : PubMed/NCBI

48 

Zhao C, Wang B, Liu E and Zhang Z: Loss of PTEN expression is associated with PI3K pathway-dependent metabolic reprogramming in hepatocellular carcinoma. Cell Commun Signal. 18:1312020. View Article : Google Scholar : PubMed/NCBI

49 

Zheng YL, Li L, Jia YX, Zhang BZ, Li JC, Zhu YH, Li MQ, He JZ, Zeng TT, Ban XJ, et al: LINC01554-Mediated glucose metabolism reprogramming suppresses tumorigenicity in hepatocellular carcinoma via downregulating PKM2 expression and inhibiting Akt/mTOR signaling pathway. Theranostics. 9:796–810. 2019. View Article : Google Scholar : PubMed/NCBI

50 

Li J, Hu ZQ, Yu SY, Mao L, Zhou ZJ, Wang PC, Gong Y, Su S, Zhou J, Fan J, et al: CircRPN2 inhibits aerobic glycolysis and metastasis in hepatocellular carcinoma. Cancer Res. 82:1055–1069. 2022. View Article : Google Scholar : PubMed/NCBI

51 

Li X, Zhang Y, Ma W, Fu Q, Liu J, Yin G, Chen P, Dai D, Chen W, Qi L, et al: Enhanced glucose metabolism mediated by CD147 contributes to immunosuppression in hepatocellular carcinoma. Cancer Immunol Immunother. 69:535–548. 2020. View Article : Google Scholar : PubMed/NCBI

52 

Lin D and Wu J: Hypoxia inducible factor in hepatocellular carcinoma: A therapeutic target. World J Gastroenterol. 21:12171–12178. 2015. View Article : Google Scholar : PubMed/NCBI

53 

Iyer NV, Kotch LE, Agani F, Leung SW, Laughner E, Wenger RH, Gassmann M, Gearhart JD, Lawler AM, Yu AY and Semenza GL: Cellular and developmental control of O2 homeostasis by hypoxia-inducible factor 1 alpha. Genes Dev. 12:149–162. 1998. View Article : Google Scholar : PubMed/NCBI

54 

Guo W, Qiu Z, Wang Z, Wang Q, Tan N, Chen T, Chen Z, Huang S, Gu J, Li J, et al: MiR-199a-5p is negatively associated with malignancies and regulates glycolysis and lactate production by targeting hexokinase 2 in liver cancer. Hepatology. 62:1132–1144. 2015. View Article : Google Scholar : PubMed/NCBI

55 

Chen Z, Zuo X, Zhang Y, Han G, Zhang L, Wu J and Wang X: MiR-3662 suppresses hepatocellular carcinoma growth through inhibition of HIF-1α-mediated Warburg effect. Cell Death Dis. 9:5492018. View Article : Google Scholar : PubMed/NCBI

56 

Luo W, Hu H, Chang R, Zhong J, Knabel M, O'Meally R, Cole RN, Pandey A and Semenza GL: Pyruvate kinase M2 is a PHD3-stimulated coactivator for hypoxia-inducible factor 1. Cell. 145:732–744. 2011. View Article : Google Scholar : PubMed/NCBI

57 

Zhang Y, Zhang C, Zhao Q, Wei W, Dong Z, Shao L, Li J, Wu W, Zhang H, Huang H, et al: The miR-873/NDFIP1 axis promotes hepatocellular carcinoma growth and metastasis through the AKT/mTOR-mediated Warburg effect. Am J Cancer Res. 9:927–944. 2019.PubMed/NCBI

58 

Kowalik MA, Columbano A and Perra A: Emerging role of the pentose phosphate pathway in hepatocellular carcinoma. Front Oncol. 7:872017. View Article : Google Scholar : PubMed/NCBI

59 

Stincone A, Prigione A, Cramer T, Wamelink MM, Campbell K, Cheung E, Olin-Sandoval V, Grüning NM, Krüger A, Tauqeer Alam M, et al: The return of metabolism: biochemistry and physiology of the pentose phosphate pathway. Biol Rev Camb Philos Soc. 90:927–963. 2015. View Article : Google Scholar : PubMed/NCBI

60 

Lu M, Lu L, Dong Q, Yu G, Chen J, Qin L, Wang L, Zhu W and Jia H: Elevated G6PD expression contributes to migration and invasion of hepatocellular carcinoma cells by inducing epithelial-mesenchymal transition. Acta Biochim Biophys Sin (Shanghai). 50:370–380. 2018. View Article : Google Scholar : PubMed/NCBI

61 

Barajas JM, Reyes R, Guerrero MJ, Jacob ST, Motiwala T and Ghoshal K: The role of miR-122 in the dysregulation of glucose-6-phosphate dehydrogenase (G6PD) expression in hepatocellular cancer. Sci Rep. 8:91052018. View Article : Google Scholar : PubMed/NCBI

62 

Qin Z, Xiang C, Zhong F, Liu Y, Dong Q, Li K, Shi W, Ding C, Qin L and He F: Transketolase (TKT) activity and nuclear localization promote hepatocellular carcinoma in a metabolic and a non-metabolic manner. J Exp Clin Cancer Res. 38:1542019. View Article : Google Scholar : PubMed/NCBI

63 

Jia D, Liu C, Zhu Z, Cao Y, Wen W, Hong Z, Liu Y, Liu E, Chen L, Chen C, et al: Novel transketolase inhibitor oroxylin A suppresses the non-oxidative pentose phosphate pathway and hepatocellular carcinoma tumour growth in mice and patient-derived organoids. Clin Transl Med. 12:e10952022. View Article : Google Scholar : PubMed/NCBI

64 

Luo X, Cheng C, Tan Z, Li N, Tang M, Yang L and Cao Y: Emerging roles of lipid metabolism in cancer metastasis. Mol Cancer. 16:762017. View Article : Google Scholar : PubMed/NCBI

65 

Shimano H and Sato R: SREBP-regulated lipid metabolism: Convergent physiology-divergent pathophysiology. Nat Rev Endocrinol. 13:710–730. 2017. View Article : Google Scholar : PubMed/NCBI

66 

Muku GE, Blazanin N, Dong F, Smith PB, Thiboutot D, Gowda K, Amin S, Murray IA and Perdew GH: Selective Ah Receptor Ligands Mediate Enhanced SREBP1 Proteolysis to Restrict Lipogenesis in Sebocytes. Toxicol Sci. 171:146–158. 2019. View Article : Google Scholar : PubMed/NCBI

67 

Li H, Chen Z, Zhang Y, Yuan P, Liu J, Ding L and Ye Q: MiR-4310 regulates hepatocellular carcinoma growth and metastasis through lipid synthesis. Cancer Lett. 519:161–171. 2021. View Article : Google Scholar : PubMed/NCBI

68 

Chen J, Ding C, Chen Y, Hu W, Yu C, Peng C, Feng X, Cheng Q, Wu W, Lu Y, et al: ACSL4 reprograms fatty acid metabolism in hepatocellular carcinoma via c-Myc/SREBP1 pathway. Cancer Lett. 502:154–165. 2021. View Article : Google Scholar : PubMed/NCBI

69 

Liu Y, Sun L, Guo H, Zhou S, Wang C, Ji C, Meng F, Liang S, Zhang B, Yuan Y, et al: Targeting SLP2-mediated lipid metabolism reprograming restricts proliferation and metastasis of hepatocellular carcinoma and promotes sensitivity to Lenvatinib. Oncogene. 42:374–388. 2023. View Article : Google Scholar : PubMed/NCBI

70 

Chan DC: Mitochondrial dynamics and its involvement in disease. Annu Rev Pathol. 15:235–259. 2020. View Article : Google Scholar : PubMed/NCBI

71 

Wu D, Yang Y, Hou Y, Zhao Z, Liang N, Yuan P, Yang T, Xing J and Li J: Increased mitochondrial fission drives the reprogramming of fatty acid metabolism in hepatocellular carcinoma cells through suppression of Sirtuin 1. Cancer Commun (Lond). 42:37–55. 2022. View Article : Google Scholar : PubMed/NCBI

72 

Li Q, Yao H, Wang Y, Wu Y, Thorne RF, Zhu Y, Wu M and Liu L: circPRKAA1 activates a Ku80/Ku70/SREBP-1 axis driving de novo fatty acid synthesis in cancer cells. Cell Rep. 41:1117072022. View Article : Google Scholar : PubMed/NCBI

73 

Mok EHK, Leung CON, Zhou L, Lei MML, Leung HW, Tong M, Wong TL, Lau EYT, Ng IOL, Ding J, et al: Caspase-3-Induced Activation of SREBP2 Drives drug resistance via promotion of cholesterol biosynthesis in hepatocellular carcinoma. Cancer Res. 82:3102–3115. 2022. View Article : Google Scholar : PubMed/NCBI

74 

Svensson RU, Parker SJ, Eichner LJ, Kolar MJ, Wallace M, Brun SN, Lombardo PS, Van Nostrand JL, Hutchins A, Vera L, et al: Inhibition of acetyl-CoA carboxylase suppresses fatty acid synthesis and tumor growth of non-small-cell lung cancer in preclinical models. Nat Med. 22:1108–1119. 2016. View Article : Google Scholar : PubMed/NCBI

75 

Zaytseva YY, Rychahou PG, Le AT, Scott TL, Flight RM, Kim JT, Harris J, Liu J, Wang C, Morris AJ, et al: Preclinical evaluation of novel fatty acid synthase inhibitors in primary colorectal cancer cells and a patient-derived xenograft model of colorectal cancer. Oncotarget. 9:24787–24800. 2018. View Article : Google Scholar : PubMed/NCBI

76 

Peck B, Schug ZT, Zhang Q, Dankworth B, Jones DT, Smethurst E, Patel R, Mason S, Jiang M, Saunders R, et al: Inhibition of fatty acid desaturation is detrimental to cancer cell survival in metabolically compromised environments. Cancer Metab. 4:62016. View Article : Google Scholar : PubMed/NCBI

77 

Stine ZE, Schug ZT, Salvino JM and Dang CV: Targeting cancer metabolism in the era of precision oncology. Nat Rev Drug Discov. 21:141–162. 2022. View Article : Google Scholar : PubMed/NCBI

78 

Cheng C, Geng F, Cheng X and Guo D: Lipid metabolism reprogramming and its potential targets in cancer. Cancer Commun (Lond). 38:272018.PubMed/NCBI

79 

Li B, Cao Y, Meng G, Qian L, Xu T, Yan C, Luo O, Wang S, Wei J, Ding Y and Yu D: Targeting glutaminase 1 attenuates stemness properties in hepatocellular carcinoma by increasing reactive oxygen species and suppressing Wnt/beta-catenin pathway. EBioMedicine. 39:239–254. 2019. View Article : Google Scholar : PubMed/NCBI

80 

Altman BJ, Stine ZE and Dang CV: From Krebs to clinic: Glutamine metabolism to cancer therapy. Nat Rev Cancer. 16:619–634. 2016. View Article : Google Scholar : PubMed/NCBI

81 

Marsico M, Santarsiero A, Pappalardo I, Convertini P, Chiummiento L, Sardone A, Di Noia MA, Infantino V and Todisco S: Mitochondria-Mediated Apoptosis of HCC cells triggered by knockdown of glutamate dehydrogenase 1: Perspective for its inhibition through quercetin and permethylated anigopreissin A. Biomedicines. 9:16642021. View Article : Google Scholar : PubMed/NCBI

82 

Dai W, Xu L, Yu X, Zhang G, Guo H, Liu H, Song G, Weng S, Dong L, Zhu J, et al: OGDHL silencing promotes hepatocellular carcinoma by reprogramming glutamine metabolism. J Hepatol. 72:909–923. 2020. View Article : Google Scholar : PubMed/NCBI

83 

Xu K, Ding J, Zhou L, Li D, Luo J, Wang W, Shang M, Lin B, Zhou L and Zheng S: SMYD2 promotes hepatocellular carcinoma progression by reprogramming glutamine metabolism via c-Myc/GLS1 Axis. Cells. 12:252022. View Article : Google Scholar : PubMed/NCBI

84 

Meric-Bernstam F, Tannir NM, Iliopoulos O, Lee RJ, Telli ML, Fan AC, DeMichele A, Haas NB, Patel MR, Harding JJ, et al: Telaglenastat plus cabozantinib or everolimus for advanced or metastatic renal cell carcinoma: An open-label phase I trial. Clin Cancer Res. 28:1540–1548. 2022. View Article : Google Scholar : PubMed/NCBI

85 

Li C, Gui G, Zhang L, Qin A, Zhou C and Zha X: Overview of methionine adenosyltransferase 2A (MAT2A) as an anticancer target: Structure, function, and inhibitors. J Med Chem. 65:9531–9547. 2022. View Article : Google Scholar : PubMed/NCBI

86 

Hung MH, Lee JS, Ma C, Diggs LP, Heinrich S, Chang CW, Ma L, Forgues M, Budhu A, Chaisaingmongkol J, et al: Tumor methionine metabolism drives T-cell exhaustion in hepatocellular carcinoma. Nat Commun. 12:14552021. View Article : Google Scholar : PubMed/NCBI

87 

Simile MM, Peitta G, Tomasi ML, Brozzetti S, Feo CF, Porcu A, Cigliano A, Calvisi DF, Feo F and Pascale RM: MicroRNA-203 impacts on the growth, aggressiveness and prognosis of hepatocellular carcinoma by targeting MAT2A and MAT2B genes. Oncotarget. 10:2835–2854. 2019. View Article : Google Scholar : PubMed/NCBI

88 

Li JT, Yang H, Lei MZ, Zhu WP, Su Y, Li KY, Zhu WY, Wang J, Zhang L, Qu J, et al: Dietary folate drives methionine metabolism to promote cancer development by stabilizing MAT IIA. Signal Transduct Target Ther. 7:1922022. View Article : Google Scholar : PubMed/NCBI

89 

Chaturvedi S, Hoffman RM and Bertino JR: Exploiting methionine restriction for cancer treatment. Biochem Pharmacol. 154:170–173. 2018. View Article : Google Scholar : PubMed/NCBI

90 

Kawaguchi K, Han Q, Li S, Tan Y, Igarashi K, Miyake K, Kiyuna T, Miyake M, Chemielwski B, Nelson SD, et al: Intra-tumor L-methionine level highly correlates with tumor size in both pancreatic cancer and melanoma patient-derived orthotopic xenograft (PDOX) nude-mouse models. Oncotarget. 9:11119–11125. 2018. View Article : Google Scholar : PubMed/NCBI

91 

Wang Z, Yip LY, Lee JHJ, Wu Z, Chew HY, Chong PKW, Teo CC, Ang HY, Peh KLE, Yuan J, et al: Methionine is a metabolic dependency of tumor-initiating cells. Nat Med. 25:825–837. 2019. View Article : Google Scholar : PubMed/NCBI

92 

Yang C, Zhang H, Zhang L, Zhu AX, Bernards R, Qin W and Wang C: Evolving therapeutic landscape of advanced hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol. 20:203–222. 2023. View Article : Google Scholar : PubMed/NCBI

93 

Todisco S, Convertini P, Iacobazzi V and Infantino V: TCA cycle rewiring as emerging metabolic signature of hepatocellular carcinoma. Cancers (Basel). 12:682019. View Article : Google Scholar : PubMed/NCBI

94 

Wang H, Zhou Y, Xu H, Wang X, Zhang Y, Shang R, O'Farrell M, Roessler S, Sticht C, Stahl A, et al: Therapeutic efficacy of FASN inhibition in preclinical models of HCC. Hepatology. 76:951–966. 2022. View Article : Google Scholar : PubMed/NCBI

95 

Jin H, Wang S, Zaal EA, Wang C, Wu H, Bosma A, Jochems F, Isima N, Jin G, Lieftink C, et al: A powerful drug combination strategy targeting glutamine addiction for the treatment of human liver cancer. Elife. 9:e567492020. View Article : Google Scholar : PubMed/NCBI

96 

Hay N: Reprogramming glucose metabolism in cancer: can it be exploited for cancer therapy? Nat Rev Cancer. 16:635–649. 2016. View Article : Google Scholar : PubMed/NCBI

97 

Raez LE, Papadopoulos K, Ricart AD, Chiorean EG, Dipaola RS, Stein MN, Rocha Lima CM, Schlesselman JJ, Tolba K, Langmuir VK, et al: A phase I dose-escalation trial of 2-deoxy-D-glucose alone or combined with docetaxel in patients with advanced solid tumors. Cancer Chemother Pharmacol. 71:523–530. 2013. View Article : Google Scholar : PubMed/NCBI

98 

Reyes R, Wani NA, Ghoshal K, Jacob ST and Motiwala T: Sorafenib and 2-Deoxyglucose synergistically inhibit proliferation of both sorafenib-sensitive and -resistant HCC cells by inhibiting ATP production. Gene Expr. 17:129–140. 2017. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Gao W, Wang J, Xu Y, Yu H, Yi S, Bai C, Cong Q and Zhu Y: Research progress in the metabolic reprogramming of hepatocellular carcinoma (Review). Mol Med Rep 30: 131, 2024.
APA
Gao, W., Wang, J., Xu, Y., Yu, H., Yi, S., Bai, C. ... Zhu, Y. (2024). Research progress in the metabolic reprogramming of hepatocellular carcinoma (Review). Molecular Medicine Reports, 30, 131. https://doi.org/10.3892/mmr.2024.13255
MLA
Gao, W., Wang, J., Xu, Y., Yu, H., Yi, S., Bai, C., Cong, Q., Zhu, Y."Research progress in the metabolic reprogramming of hepatocellular carcinoma (Review)". Molecular Medicine Reports 30.1 (2024): 131.
Chicago
Gao, W., Wang, J., Xu, Y., Yu, H., Yi, S., Bai, C., Cong, Q., Zhu, Y."Research progress in the metabolic reprogramming of hepatocellular carcinoma (Review)". Molecular Medicine Reports 30, no. 1 (2024): 131. https://doi.org/10.3892/mmr.2024.13255
Copy and paste a formatted citation
x
Spandidos Publications style
Gao W, Wang J, Xu Y, Yu H, Yi S, Bai C, Cong Q and Zhu Y: Research progress in the metabolic reprogramming of hepatocellular carcinoma (Review). Mol Med Rep 30: 131, 2024.
APA
Gao, W., Wang, J., Xu, Y., Yu, H., Yi, S., Bai, C. ... Zhu, Y. (2024). Research progress in the metabolic reprogramming of hepatocellular carcinoma (Review). Molecular Medicine Reports, 30, 131. https://doi.org/10.3892/mmr.2024.13255
MLA
Gao, W., Wang, J., Xu, Y., Yu, H., Yi, S., Bai, C., Cong, Q., Zhu, Y."Research progress in the metabolic reprogramming of hepatocellular carcinoma (Review)". Molecular Medicine Reports 30.1 (2024): 131.
Chicago
Gao, W., Wang, J., Xu, Y., Yu, H., Yi, S., Bai, C., Cong, Q., Zhu, Y."Research progress in the metabolic reprogramming of hepatocellular carcinoma (Review)". Molecular Medicine Reports 30, no. 1 (2024): 131. https://doi.org/10.3892/mmr.2024.13255
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team