From metabolic to epigenetic: Insight into trained macrophages in atherosclerosis (Review)
- Authors:
- Tianxin Li
- Wanting Feng
- Wenyue Yan
- Tingting Wang
-
Affiliations: The State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University and School of Life Sciences, Nanjing, Jiangsu 210093, P.R. China, Department of Oncology, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School, The First People's Hospital of Yancheng, Yancheng, Jiangsu 224001, P.R. China - Published online on: June 20, 2024 https://doi.org/10.3892/mmr.2024.13269
- Article Number: 145
This article is mentioned in:
Abstract
![]() |
![]() |
Libby P: The changing landscape of atherosclerosis. Nature. 592:524–533. 2021. View Article : Google Scholar : PubMed/NCBI | |
Boren J, Chapman MJ, Krauss RM, Packard CJ, Bentzon JF, Binder CJ, Daemen MJ, Demer LL, Hegele RA, Nicholls SJ, et al: Low-density lipoproteins cause atherosclerotic cardiovascular disease: Pathophysiological, genetic, and therapeutic insights: A consensus statement from the european atherosclerosis society consensus panel. Eur Heart J. 41:2313–2330. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zhu Y, Xian X, Wang Z, Bi Y, Chen Q, Han X, Tang D and Chen R: Research progress on the relationship between atherosclerosis and inflammation. Biomolecules. 8:802018. View Article : Google Scholar : PubMed/NCBI | |
Moore KJ, Sheedy FJ and Fisher EA: Macrophages in atherosclerosis: A dynamic balance. Nat Rev Immunol. 13:709–721. 2013. View Article : Google Scholar : PubMed/NCBI | |
Netea MG, Quintin J and van der Meer JW: Trained immunity: A memory for innate host defense. Cell Host Microbe. 9:355–361. 2011. View Article : Google Scholar : PubMed/NCBI | |
Netea MG: Training innate immunity: The changing concept of immunological memory in innate host defence. Eur J Clin Invest. 43:881–884. 2013. View Article : Google Scholar : PubMed/NCBI | |
Dominguez-Andres J, Santos JC, Bekkering S, Mulder WJM, van der Meer JWM, Riksen NP, Joosten LAB and Netea MG: Trained immunity: Adaptation within innate immune mechanisms. Physiol Rev. 103:313–346. 2023. View Article : Google Scholar : PubMed/NCBI | |
Netea MG, Joosten LA, Latz E, Mills KH, Natoli G, Stunnenberg HG, O'Neill LA and Xavier RJ: Trained immunity: A program of innate immune memory in health and disease. Science. 352:aaf10982016. View Article : Google Scholar : PubMed/NCBI | |
Naik S, Larsen SB, Gomez NC, Alaverdyan K, Sendoel A, Yuan S, Polak L, Kulukian A, Chai S and Fuchs E: Inflammatory memory sensitizes skin epithelial stem cells to tissue damage. Nature. 550:475–480. 2017. View Article : Google Scholar : PubMed/NCBI | |
van den Burg HA and Takken FL: Does chromatin remodeling mark systemic acquired resistance? Trends Plant Sci. 14:286–294. 2009. View Article : Google Scholar : PubMed/NCBI | |
Foster SL, Hargreaves DC and Medzhitov R: Gene-specific control of inflammation by TLR-induced chromatin modifications. Nature. 447:972–978. 2007. View Article : Google Scholar : PubMed/NCBI | |
Lim AI, McFadden T, Link VM, Han SJ, Karlsson RM, Stacy A, Farley TK, Lima-Junior DS, Harrison OJ, Desai JV, et al: Prenatal maternal infection promotes tissue-specific immunity and inflammation in offspring. Science. 373:eabf30022021. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Chen Y, Cai G, Ni Q, Geng Y, Wang T, Bao C, Ruan X, Wang H and Sun W: Roles of trained immunity in the pathogenesis of periodontitis. J Periodontal Res. 58:864–873. 2023. View Article : Google Scholar : PubMed/NCBI | |
Wendeln AC, Degenhardt K, Kaurani L, Gertig M, Ulas T, Jain G, Wagner J, Häsler LM, Wild K, Skodras A, et al: Innate immune memory in the brain shapes neurological disease hallmarks. Nature. 556:332–338. 2018. View Article : Google Scholar : PubMed/NCBI | |
Bekkering S, Quintin J, Joosten LA, van der Meer JW, Netea MG and Riksen NP: Oxidized low-density lipoprotein induces long-term proinflammatory cytokine production and foam cell formation via epigenetic reprogramming of monocytes. Arterioscler Thromb Vasc Biol. 34:1731–1718. 2014. View Article : Google Scholar : PubMed/NCBI | |
Riksen NP, Bekkering S, Mulder WJM and Netea MG: Trained immunity in atherosclerotic cardiovascular disease. Nat Rev Cardiol. 20:799–811. 2023. View Article : Google Scholar : PubMed/NCBI | |
Shirai T, Nazarewicz RR, Wallis BB, Yanes RE, Watanabe R, Hilhorst M, Tian L, Harrison DG, Giacomini JC, Assimes TL, et al: The glycolytic enzyme PKM2 bridges metabolic and inflammatory dysfunction in coronary artery disease. J Exp Med. 213:337–354. 2016. View Article : Google Scholar : PubMed/NCBI | |
Mitroulis I, Hajishengallis G and Chavakis T: Bone marrow inflammatory memory in cardiometabolic disease and inflammatory comorbidities. Cardiovasc Res. 119:2801–2812. 2023. View Article : Google Scholar : PubMed/NCBI | |
Kleinnijenhuis J, Quintin J, Preijers F, Joosten LA, Jacobs C, Xavier RJ, van der Meer JW, van Crevel R and Netea MG: BCG-induced trained immunity in NK cells: Role for non-specific protection to infection. Clin Immunol. 155:213–219. 2014. View Article : Google Scholar : PubMed/NCBI | |
Moorlag SJCFM, Rodriguez-Rosales YA, Gillard J, Fanucchi S, Theunissen K, Novakovic B, de Bont CM, Negishi Y, Fok ET, Kalafati L, et al: BCG vaccination induces long-term functional reprogramming of human neutrophils. Cell Rep. 33:1083872020. View Article : Google Scholar : PubMed/NCBI | |
Hole CR, Wager CML, Castro-Lopez N, Campuzano A, Cai H, Wozniak KL, Wang Y and Wormley FL Jr: Induction of memory-like dendritic cell responses in vivo. Nat Commun. 10:29552019. View Article : Google Scholar : PubMed/NCBI | |
Sohrabi Y, Lagache SMM, Voges VC, Semo D, Sonntag G, Hanemann I, Kahles F, Waltenberger J and Findeisen HM: OxLDL-mediated immunologic memory in endothelial cells. J Mol Cell Cardiol. 146:121–132. 2020. View Article : Google Scholar : PubMed/NCBI | |
Netea MG, Domínguez-Andrés J, Barreiro LB, Chavakis T, Divangahi M, Fuchs E, Joosten LAB, van der Meer JWM, Mhlanga MM, Mulder WJM, et al: Defining trained immunity and its role in health and disease. Nat Rev Immunol. 20:375–388. 2020. View Article : Google Scholar : PubMed/NCBI | |
Bonetti J, Corti A, Lerouge L, Pompella A and Gaucher C: Phenotypic modulation of macrophages and vascular smooth muscle cells in atherosclerosis-nitro-redox interconnections. Antioxidants (Basel). 10:5162021. View Article : Google Scholar : PubMed/NCBI | |
Gordon S and Taylor PR: Monocyte and macrophage heterogeneity. Nat Rev Immunol. 5:953–964. 2005. View Article : Google Scholar : PubMed/NCBI | |
Duewell P, Kono H, Rayner KJ, Sirois CM, Vladimer G, Bauernfeind FG, Abela GS, Franchi L, Nuñez G, Schnurr M, et al: NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature. 464:1357–1361. 2010. View Article : Google Scholar : PubMed/NCBI | |
Chavez-Sanchez L, Garza-Reyes MG, Espinosa-Luna JE, Chávez-Rueda K, Legorreta-Haquet MV and Blanco-Favela F: The role of TLR2, TLR4 and CD36 in macrophage activation and foam cell formation in response to oxLDL in humans. Hum Immunol. 75:322–329. 2014. View Article : Google Scholar : PubMed/NCBI | |
Hirose K, Iwabuchi K, Shimada K, Kiyanagi T, Iwahara C, Nakayama H and Daida H: Different responses to oxidized low-density lipoproteins in human polarized macrophages. Lipids Health Dis. 10:12011. View Article : Google Scholar : PubMed/NCBI | |
Verreck FA, de Boer T, Langenberg DM, Hoeve MA, Kramer M, Vaisberg E, Kastelein R, Kolk A, de Waal-Malefyt R and Ottenhoff TH: Human IL-23-producing type 1 macrophages promote but IL-10-producing type 2 macrophages subvert immunity to (myco)bacteria. Proc Natl Acad Sci USA. 101:4560–4565. 2004. View Article : Google Scholar : PubMed/NCBI | |
Stein M, Keshav S, Harris N and Gordon S: Interleukin 4 potently enhances murine macrophage mannose receptor activity: A marker of alternative immunologic macrophage activation. J Exp Med. 176:287–292. 1992. View Article : Google Scholar : PubMed/NCBI | |
Gordon S: Alternative activation of macrophages. Nat Rev Immunol. 3:23–35. 2003. View Article : Google Scholar : PubMed/NCBI | |
Mosser DM and Edwards JP: Exploring the full spectrum of macrophage activation. Nat Rev Immunol. 8:958–969. 2008. View Article : Google Scholar : PubMed/NCBI | |
Jinnouchi H, Guo L, Sakamoto A, Torii S, Sato Y, Cornelissen A, Kuntz S, Paek KH, Fernandez R, Fuller D, et al: Diversity of macrophage phenotypes and responses in atherosclerosis. Cell Mol Life Sci. 77:1919–1932. 2020. View Article : Google Scholar : PubMed/NCBI | |
Chinetti-Gbaguidi G, Colin S and Staels B: Macrophage subsets in atherosclerosis. Nat Rev Cardiol. 12:10–17. 2015. View Article : Google Scholar : PubMed/NCBI | |
Kadl A, Meher AK, Sharma PR, Lee MY, Doran AC, Johnstone SR, Elliott MR, Gruber F, Han J, Chen W, et al: Identification of a novel macrophage phenotype that develops in response to atherogenic phospholipids via Nrf2. Circ Res. 107:737–746. 2010. View Article : Google Scholar : PubMed/NCBI | |
Stoger JL, Gijbels MJ, van der Velden S, Manca M, van der Loos CM, Biessen EA, Daemen MJ, Lutgens E and de Winther MP: Distribution of macrophage polarization markers in human atherosclerosis. Atherosclerosis. 225:461–468. 2012. View Article : Google Scholar : PubMed/NCBI | |
Stewart CR, Stuart LM, Wilkinson K, van Gils JM, Deng J, Halle A, Rayner KJ, Boyer L, Zhong R, Frazier WA, et al: CD36 ligands promote sterile inflammation through assembly of a Toll-like receptor 4 and 6 heterodimer. Nat Immunol. 11:155–161. 2010. View Article : Google Scholar : PubMed/NCBI | |
Feig JE, Vengrenyuk Y, Reiser V, Wu C, Statnikov A, Aliferis CF, Garabedian MJ, Fisher EA and Puig O: Regression of atherosclerosis is characterized by broad changes in the plaque macrophage transcriptome. PLoS One. 7:e397902012. View Article : Google Scholar : PubMed/NCBI | |
O'Neill LA, Kishton RJ and Rathmell J: A guide to immunometabolism for immunologists. Nat Rev Immunol. 16:553–565. 2016. View Article : Google Scholar : PubMed/NCBI | |
Stienstra R, Netea-Maier RT, Riksen NP, Joosten LAB and Netea MG: Specific and complex reprogramming of cellular metabolism in myeloid cells during innate immune responses. Cell Metab. 26:142–156. 2017. View Article : Google Scholar : PubMed/NCBI | |
Groh L, Keating ST, Joosten LAB, Netea MG and Riksen NP: Monocyte and macrophage immunometabolism in atherosclerosis. Semin Immunopathol. 40:203–214. 2018. View Article : Google Scholar : PubMed/NCBI | |
Cheng SC, Quintin J, Cramer RA, Shepardson KM, Saeed S, Kumar V, Giamarellos-Bourboulis EJ, Martens JH, Rao NA, Aghajanirefah A, et al: mTOR- and HIF-1α-mediated aerobic glycolysis as metabolic basis for trained immunity. Science. 345:12506842014. View Article : Google Scholar : PubMed/NCBI | |
Tawakol A, Singh P, Mojena M, Pimentel-Santillana M, Emami H, MacNabb M, Rudd JH, Narula J, Enriquez JA, Través PG, et al: HIF-1α and PFKFB3 mediate a tight relationship between proinflammatory activation and anerobic metabolism in atherosclerotic macrophages. Arterioscler Thromb Vasc Biol. 35:1463–1471. 2015. View Article : Google Scholar : PubMed/NCBI | |
Bekkering S, van den Munckhof I, Nielen T, Lamfers E, Dinarello C, Rutten J, de Graaf J, Joosten LA, Netea MG, Gomes ME and Riksen NP: Innate immune cell activation and epigenetic remodeling in symptomatic and asymptomatic atherosclerosis in humans in vivo. Atherosclerosis. 254:228–236. 2016. View Article : Google Scholar : PubMed/NCBI | |
Riksen NP and Netea MG: Immunometabolic control of trained immunity. Mol Aspects Med. 77:1008972021. View Article : Google Scholar : PubMed/NCBI | |
Tannahill GM, Curtis AM, Adamik J, Palsson-McDermott EM, McGettrick AF, Goel G, Frezza C, Bernard NJ, Kelly B, Foley NH, et al: Succinate is an inflammatory signal that induces IL-1β through HIF-1α. Nature. 496:238–242. 2013. View Article : Google Scholar : PubMed/NCBI | |
Jha AK, Huang SC, Sergushichev A, Lampropoulou V, Ivanova Y, Loginicheva E, Chmielewski K, Stewart KM, Ashall J, Everts B, et al: Network integration of parallel metabolic and transcriptional data reveals metabolic modules that regulate macrophage polarization. Immunity. 42:419–430. 2015. View Article : Google Scholar : PubMed/NCBI | |
Benit P, Letouzé E, Rak M, Aubry L, Burnichon N, Favier J, Gimenez-Roqueplo AP and Rustin P: Unsuspected task for an old team: Succinate, fumarate and other Krebs cycle acids in metabolic remodeling. Biochim Biophys Acta. 1837:1330–1337. 2014. View Article : Google Scholar : PubMed/NCBI | |
Saeed S, Quintin J, Kerstens HH, Rao NA, Aghajanirefah A, Matarese F, Cheng SC, Ratter J, Berentsen K, van der Ent MA, et al: Epigenetic programming of monocyte-to-macrophage differentiation and trained innate immunity. Science. 345:12510862014. View Article : Google Scholar : PubMed/NCBI | |
Tall AR and Yvan-Charvet L: Cholesterol, inflammation and innate immunity. Nat Rev Immunol. 15:104–116. 2015. View Article : Google Scholar : PubMed/NCBI | |
Khokha R, Murthy A and Weiss A: Metalloproteinases and their natural inhibitors in inflammation and immunity. Nat Rev Immunol. 13:649–665. 2013. View Article : Google Scholar : PubMed/NCBI | |
Ito A, Hong C, Rong X, Zhu X, Tarling EJ, Hedde PN, Gratton E, Parks J and Tontonoz P: LXRs link metabolism to inflammation through Abca1-dependent regulation of membrane composition and TLR signaling. Elife. 4:e080092015. View Article : Google Scholar : PubMed/NCBI | |
Thomas DG, Doran AC, Fotakis P, Westerterp M, Antonson P, Jiang H, Jiang XC, Gustafsson JÅ, Tabas I and Tall AR: LXR suppresses inflammatory gene expression and neutrophil migration through cis-repression and cholesterol efflux. Cell Rep. 25:3774–3785. e42018. View Article : Google Scholar : PubMed/NCBI | |
Ghisletti S, Huang W, Ogawa S, Pascual G, Lin ME, Willson TM, Rosenfeld MG and Glass CK: Parallel SUMOylation-dependent pathways mediate gene- and signal-specific transrepression by LXRs and PPARgamma. Mol Cell. 25:57–70. 2007. View Article : Google Scholar : PubMed/NCBI | |
Bories G, Colin S, Vanhoutte J, Derudas B, Copin C, Fanchon M, Daoudi M, Belloy L, Haulon S, Zawadzki C, et al: Liver X receptor activation stimulates iron export in human alternative macrophages. Circ Res. 113:1196–1205. 2013. View Article : Google Scholar : PubMed/NCBI | |
Spann NJ, Garmire LX, McDonald JG, Myers DS, Milne SB, Shibata N, Reichart D, Fox JN, Shaked I, Heudobler D, et al: Regulated accumulation of desmosterol integrates macrophage lipid metabolism and inflammatory responses. Cell. 151:138–152. 2012. View Article : Google Scholar : PubMed/NCBI | |
Zhang X, McDonald JG, Aryal B, Canfrán-Duque A, Goldberg EL, Araldi E, Ding W, Fan Y, Thompson BM, Singh AK, et al: Desmosterol suppresses macrophage inflammasome activation and protects against vascular inflammation and atherosclerosis. Proc Natl Acad Sci USA. 118:e21076821182021. View Article : Google Scholar : PubMed/NCBI | |
Endo-Umeda K, Kim E, Thomas DG, Liu W, Dou H, Yalcinkaya M, Abramowicz S, Xiao T, Antonson P, Gustafsson JÅ, et al: Myeloid LXR (Liver X Receptor) deficiency induces inflammatory gene expression in foamy macrophages and accelerates atherosclerosis. Arterioscler Thromb Vasc Biol. 42:719–731. 2022. View Article : Google Scholar : PubMed/NCBI | |
Ecker J, Liebisch G, Englmaier M, Grandl M, Robenek H and Schmitz G: Induction of fatty acid synthesis is a key requirement for phagocytic differentiation of human monocytes. Proc Natl Acad Sci USA. 107:7817–7822. 2010. View Article : Google Scholar : PubMed/NCBI | |
Rong S, Cortés VA, Rashid S, Anderson NN, McDonald JG, Liang G, Moon YA, Hammer RE and Horton JD: Expression of SREBP-1c requires SREBP-2-mediated generation of a sterol ligand for LXR in livers of mice. Elife. 6:e250152017. View Article : Google Scholar : PubMed/NCBI | |
Im SS, Yousef L, Blaschitz C, Liu JZ, Edwards RA, Young SG, Raffatellu M and Osborne TF: Linking lipid metabolism to the innate immune response in macrophages through sterol regulatory element binding protein-1a. Cell Metab. 13:540–549. 2011. View Article : Google Scholar : PubMed/NCBI | |
Arts RJ, Novakovic B, Horst RT, Carvalho A, Bekkering S, Lachmandas E, Rodrigues F, Silvestre R, Cheng SC, Wang SY, et al: Glutaminolysis and fumarate accumulation integrate immunometabolic and epigenetic programs in trained immunity. Cell Metab. 24:807–819. 2016. View Article : Google Scholar : PubMed/NCBI | |
Huang SC, Everts B, Ivanova Y, O'Sullivan D, Nascimento M, Smith AM, Beatty W, Love-Gregory L, Lam WY, O'Neill CM, et al: Cell-intrinsic lysosomal lipolysis is essential for alternative activation of macrophages. Nat Immunol. 15:846–855. 2014. View Article : Google Scholar : PubMed/NCBI | |
Van den Bossche J, O'Neill LA and Menon D: Macrophage immunometabolism: Where are we (Going)? Trends Immunol. 38:395–406. 2017. View Article : Google Scholar : PubMed/NCBI | |
Malandrino MI, Fucho R, Weber M, Calderon-Dominguez M, Mir JF, Valcarcel L, Escoté X, Gómez-Serrano M, Peral B, Salvadó L, et al: Enhanced fatty acid oxidation in adipocytes and macrophages reduces lipid-induced triglyceride accumulation and inflammation. Am J Physiol Endocrinol Metab. 308:E756–E769. 2015. View Article : Google Scholar : PubMed/NCBI | |
Feingold KR, Shigenaga JK, Kazemi MR, McDonald CM, Patzek SM, Cross AS, Moser A and Grunfeld C: Mechanisms of triglyceride accumulation in activated macrophages. J Leukoc Biol. 92:829–839. 2012. View Article : Google Scholar : PubMed/NCBI | |
Schneider JG, Yang Z, Chakravarthy MV, Lodhi IJ, Wei X, Turk J and Semenkovich CF: Macrophage fatty-acid synthase deficiency decreases diet-induced atherosclerosis. J Biol Chem. 285:23398–23409. 2010. View Article : Google Scholar : PubMed/NCBI | |
Bostrom P, Magnusson B, Svensson PA, Wiklund O, Borén J, Carlsson LM, Ståhlman M, Olofsson SO and Hultén LM: Hypoxia converts human macrophages into triglyceride-loaded foam cells. Arterioscler Thromb Vasc Biol. 26:1871–1876. 2006. View Article : Google Scholar : PubMed/NCBI | |
Freigang S, Ampenberger F, Weiss A, Kanneganti TD, Iwakura Y, Hersberger M and Kopf M: Fatty acid-induced mitochondrial uncoupling elicits inflammasome-independent IL-1α and sterile vascular inflammation in atherosclerosis. Nat Immunol. 14:1045–1053. 2013. View Article : Google Scholar : PubMed/NCBI | |
Rath M, Müller I, Kropf P, Closs EI and Munder M: Metabolism via Arginase or nitric oxide synthase: Two competing arginine pathways in macrophages. Front Immunol. 5:5322014. View Article : Google Scholar : PubMed/NCBI | |
Napoli C, de Nigris F, Williams-Ignarro S, Pignalosa O, Sica V and Ignarro LJ: Nitric oxide and atherosclerosis: An update. Nitric Oxide. 15:265–279. 2006. View Article : Google Scholar : PubMed/NCBI | |
Luoma JS and Yla-Herttuala S: Expression of inducible nitric oxide synthase in macrophages and smooth muscle cells in various types of human atherosclerotic lesions. Virchows Arch. 434:561–568. 1999. View Article : Google Scholar : PubMed/NCBI | |
Esaki T, Hayashi T, Muto E, Yamada K, Kuzuya M and Iguchi A: Expression of inducible nitric oxide synthase in T lymphocytes and macrophages of cholesterol-fed rabbits. Atherosclerosis. 128:39–46. 1997. View Article : Google Scholar : PubMed/NCBI | |
Rom O, Grajeda-Iglesias C, Najjar M, Abu-Saleh N, Volkova N, Dar DE, Hayek T and Aviram M: Atherogenicity of amino acids in the lipid-laden macrophage model system in vitro and in atherosclerotic mice: A key role for triglyceride metabolism. J Nutr Biochem. 45:24–38. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wallace C and Keast D: Glutamine and macrophage function. Metabolism. 41:1016–1020. 1992. View Article : Google Scholar : PubMed/NCBI | |
Kuznetsova T, Prange KHM, Glass CK and de Winther MPJ: Transcriptional and epigenetic regulation of macrophages in atherosclerosis. Nat Rev Cardiol. 17:216–228. 2020. View Article : Google Scholar : PubMed/NCBI | |
Conrath U: Molecular aspects of defence priming. Trends Plant Sci. 16:524–531. 2011. View Article : Google Scholar : PubMed/NCBI | |
van der Heijden C, Noz MP, Joosten LAB, Netea MG, Riksen NP and Keating ST: Epigenetics and trained immunity. Antioxid Redox Signal. 29:1023–1040. 2018. View Article : Google Scholar : PubMed/NCBI | |
Heintzman ND, Hon GC, Hawkins RD, Kheradpour P, Stark A, Harp LF, Ye Z, Lee LK, Stuart RK, Ching CW, et al: Histone modifications at human enhancers reflect global cell-type-specific gene expression. Nature. 459:108–112. 2009. View Article : Google Scholar : PubMed/NCBI | |
Rada-Iglesias A, Bajpai R, Swigut T, Brugmann SA, Flynn RA and Wysocka J: A unique chromatin signature uncovers early developmental enhancers in humans. Nature. 470:279–283. 2011. View Article : Google Scholar : PubMed/NCBI | |
Ostuni R, Piccolo V, Barozzi I, Polletti S, Termanini A, Bonifacio S, Curina A, Prosperini E, Ghisletti S and Natoli G: Latent enhancers activated by stimulation in differentiated cells. Cell. 152:157–171. 2013. View Article : Google Scholar : PubMed/NCBI | |
Vento-Tormo R, Company C, Rodríguez-Ubreva J, de la Rica L, Urquiza JM, Javierre BM, Sabarinathan R, Luque A, Esteller M, Aran JM, et al: IL-4 orchestrates STAT6-mediated DNA demethylation leading to dendritic cell differentiation. Genome Biol. 17:42016. View Article : Google Scholar : PubMed/NCBI | |
Dekkers KF, Neele AE, Jukema JW, Heijmans BT and de Winther MPJ: Human monocyte-to-macrophage differentiation involves highly localized gain and loss of DNA methylation at transcription factor binding sites. Epigenetics Chromatin. 12:342019. View Article : Google Scholar : PubMed/NCBI | |
Novakovic B, Habibi E, Wang SY, Arts RJW, Davar R, Megchelenbrink W, Kim B, Kuznetsova T, Kox M, Zwaag J, et al: β-glucan reverses the epigenetic state of LPS-induced immunological tolerance. Cell. 167:1354–1368. e142016. View Article : Google Scholar : PubMed/NCBI | |
Zaret KS and Mango SE: Pioneer transcription factors, chromatin dynamics, and cell fate control. Curr Opin Genet Dev. 37:76–81. 2016. View Article : Google Scholar : PubMed/NCBI | |
Glass CK and Natoli G: Molecular control of activation and priming in macrophages. Nat Immunol. 17:26–33. 2016. View Article : Google Scholar : PubMed/NCBI | |
Schmidt SV, Krebs W, Ulas T, Xue J, Baßler K, Günther P, Hardt AL, Schultze H, Sander J, Klee K, et al: The transcriptional regulator network of human inflammatory macrophages is defined by open chromatin. Cell Res. 26:151–170. 2016. View Article : Google Scholar : PubMed/NCBI | |
Liu T, Zhang L, Joo D and Sun SC: NF-κB signaling in inflammation. Signal Transduct Target Ther. 2:170232017. View Article : Google Scholar : PubMed/NCBI | |
Heinz S, Benner C, Spann N, Bertolino E, Lin YC, Laslo P, Cheng JX, Murre C, Singh H and Glass CK: Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol Cell. 38:576–589. 2010. View Article : Google Scholar : PubMed/NCBI | |
Ghisletti S, Barozzi I, Mietton F, Polletti S, De Santa F, Venturini E, Gregory L, Lonie L, Chew A, Wei CL, et al: Identification and characterization of enhancers controlling the inflammatory gene expression program in macrophages. Immunity. 32:317–328. 2010. View Article : Google Scholar : PubMed/NCBI | |
Fanucchi S, Fok ET, Dalla E, Shibayama Y, Börner K, Chang EY, Stoychev S, Imakaev M, Grimm D, Wang KC, et al: Immune genes are primed for robust transcription by proximal long noncoding RNAs located in nuclear compartments. Nat Genet. 51:138–150. 2019. View Article : Google Scholar : PubMed/NCBI | |
Fanucchi S, Domínguez-Andrés J, Joosten LAB, Netea MG and Mhlanga MM: The intersection of epigenetics and metabolism in trained immunity. Immunity. 54:32–43. 2021. View Article : Google Scholar : PubMed/NCBI | |
Colin S, Chinetti-Gbaguidi G and Staels B: Macrophage phenotypes in atherosclerosis. Immunol Rev. 262:153–166. 2014. View Article : Google Scholar : PubMed/NCBI | |
Cochain C, Vafadarnejad E, Arampatzi P, Pelisek J, Winkels H, Ley K, Wolf D, Saliba AE and Zernecke A: Single-cell RNA-seq reveals the transcriptional landscape and heterogeneity of aortic macrophages in murine atherosclerosis. Circ Res. 122:1661–1674. 2018. View Article : Google Scholar : PubMed/NCBI | |
Piccolo V, Curina A, Genua M, Ghisletti S, Simonatto M, Sabò A, Amati B, Ostuni R and Natoli G: Opposing macrophage polarization programs show extensive epigenomic and transcriptional cross-talk. Nat Immunol. 18:530–540. 2017. View Article : Google Scholar : PubMed/NCBI | |
Czimmerer Z, Daniel B, Horvath A, Rückerl D, Nagy G, Kiss M, Peloquin M, Budai MM, Cuaranta-Monroy I, Simandi Z, et al: The transcription factor STAT6 mediates direct repression of inflammatory enhancers and limits activation of alternatively polarized macrophages. Immunity. 48:75–90. e62018. View Article : Google Scholar : PubMed/NCBI | |
Neele AE, Van den Bossche J, Hoeksema MA and de Winther MP: Epigenetic pathways in macrophages emerge as novel targets in atherosclerosis. Eur J Pharmacol. 763:79–89. 2015. View Article : Google Scholar : PubMed/NCBI | |
Mullican SE, Gaddis CA, Alenghat T, Nair MG, Giacomin PR, Everett LJ, Feng D, Steger DJ, Schug J, Artis D and Lazar MA: Histone deacetylase 3 is an epigenomic brake in macrophage alternative activation. Genes Dev. 25:2480–2488. 2011. View Article : Google Scholar : PubMed/NCBI | |
Hoeksema MA, Gijbels MJ, Van den Bossche J, van der Velden S, Sijm A, Neele AE, Seijkens T, Stöger JL, Meiler S, Boshuizen MC, et al: Targeting macrophage Histone deacetylase 3 stabilizes atherosclerotic lesions. EMBO Mol Med. 6:1124–1132. 2014. View Article : Google Scholar : PubMed/NCBI | |
Chistiakov DA, Kashirskikh DA, Khotina VA, Grechko AV and Orekhov AN: Immune-inflammatory responses in atherosclerosis: The role of myeloid cells. J Clin Med. 8:17982019. View Article : Google Scholar : PubMed/NCBI |