|
1
|
Lozano R, Naghavi M, Foreman K, Lim S,
Shibuya K, Aboyans V, Abraham J, Adair T, Aggarwal R, Ahn SY, et
al: Global and regional mortality from 235 causes of death for 20
age groups in 1990 and 2010: A systematic analysis for the global
burden of disease study 2010. Lancet. 380:2095–2128. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Chiu CY and Miller SA: Clinical
metagenomics. Nat Rev Genet. 20:341–355. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Li N, Cai Q, Miao Q, Song Z, Fang Y and Hu
B: High-throughput metagenomics for identification of pathogens in
the clinical settings. Small Methods. 5:20007922021. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Wilson MR, Naccache SN, Samayoa E, Biagtan
M, Bashir H, Yu G, Salamat SM, Somasekar S, Federman S, Miller S,
et al: Actionable diagnosis of neuroleptospirosis by
next-generation sequencing. N Engl J Med. 370:2408–2417. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Blauwkamp TA, Thair S, Rosen MJ, Blair L,
Lindner MS, Vilfan ID, Kawli T, Christians FC, Venkatasubrahmanyam
S, Wall GD, et al: Analytical and clinical validation of a
microbial cell-free DNA sequencing test for infectious disease. Nat
Microbiol. 4:663–674. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Wilson MR, Sample HA, Zorn KC, Arevalo S,
Yu G, Neuhaus J, Federman S, Stryke D, Briggs B, Langelier C, et
al: Clinical metagenomic sequencing for diagnosis of meningitis and
encephalitis. N Engl J Med. 380:2327–2340. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Ramachandran PS and Wilson MR:
Metagenomics for neurological infections-expanding our imagination.
Nat Rev Neurol. 16:547–556. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Han D, Li R, Shi J, Tan P, Zhang R and Li
J: Liquid biopsy for infectious diseases: A focus on microbial
cell-free DNA sequencing. Theranostics. 10:5501–5513. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Zheng Y, Qiu X, Wang T and Zhang J: The
Diagnostic value of metagenomic next-generation sequencing in lower
respiratory tract infection. Front Cell Infect Microbiol.
11:6947562021. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Zhu N, Zhang D, Wang W, Li X, Yang B, Song
J, Zhao X, Huang B, Shi W, Lu R, et al: A novel coronavirus from
patients with pneumonia in China, 2019. N Engl J Med. 382:727–733.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Gu L, Liu W, Ru M, Lin J, Yu G, Ye J, Zhu
ZA, Liu Y, Chen J, Lai G and Wen W: The application of metagenomic
next-generation sequencing in diagnosing Chlamydia psittaci
pneumonia: A report of five cases. BMC Pulm Med. 20:652020.
View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Miao Q, Ma Y, Wang Q, Pan J, Zhang Y, Jin
W, Yao Y, Su Y, Huang Y, Wang M, et al: Microbiological diagnostic
performance of metagenomic next-generation sequencing when applied
to clinical practice. Clin Infect Dis. 67 (Suppl 2):S231–S240.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Shi CL, Han P, Tang PJ, Chen MM, Ye ZJ, Wu
MY, Shen J, Wu HY, Tan ZQ, Yu X, et al: Clinical metagenomic
sequencing for diagnosis of pulmonary tuberculosis. J Infect.
81:567–574. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Zhang Y, Cui P, Zhang HC, Wu HL, Ye MZ,
Zhu YM, Ai JW and Zhang WH: Clinical application and evaluation of
metagenomic next-generation sequencing in suspected adult central
nervous system infection. J Transl Med. 18:1992020. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Zhou Y, Xu Y, Gong Y, Zhang Y, Lu Y, Wang
C, Yao R, Li P, Guan Y, Wang J, et al: Clinical factors associated
with circulating tumor DNA (ctDNA) in primary breast cancer. Mol
Oncol. 13:1033–1046. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Ji XC, Zhou LF, Li CY, Shi YJ, Wu ML,
Zhang Y, Fei XF and Zhao G: Reduction of human DNA contamination in
clinical cerebrospinal fluid specimens improves the sensitivity of
metagenomic next-generation sequencing. J Mol Neurosci. 70:659–666.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Bal A, Pichon M, Picard C, Casalegno JS,
Valette M, Schuffenecker I, Billard L, Vallet S, Vilchez G, Cheynet
V, et al: Quality control implementation for universal
characterization of DNA and RNA viruses in clinical respiratory
samples using single metagenomic next-generation sequencing
workflow. BMC Infect Dis. 18:5372018. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Bowden R, Davies RW, Heger A, Pagnamenta
AT, de Cesare M, Oikkonen LE, Parkes D, Freeman C, Dhalla F, Patel
SY, et al: Sequencing of human genomes with nanopore technology.
Nat Commun. 10:18692019. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Gu W, Crawford ED, O'Donovan BD, Wilson
MR, Chow ED, Retallack H and DeRisi JL: Depletion of abundant
sequences by hybridization (DASH): Using Cas9 to remove unwanted
high-abundance species in sequencing libraries and molecular
counting applications. Genome Biol. 17:412016. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Gu W, Miller S and Chiu CY: clinical
metagenomic next-generation sequencing for pathogen detection. Annu
Rev Pathol. 14:319–338. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Wylie TN, Wylie KM, Herter BN and Storch
GA: Enhanced virome sequencing using targeted sequence capture.
Genome Res. 25:1910–1920. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Zhao N, Cao J, Xu J, Liu B, Liu B, Chen D,
Xia B, Chen L, Zhang W, Zhang Y, et al: Targeting RNA with next-
and third-generation sequencing improves pathogen identification in
clinical samples. Adv Sci (Weinh). 8:e21025932021. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Medicine CSoL: Expert consensus on the
standardized management of bioinformatics analysis for the
detection of pathogenic microorganisms in mNGS. Chin J Lab Med.
44:799–807. 2021.
|
|
24
|
Wang Q, Wu B, Yang D, Yang C, Jin Z, Cao J
and Feng J: Optimal specimen type for accurate diagnosis of
infectious peripheral pulmonary lesions by mNGS. BMC Pulm Med.
20:2682020. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Fang X, Mei Q, Fan X, Zhu C, Yang T, Zhang
L, Geng S and Pan A: Diagnostic value of metagenomic
next-generation sequencing for the detection of pathogens in
bronchoalveolar lavage fluid in ventilator-associated pneumonia
patients. Front Microbiol. 11:5997562020. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Mongkolrattanothai K, Naccache SN, Bender
JM, Samayoa E, Pham E, Yu G, Dien Bard J, Miller S, Aldrovandi G
and Chiu CY: Neurobrucellosis: Unexpected answer from metagenomic
next-generation sequencing. J Pediatric Infect Dis Soc. 6:393–398.
2017.PubMed/NCBI
|
|
27
|
Mason A, Foster D, Bradley P, Golubchik T,
Doumith M, Gordon NC, Pichon B, Iqbal Z, Staves P, Crook D, et al:
Accuracy of different bioinformatics methods in detecting
antibiotic resistance and virulence factors from staphylococcus
aureus whole-genome sequences. J Clin Microbiol. 56:e01815–17.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Singh RR: Target enrichment approaches for
next-generation sequencing applications in oncology. Diagnostics
(Basel). 12:15392022. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Xiao M, Liu X, Ji J, Li M, Li J, Yang L,
Sun W, Ren P, Yang G, Zhao J, et al: Multiple approaches for
massively parallel sequencing of SARS-CoV-2 genomes directly from
clinical samples. Genome Med. 12:572020. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Briese T, Kapoor A, Mishra N, Jain K,
Kumar A, Jabado OJ and Lipkin WI: Virome capture sequencing enables
sensitive viral diagnosis and comprehensive virome analysis. mBio.
6:e01491–15. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Bonsall D, Ansari MA, Ip C, Trebes A,
Brown A, Klenerman P, Buck D; STOP-HCV Consortium, ; Piazza P,
Barnes E and Bowden R: ve-SEQ: Robust, unbiased enrichment for
streamlined detection and whole-genome sequencing of HCV and other
highly diverse pathogens. F1000Res. 4:10622015. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Piantadosi A, Mukerji SS, Ye S, Leone MJ,
Freimark LM, Park D, Adams G, Lemieux J, Kanjilal S, Solomon IH, et
al: Enhanced virus detection and metagenomic sequencing in patients
with meningitis and encephalitis. mBio. 12:e01143212021. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Wang ZY, Li LL, Cao XL, Li P, Du J, Zou MJ
and Wang LL: Clinical application of amplification-based versus
amplification-free metagenomic next-generation sequencing test in
infectious diseases. Front Cell Infect Microbiol. 13:11381742023.
View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Zhang D, Zhang J, Du J, Zhou Y, Wu P, Liu
Z, Sun Z, Wang J, Ding W, Chen J, et al: Optimized sequencing
adaptors enable rapid and real-time metagenomic identification of
pathogens during runtime of sequencing. Clin Chem. 68:826–836.
2022. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Deng X, Achari A, Federman S, Yu G,
Somasekar S, Bártolo I, Yagi S, Mbala-Kingebeni P, Kapetshi J,
Ahuka-Mundeke S, et al: Metagenomic sequencing with spiked primer
enrichment for viral diagnostics and genomic surveillance. Nat
Microbiol. 5:443–454. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Miller S, Naccache SN, Samayoa E, Messacar
K, Arevalo S, Federman S, Stryke D, Pham E, Fung B, Bolosky WJ, et
al: Laboratory validation of a clinical metagenomic sequencing
assay for pathogen detection in cerebrospinal fluid. Genome Res.
29:831–842. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Kalantar KL, Carvalho T, de Bourcy CFA,
Dimitrov B, Dingle G, Egger R, Han J, Holmes OB, Juan YF, King R,
et al: IDseq-An open source cloud-based pipeline and analysis
service for metagenomic pathogen detection and monitoring.
Gigascience. 9:giaa1112020. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Nugen SR, Leonard B and Baeumner AJ:
Application of a unique server-based oligonucleotide probe
selection tool toward a novel biosensor for the detection of
Streptococcus pyogenes. Biosens Bioelectron. 22:2442–2448. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Siegwald L, Touzet H, Lemoine Y, Hot D,
Audebert C and Caboche S: Assessment of common and emerging
bioinformatics pipelines for targeted metagenomics. PLoS One.
12:e01695632017. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Simner PJ, Miller HB, Breitwieser FP,
Pinilla Monsalve G, Pardo CA, Salzberg SL, Sears CL, Thomas DL,
Eberhart CG and Carroll KC: Development and optimization of
metagenomic next-generation sequencing methods for cerebrospinal
fluid diagnostics. J Clin Microbiol. 56:e00472–18. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Gaston DC, Miller HB, Fissel JA, Jacobs E,
Gough E, Wu J, Klein EY, Carroll KC and Simner PJ: Evaluation of
metagenomic and targeted next-generation sequencing workflows for
detection of respiratory pathogens from bronchoalveolar lavage
fluid specimens. J Clin Microbiol. 60:e00526222022. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Gauduchon V, Chalabreysse L, Etienne J,
Célard M, Benito Y, Lepidi H, Thivolet-Béjui F and Vandenesch F:
Molecular diagnosis of infective endocarditis by PCR amplification
and direct sequencing of DNA from valve tissue. J Clin Microbiol.
41:763–766. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Marín M, Muñoz P, Sánchez M, Del Rosal M,
Alcalá L, Rodríguez-Créixems M and Bouza E; Group for the
Management of Infective Endocarditis of the Gregorio Marañón
Hospital (GAME), : Molecular diagnosis of infective endocarditis by
real-time broad-range polymerase chain reaction (PCR) and
sequencing directly from heart valve tissue. Medicine (Baltimore).
86:195–202. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Vondracek M, Sartipy U, Aufwerber E,
Julander I, Lindblom D and Westling K: 16S rDNA sequencing of valve
tissue improves microbiological diagnosis in surgically treated
patients with infective endocarditis. J Infect. 62:472–478. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Maneg D, Sponsel J, Müller I, Lohr B,
Penders J, Madlener K and Hunfeld KP: Advantages and limitations of
direct PCR amplification of bacterial 16S-rDNA from resected heart
tissue or swabs followed by direct sequencing for diagnosing
infective endocarditis: A retrospective analysis in the routine
clinical setting. Biomed Res Int. 2016:79238742016. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Peeters B, Herijgers P, Beuselinck K,
Verhaegen J, Peetermans WE, Herregods MC, Desmet S and Lagrou K:
Added diagnostic value and impact on antimicrobial therapy of 16S
rRNA PCR and amplicon sequencing on resected heart valves in
infective endocarditis: A prospective cohort study. Clin Microbiol
Infect. 23:888.e1–888.e5. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Kim MS, Chang J, Kim MN, Choi SH, Jung SH,
Lee JW and Sung H: Utility of a direct 16S rDNA PCR and sequencing
for etiological diagnosis of infective endocarditis. Ann Lab Med.
37:505–510. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Santibáñez P, García-García C, Portillo A,
Santibáñez S, García-Álvarez L, de Toro M and Oteo JA: What does
16S rRNA gene-targeted next generation sequencing contribute to the
study of infective endocarditis in heart-valve tissue? Pathogens.
11:342021. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Flurin L, Wolf MJ, Fisher CR, Cano
Cevallos EJ, Vaillant JJ, Pritt BS, DeSimone DC and Patel R:
Pathogen detection in infective endocarditis using targeted
metagenomics on whole blood and plasma: A prospective pilot study.
J Clin Microbiol. 60:e00621222022. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Hong HL, Flurin L, Greenwood-Quaintance
KE, Wolf MJ, Pritt BS, Norgan AP and Patel R: 16S rRNA gene
PCR/sequencing of heart valves for diagnosis of infective
endocarditis in routine clinical practice. J Clin Microbiol.
61:e00341232023. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Poulsen SH, Søgaard KK, Fuursted K and
Nielsen HL: Evaluating the diagnostic accuracy and clinical utility
of 16S and 18S rRNA gene targeted next-generation sequencing based
on five years of clinical experience. Infect Dis (Lond).
55:767–775. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Hong HL, Flurin L, Thoendel MJ, Wolf MJ,
Abdel MP, Greenwood-Quaintance KE and Patel R: Targeted versus
shotgun metagenomic sequencing-based detection of microorganisms in
sonicate fluid for periprosthetic joint infection diagnosis. Clin
Infect Dis. 76:e1456–e1462. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Fida M, Wolf MJ, Hamdi A, Vijayvargiya P,
Esquer Garrigos Z, Khalil S, Greenwood-Quaintance KE, Thoendel MJ
and Patel R: Detection of pathogenic bacteria from septic patients
using 16s ribosomal RNA gene-targeted metagenomic sequencing. Clin
Infect Dis. 73:1165–1172. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Okuda KI, Yoshii Y, Yamada S, Chiba A,
Hironaka I, Hori S, Yanaga K and Mizunoe Y: Detection of bacterial
DNA from central venous catheter removed from patients by next
generation sequencing: A preliminary clinical study. Ann Clin
Microbiol Antimicrob. 17:442018. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Flurin L, Wolf MJ, Greenwood-Quaintance
KE, Sanchez-Sotelo J and Patel R: Targeted next generation
sequencing for elbow periprosthetic joint infection diagnosis.
Diagn Microbiol Infect Dis. 101:1154482021. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Miller RJ, Chow B, Pillai D and Church D:
Development and evaluation of a novel fast broad-range 16S
ribosomal DNA PCR and sequencing assay for diagnosis of bacterial
infective endocarditis: Multi-year experience in a large Canadian
healthcare zone and a literature review. BMC Infect Dis.
16:1462016. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Mularoni A, Mikulska M, Barbera F,
Graziano E, Medaglia AA, Di Carlo D, Monaco F, Bellavia D, Cascio
A, Raffa G, et al: Molecular analysis with 16S rRNA PCR/sanger
sequencing and molecular antibiogram performed on DNA extracted
from valve improve diagnosis and targeted therapy of infective
endocarditis: A prospective study. Clin Infect Dis. 76:e1484–e1491.
2023. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Flurin L, Hemenway JJ, Fisher CR, Vaillant
JJ, Azad M, Wolf MJ, Greenwood-Quaintance KE, Abdel MP and Patel R:
Clinical use of a 16S ribosomal RNA gene-based sanger and/or next
generation sequencing assay to test preoperative synovial fluid for
periprosthetic joint infection diagnosis. mBio. 13:e01322222022.
View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Sabat AJ, van Zanten E, Akkerboom V,
Wisselink G, van Slochteren K, de Boer RF, Hendrix R, Friedrich AW,
Rossen JWA and Kooistra-Smid AMDM: Targeted next-generation
sequencing of the 16S-23S rRNA region for culture-independent
bacterial identification-increased discrimination of closely
related species. Sci Rep. 7:34342017. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Flurin L, Wolf MJ, Mutchler MM, Daniels
ML, Wengenack NL and Patel R: Targeted metagenomic sequencing-based
approach applied to 2146 tissue and body fluid samples in routine
clinical practice. Clin Infect Dis. 75:1800–1808. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Cheng LL, Li SY and Zhong NS: New
characteristics of COVID-19 caused by the Omicron variant in
Guangzhou. Zhonghua Jie He He Hu Xi Za Zhi. 46:441–443. 2023.(In
Chinese). PubMed/NCBI
|
|
62
|
Ramos N, Panzera Y, Frabasile S, Tomás G,
Calleros L, Marandino A, Goñi N, Techera C, Grecco S, Fuques E, et
al: A multiplex-NGS approach to identifying respiratory RNA viruses
during the COVID-19 pandemic. Arch Virol. 168:872023. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Danilenko AV, Kolosova NP, Shvalov AN,
Ilyicheva TN, Svyatchenko SV, Durymanov AG, Bulanovich JA,
Goncharova NI, Susloparov IM, Marchenko VY, et al: Evaluation of
HA-D222G/N polymorphism using targeted NGS analysis in A(H1N1)pdm09
influenza virus in Russia in 2018–2019. PLoS One. 16:e02510192021.
View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Chao L, Li J, Zhang Y, Pu H and Yan X:
Application of next generation sequencing-based rapid detection
platform for microbiological diagnosis and drug resistance
prediction in acute lower respiratory infection. Ann Transl Med.
8:16442020. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Lin R, Xing Z, Liu X, Chai Q, Xin Z, Huang
M, Zhu C, Luan C, Gao H, Du Y, et al: Performance of targeted
next-generation sequencing in the detection of respiratory
pathogens and antimicrobial resistance genes for children. J Med
Microbiol. 72:2023. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Ip M, Liyanapathirana V, Ang I, Fung KS,
Ng TK, Zhou H and Tsang DN: Direct detection and prediction of all
pneumococcal serogroups by target enrichment-based next-generation
sequencing. J Clin Microbiol. 52:4244–4252. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Li F, Wang Y, Zhang Y, Shi P, Cao L, Su L,
Zhu Q, Wang L, Lu R, Tan W and Shen J: Etiology of severe pneumonia
in children in alveolar lavage fluid using a high-throughput gene
targeted amplicon sequencing assay. Front Pediatr. 9:6591642021.
View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Dai Y, Sheng K and Hu L: Diagnostic
efficacy of targeted high-throughput sequencing for lower
respiratory infection in preterm infants. Am J Transl Res.
14:8204–8214. 2022.PubMed/NCBI
|
|
69
|
Li S, Tong J, Li H, Mao C, Shen W, Lei Y
and Hu P: L. pneumophila infection diagnosed by tNGS in a
lady with lymphadenopathy. Infect Drug Resist. 16:4435–4442. 2023.
View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Zhang Y, Jiang X, Ye W and Sun J: Clinical
features and outcome of eight patients with Chlamydia
psittaci pneumonia diagnosed by targeted next generation
sequencing. Clin Respir J. 17:915–930. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Du ZM and Chen P: Co-infection of
Chlamydia psittaci and Tropheryma whipplei: A case
report. World J Clin Cases. 11:7144–7149. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Ren HQ, Zhao Q, Jiang J, Yang W, Fu AS and
Ge YL: Acute heart failure due to pulmonary Aspergillus
fumigatus and Cryptococcus neoformans infection
associated with COVID-19. Clin Lab; 69. 2023
|
|
73
|
Li S, Tong J, Liu Y, Shen W and Hu P:
Targeted next generation sequencing is comparable with metagenomic
next generation sequencing in adults with pneumonia for pathogenic
microorganism detection. J Infect. 85:e127–e129. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Kunasol C, Dondorp AM, Batty EM, Nakhonsri
V, Sinjanakhom P, Day NPJ and Imwong M: Comparative analysis of
targeted next-generation sequencing for Plasmodium falciparum drug
resistance markers. Sci Rep. 12:55632022. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Mensah BA, Aydemir O, Myers-Hansen JL,
Opoku M, Hathaway NJ, Marsh PW, Anto F, Bailey J, Abuaku B and
Ghansah A: Antimalarial drug resistance profiling of plasmodium
falciparum infections in ghana using molecular inversion probes and
next-generation sequencing. Antimicrob Agents Chemother.
64:e01423–19. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Deng X, Achari A, Federman S, Yu G,
Somasekar S, Bártolo I, Yagi S, Mbala-Kingebeni P, Kapetshi J,
Ahuka-Mundeke S, et al: Author correction: Metagenomic sequencing
with spiked primer enrichment for viral diagnostics and genomic
surveillance. Nat Microbiol. 5:5252020. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Boltz VF, Rausch J, Shao W, Hattori J,
Luke B, Maldarelli F, Mellors JW, Kearney MF and Coffin JM:
Ultrasensitive single-genome sequencing: accurate, targeted, next
generation sequencing of HIV-1 RNA. Retrovirology. 13:872016.
View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Li Q, Huang W, Zhang S, Zheng Y, Lv Q,
Kong D, Zhang L, Zhang Y, Zhao Z, Wang M, et al: Target-enriched
sequencing enables accurate identification of bloodstream
infections in whole blood. J Microbiol Methods. 192:1063912022.
View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Jiang J, Lv M, Yang K, Zhao G and Fu Y: A
case report of diagnosis and dynamic monitoring of Listeria
monocytogenes meningitis with NGS. Open Life Sci.
18:202207382023. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Chen W, Wu Y and Zhang Y: Next-generation
sequencing technology combined with multiplex polymerase chain
reaction as a powerful detection and semiquantitative method for
herpes simplex virus type 1 in adult encephalitis: A case report.
Front Med (Lausanne). 9:9053502022. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Yang HH, He XJ, Nie JM, Guan SS, Chen YK
and Liu M: Central nervous system aspergillosis misdiagnosed as
Toxoplasma gondii encephalitis in a patient with AIDS: A
case report. AIDS Res Ther. 19:402022. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Gao D, Hu Y, Jiang X, Pu H, Guo Z and
Zhang Y: Applying the pathogen-targeted next-generation sequencing
method to pathogen identification in cerebrospinal fluid. Ann
Transl Med. 9:16752021. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
McGill F, Tokarz R, Thomson EC, Filipe A,
Sameroff S, Jain K, Bhuva N, Ashraf S, Lipkin WI, Corless C, et al:
Viral capture sequencing detects unexpected viruses in the
cerebrospinal fluid of adults with meningitis. J Infect.
84:499–510. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Li J, Zhang L, Yang X, Wang P, Feng L, Guo
E and Chen Y: Diagnostic significance of targeted next-generation
sequencing in central nervous system infections in neurosurgery of
pediatrics. Infect Drug Resist. 16:2227–2236. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Huang C, Huang Y, Wang Z, Lin Y, Li Y,
Chen Y, Chen X, Zhang C, Li W, Zhang W, et al: Multiplex PCR-based
next generation sequencing as a novel, targeted and accurate
molecular approach for periprosthetic joint infection diagnosis.
Front Microbiol. 14:11813482023. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Hulten KG, Genta RM, Kalfus IN, Zhou Y,
Zhang H and Graham DY: Comparison of culture with antibiogram to
next-generation sequencing using bacterial isolates and
formalin-fixed, paraffin-embedded gastric biopsies.
Gastroenterology. 161:1433–1442.e2. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Ferreira I, Lepuschitz S, Beisken S, Fiume
G, Mrazek K, Frank BJH, Huber S, Knoll MA, von Haeseler A, Materna
A, et al: Culture-free detection of antibiotic resistance markers
from native patient samples by hybridization capture sequencing.
Microorganisms. 9:16722021. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Jouet A, Braet SM, Gaudin C, Bisch G,
Vasconcellos S, Epaminondas Nicacio de Oliveira do Livramento RE,
Prado Palacios YY, Fontes AB, Lucena N, Rosa P, et al: Hi-plex deep
amplicon sequencing for identification, high-resolution genotyping
and multidrug resistance prediction of Mycobacterium leprae
directly from patient biopsies by using deeplex Myc-Lep.
EBioMedicine. 93:1046492023. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Jouet A, Gaudin C, Badalato N,
Allix-Béguec C, Duthoy S, Ferré A, Diels M, Laurent Y, Contreras S,
Feuerriegel S, et al: Deep amplicon sequencing for culture-free
prediction of susceptibility or resistance to 13 anti-tuberculous
drugs. Eur Respir J. 57:20023382021. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Cabibbe AM, Spitaleri A, Battaglia S,
Colman RE, Suresh A, Uplekar S, Rodwell TC and Cirillo DM:
Application of targeted next-generation sequencing assay on a
portable sequencing platform for culture-free detection of
drug-resistant tuberculosis from clinical samples. J Clin
Microbiol. 58:e00632–20. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Mesfin AB, Araia ZZ, Beyene HN, Mebrahtu
AH, Suud NN, Berhane YM, Hailu DT, Kassahun AZ, Auguet OT, Dean AS,
et al: First molecular-based anti-TB drug resistance survey in
Eritrea. Int J Tuberc Lung Dis. 25:43–51. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Mansoor H, Hirani N, Chavan V, Das M,
Sharma J, Bharati M, Oswal V, Iyer A, Morales M, Joshi A, et al:
Clinical utility of target-based next-generation sequencing for
drug-resistant TB. Int J Tuberc Lung Dis. 27:41–48. 2023.
View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Sibandze DB, Kay A, Dreyer V, Sikhondze W,
Dlamini Q, DiNardo A, Mtetwa G, Lukhele B, Vambe D, Lange C, et al:
Rapid molecular diagnostics of tuberculosis resistance by targeted
stool sequencing. Genome Med. 14:522022. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Kambli P, Ajbani K, Kazi M, Sadani M, Naik
S, Shetty A, Tornheim JA, Singh H and Rodrigues C: Targeted next
generation sequencing directly from sputum for comprehensive
genetic information on drug resistant Mycobacterium
tuberculosis. Tuberculosis (Edinb). 127:1020512021. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Wu X, Liang R, Xiao Y, Liu H, Zhang Y,
Jiang Y, Liu M, Tang J, Wang W, Li W, et al: Application of
targeted next generation sequencing technology in the diagnosis of
Mycobacterium tuberculosis and first line drugs resistance
directly from cell-free DNA of bronchoalveolar lavage fluid. J
Infect. 86:399–401. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Colman RE, Anderson J, Lemmer D, Lehmkuhl
E, Georghiou SB, Heaton H, Wiggins K, Gillece JD, Schupp JM,
Catanzaro DG, et al: Rapid drug susceptibility testing of
drug-resistant Mycobacterium tuberculosis isolates directly
from clinical samples by use of amplicon sequencing: A
proof-of-concept study. J Clin Microbiol. 54:2058–2067. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Iyer A, Ndlovu Z, Sharma J, Mansoor H,
Bharati M, Kolan S, Morales M, Das M, Issakidis P, Ferlazzo G, et
al: Operationa-lising targeted next-generation sequencing for
routine diagnosis of drug-resistant TB. Public Health Action.
13:43–49. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Leung KS, Tam KK, Ng TT, Lao HY, Shek RC,
Ma OCK, Yu SH, Chen JX, Han Q, Siu GK and Yam WC: Clinical utility
of target amplicon sequencing test for rapid diagnosis of
drug-resistant Mycobacterium tuberculosis from respiratory
specimens. Front Microbiol. 13:9744282022. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Comín J, Viñuelas J, Lafoz C, Cebollada A,
Ibarz D, Iglesias MJ and Samper S: Rapid identification of lineage
and drug resistance in clinical samples of Mycobacterium
tuberculosis. Microorganisms. 11:14672023. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Zhang G, Zhang H, Zhang Y, Hu X, Tang M
and Gao Q: Targeted next-generation sequencing technology showed
great potential in identifying spinal tuberculosis and predicting
the drug resistance. J Infect. 87:e110–e112. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Murphy SG, Smith C, Lapierre P, Shea J,
Patel K, Halse TA, Dickinson M, Escuyer V, Rowlinson MC and Musser
KA: Direct detection of drug-resistant Mycobacterium
tuberculosis using targeted next generation sequencing. Front
Public Health. 11:12060562023. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Song J, Du W, Liu Z, Che J, Li K and Che
N: Application of amplicon-based targeted NGS technology for
diagnosis of drug-resistant tuberculosis using FFPE specimens.
Microbiol Spectr. 10:e01358212022. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Wilson MR, O'Donovan BD, Gelfand JM,
Sample HA, Chow FC, Betjemann JP, Shah MP, Richie MB, Gorman MP,
Hajj-Ali RA, et al: Chronic meningitis investigated via metagenomic
next-generation sequencing. JAMA Neurol. 75:947–955. 2018.
View Article : Google Scholar : PubMed/NCBI
|