|
1
|
Migliore L, Migheli F, Spisni R and
Coppedè F: Genetics, cytogenetics, and epigenetics of colorectal
cancer. J Biomed Biotechnol. 2011:7923622011.PubMed/NCBI
|
|
2
|
Araghi M, Soerjomataram I, Bardot A,
Ferlay J, Cabasag CJ, Morrison DS, De P, Tervonen H, Walsh PM,
Bucher O, et al: Changes in colorectal cancer incidence in seven
high-income countries: A population-based study. Lancet
Gastroenterol Hepatol. 4:511–518. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Reilly NM, Novara L, Di Nicolantonio F and
Bardelli A: Exploiting DNA repair defects in colorectal cancer. Mol
Oncol. 13:681–700. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Liebl MC and Hofmann TG: The role of p53
signaling in colorectal cancer. Cancers (Basel). 13:21252021.
View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Bose S, Saha S, Goswami H, Shanmugam G and
Sarkar K: Involvement of CCCTC-binding factor in epigenetic
regulation of cancer. Mol Biol Rep. 50:10383–10398. 2023.
View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Jamai D, Gargouri R, Selmi B and Khabir A:
ERCC1 and MGMT methylation as a predictive marker of relapse and
FOLFOX response in colorectal cancer patients from South Tunisia.
Genes (Basel). 14:14672023. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Okada Y, Peng F, Perea J, Corchete L,
Bujanda L, Li W and Goel A: Genome-wide methylation profiling
identifies a novel gene signature for patients with synchronous
colorectal cancer. Br J Cancer. 128:112–120. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Okano M, Bell DW, Haber DA and Li E: DNA
methyltransferases Dnmt3a and Dnmt3b are essential for de novo
methylation and mammalian development. Cell. 99:247–257. 1999.
View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Zhai P, Zhang H, Li Q, Yang M, Guo Y and
Xing C: DNMT1-mediated NR3C1 DNA methylation enables transcription
activation of connexin40 and augments angiogenesis during
colorectal cancer progression. Gene. 892:1478872024. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Christman JK, Sheikhnejad G, Dizik M,
Abileah S and Wainfan E: Reversibility of changes in nucleic acid
methylation and gene expression induced in rat liver by severe
dietary methyl deficiency. Carcinogenesis. 14:551–557. 1993.
View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Goll MG, Kirpekar F, Maggert KA, Yoder JA,
Hsieh CL, Zhang X, Golic KG, Jacobsen SE and Bestor TH: Methylation
of tRNAAsp by the DNA methyltransferase homolog Dnmt2. Science.
311:395–398. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Smith ZD and Meissner A: DNA methylation:
Roles in mammalian development. Nat Rev Genet. 14:204–220. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Cho HY, Wang X, Campbell MR, Panduri V,
Coviello S, Caballero MT, Bennett BD, Kleeberger SR, Polack FP,
Ofman G and Bell DA: Prospective epigenome and transcriptome
analyses of cord and peripheral blood from preterm infants at risk
of bronchopulmonary dysplasia. Sci Rep. 13:122622023. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Guinney J, Dienstmann R, Wang X, de
Reyniès A, Schlicker A, Soneson C, Marisa L, Roepman P, Nyamundanda
G, Angelino P, et al: The consensus molecular subtypes of
colorectal cancer. Nat Med. 21:1350–1356. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Powell SM, Zilz N, Beazer-Barclay Y, Bryan
TM, Hamilton SR, Thibodeau SN, Vogelstein B and Kinzler KW: APC
mutations occur early during colorectal tumorigenesis. Nature.
359:235–237. 1992. View
Article : Google Scholar : PubMed/NCBI
|
|
16
|
Cancer Genome Atlas Network, .
Comprehensive molecular characterization of human colon and rectal
cancer. Nature. 487:330–337. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Lin CY, Shen MY, Chen WTL and Yang CA:
Evaluation of the prognostic value of low-frequency KRAS mutation
detection in circulating tumor DNA of patients with metastatic
colorectal cancer. J Pers Med. 13:10512023. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Rajagopalan H, Bardelli A, Lengauer C,
Kinzler KW, Vogelstein B and Velculescu VE: Tumorigenesis: RAF/RAS
oncogenes and mismatch-repair status. Nature. 418:9342002.
View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Tsujii M, Kawano S and DuBois RN:
Cyclooxygenase-2 expression in human colon cancer cells increases
metastatic potential. Proc Natl Acad Sci USA. 94:3336–3340. 1997.
View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Hidalgo-Estévez AM, Stamatakis K,
Jiménez-Martínez M, López-Pérez R and Fresno M: Cyclooxygenase
2-regulated genes an alternative avenue to the development of new
therapeutic drugs for colorectal cancer. Front Pharmacol.
11:5332020. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Samowitz WS, Slattery ML, Sweeney C,
Herrick J, Wolff RK and Albertsen H: APC mutations and other
genetic and epigenetic changes in colon cancer. Mol Cancer Res.
5:165–170. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Pruitt K and Der CJ: Ras and Rho
regulation of the cell cycle and oncogenesis. Cancer Lett.
171:1–10. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Tozaki Y, Aoki H, Kato R, Toriuchi K,
Arame S, Inoue Y, Hayashi H, Kubota E, Kataoka H and Aoyama M: The
combination of ATM and Chk1 inhibitors induces synthetic lethality
in colorectal cancer cells. Cancers (Basel). 15:7352023. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Lai WL, Lee SC, Chang KF, Huang XF, Li CY,
Lee CJ, Wu CY, Hsu HJ and Tsai NM: Juniperus communis extract
induces cell cycle arrest and apoptosis of colorectal
adenocarcinoma in vitro and in vivo. Braz J Med Biol Res.
54:e108912021. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Zhou Y, Dai W, Wang H, Pan H and Wang Q:
Long non-coding RNA CASP5 promotes the malignant phenotypes of
human glioblastoma multiforme. Biochem Biophys Res Commun.
500:966–972. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Gönenc II, Wolff A, Schmidt J, Zibat A,
Müller C, Cyganek L, Argyriou L, Räschle M, Yigit G and Wollnik B:
Single-cell transcription profiles in Bloom syndrome patients link
BLM deficiency with altered condensin complex expression
signatures. Hum Mol Genet. 31:2185–2193. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Bader S, Walker M, Hendrich B, Bird A,
Bird C, Hooper M and Wyllie A: Somatic frameshift mutations in the
MBD4 gene of sporadic colon cancers with mismatch repair
deficiency. Oncogene. 18:8044–8047. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
De Palma FDE, D'Argenio V, Pol J, Kroemer
G, Maiuri MC and Salvatore F: The molecular hallmarks of the
serrated pathway in colorectal cancer. Cancers (Basel).
11:10172019. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Rajamäki K, Taira A, Katainen R, Välimäki
N, Kuosmanen A, Plaketti RM, Seppälä TT, Ahtiainen M, Wirta EV,
Vartiainen E, et al: Genetic and epigenetic characteristics of
inflammatory bowel disease-associated colorectal cancer.
Gastroenterology. 161:592–607. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Pajares MJ, Palanca-Ballester C, Urtasun
R, Alemany-Cosme E, Lahoz A and Sandoval J: Methods for analysis of
specific DNA methylation status. Methods. 187:3–12. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Gaudet F, Hodgson JG, Eden A,
Jackson-Grusby L, Dausman J, Gray JW, Leonhardt H and Jaenisch R:
Induction of tumors in mice by genomic hypomethylation. Science.
300:489–492. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Takeuchi C, Yamashita S, Liu YY, Takeshima
H, Sasaki A, Fukuda M, Hashimoto T, Naka T, Ishizu K, Sekine S, et
al: Precancerous nature of intestinal metaplasia with increased
chance of conversion and accelerated DNA methylation. Gut.
73:255–267. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Oshima M, Murai N, Kargman S, Arguello M,
Luk P, Kwong E, Taketo MM and Evans JF: Chemoprevention of
intestinal polyposis in the Apcdelta716 mouse by rofecoxib, a
specific cyclooxygenase-2 inhibitor. Cancer Res. 61:1733–1740.
2001.PubMed/NCBI
|
|
34
|
Xu X, Nie J, Lu L, Du C, Meng F and Song
D: LINC00337 promotes tumor angiogenesis in colorectal cancer by
recruiting DNMT1, which suppresses the expression of CNN1. Cancer
Gene Ther. 28:1285–1297. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Hu YH, Ma S, Zhang XN, Zhang ZY, Zhu HF,
Ji YH, Li J, Qian XL and Wang YX: Hypermethylation of ADHFE1
promotes the proliferation of colorectal cancer cell via modulating
cell cycle progression. Onco Targets Ther. 12:8105–8115. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Suzuki H, Watkins DN, Jair KW, Schuebel
KE, Markowitz SD, Chen WD, Pretlow TP, Yang B, Akiyama Y, Van
Engeland M, et al: Epigenetic inactivation of SFRP genes allows
constitutive WNT signaling in colorectal cancer. Nat Genet.
36:417–422. 2004. View
Article : Google Scholar : PubMed/NCBI
|
|
37
|
Jafarpour S, Yazdi M, Nedaeinia R,
Vatandoost N, Ferns GA and Salehi R: Status of integrin subunit
alpha 4 promoter DNA methylation in colorectal cancer and other
malignant tumors: A systematic review and meta-analysis. Res Pharm
Sci. 18:231–243. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Wang Y, Zhou J, Zhang J, Cao H, Han F,
Zhang H and Xu E: The expression of ADAMTS14 is regulated by
promoter DNA methylation and is associated with poor prognosis in
colorectal cancer. Exp Cell Res. 410:1129532022. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Kim YI, Pogribny IP, Basnakian AG, Miller
JW, Selhub J, James SJ and Mason JB: Folate deficiency in rats
induces DNA strand breaks and hypomethylation within the p53 tumor
suppressor gene. Am J Clin Nutr. 65:46–52. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Kim YI, Christman JK, Fleet JC, Cravo ML,
Salomon RN, Smith D, Ordovas J, Selhub J and Mason JB: Moderate
folate deficiency does not cause global hypomethylation of hepatic
and colonic DNA or c-myc-specific hypomethylation of colonic DNA in
rats. Am J Clin Nutr. 61:1083–1090. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Marugame T, Tsuji E, Kiyohara C, Eguchi H,
Oda T, Shinchi K and Kono S: Relation of plasma folate and
methylenetetrahydrofolate reductase C677T polymorphism to
colorectal adenomas. Int J Epidemiol. 32:64–66. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Othman R, Mohtarrudin N, Ahmad Zubir NM,
Seow HF, Ngan KW and Osman M: HER3 overexpression and
hypomethylation in colorectal adenocarcinoma. Malays J Pathol.
44:67–74. 2022.PubMed/NCBI
|
|
43
|
Timar J and Kashofer K: Molecular
epidemiology and diagnostics of KRAS mutations in human cancer.
Cancer Metastasis Rev. 39:1029–1038. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Santini D, Loupakis F, Vincenzi B,
Floriani I, Stasi I, Canestrari E, Rulli E, Maltese PE, Andreoni F,
Masi G, et al: High concordance of KRAS status between primary
colorectal tumors and related metastatic sites: Implications for
clinical practice. Oncologist. 13:1270–1275. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Lièvre A, Bachet JB, Boige V, Cayre A, Le
Corre D, Buc E, Ychou M, Bouché O, Landi B, Louvet C, et al: KRAS
mutations as an independent prognostic factor in patients with
advanced colorectal cancer treated with cetuximab. J Clin Oncol.
26:374–379. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Wong CC, Xu J, Bian X, Wu JL, Kang W, Qian
Y, Li W, Chen H, Gou H, Liu D, et al: In colorectal cancer cells
with mutant KRAS, SLC25A22-mediated glutaminolysis reduces DNA
demethylation to increase wnt signaling, stemness, and drug
resistance. Gastroenterology. 159:2163–2180.e6. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Mangelinck A and Mann C: DNA methylation
and histone variants in aging and cancer. Int Rev Cell Mol Biol.
364:1–110. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Sakai E, Nakajima A and Kaneda A:
Accumulation of aberrant DNA methylation during colorectal cancer
development. World J Gastroenterol. 20:978–987. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Kasprzak A: Prognostic biomarkers of cell
proliferation in colorectal cancer (CRC): From immunohistochemistry
to molecular biology techniques. Cancers (Basel). 15:45702023.
View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Hinoue T, Weisenberger DJ, Lange CPE, Shen
H, Byun HM, Van Den Berg D, Malik S, Pan F, Noushmehr H, van Dijk
CM, et al: Genome-scale analysis of aberrant DNA methylation in
colorectal cancer. Genome Res. 22:271–282. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Jensen SØ, Øgaard N, Ørntoft MW, Rasmussen
MH, Bramsen JB, Kristensen H, Mouritzen P, Madsen MR, Madsen AH,
Sunesen KG, et al: Novel DNA methylation biomarkers show high
sensitivity and specificity for blood-based detection of colorectal
cancer-a clinical biomarker discovery and validation study. Clin
Epigenetics. 11:1582019. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Li Y, Li B, Jiang R, Liao L, Zheng C, Yuan
J, Zeng L, Hu K, Zhang Y, Mei W, et al: A novel screening method of
DNA methylation biomarkers helps to improve the detection of
colorectal cancer and precancerous lesions. Cancer Med.
12:20626–20638. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Dai Y, Li H, Wu Q, Wang J, Wang K, Fei S,
Pei B, Song L, Chen G, Ma Y, et al: A sensitive and robust
plasma-based DNA methylation panel for early detection of target
gastrointestinal cancers. Neoplasia. 46:1009412023. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Benatti P, Gafà R, Barana D, Marino M,
Scarselli A, Pedroni M, Maestri I, Guerzoni L, Roncucci L,
Menigatti M, et al: Microsatellite instability and colorectal
cancer prognosis. Clin Cancer Res. 11:8332–8340. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Toh JWT, Phan K, Reza F, Chapuis P and
Spring KJ: Rate of dissemination and prognosis in early and
advanced stage colorectal cancer based on microsatellite
instability status: Systematic review and meta-analysis. Int J
Colorectal Dis. 36:1573–1596. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Popat S, Hubner R and Houlston RS:
Systematic review of microsatellite instability and colorectal
cancer prognosis. J Clin Oncol. 23:609–618. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Klump B, Nehls O, Okech T, Hsieh CJ, Gaco
V, Gittinger FS, Sarbia M, Borchard F, Greschniok A, Gruenagel HH,
et al: Molecular lesions in colorectal cancer: Impact on prognosis?
Original data and review of the literature. Int J Colorectal Dis.
19:23–42. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Koyama M, Ito M, Nagai H, Emi M and
Moriyama Y: Inactivation of both alleles of the DPC4/SMAD4 gene in
advanced colorectal cancers: Identification of seven novel somatic
mutations in tumors from Japanese patients. Mutat Res. 406:71–77.
1999.PubMed/NCBI
|
|
59
|
Song JH, Oh TJ, An S, Lee KH, Kim JY and
Kim JS: Comparative detection of syndecan-2 methylation in
preoperative and postoperative stool DNA in patients with
colorectal cancer. World J Gastrointest Surg. 15:2032–2041. 2023.
View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Shima K, Nosho K, Baba Y, Cantor M,
Meyerhardt JA, Giovannucci EL, Fuchs CS and Ogino S: Prognostic
significance of CDKN2A (p16) promoter methylation and loss of
expression in 902 colorectal cancers: Cohort study and literature
review. Int J Cancer. 128:1080–1094. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Carragher LAS, Snell KR, Giblett SM,
Aldridge VS, Patel B, Cook SJ, Winton DJ, Marais R and Pritchard
CA: V600EBraf induces gastrointestinal crypt senescence and
promotes tumour progression through enhanced CpG methylation of
p16INK4a. EMBO Mol Med. 2:458–471. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
van der Weyden L, Arends MJ, Dovey OM,
Harrison HL, Lefebvre G, Conte N, Gergely FV, Bradley A and Adams
DJ: Loss of rassf1a cooperates with Apc(Min) to accelerate
intestinal tumourigenesis. Oncogene. 27:4503–4508. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Melling N, Muth J, Simon R, Bokemeyer C,
Terracciano L, Sauter G, Izbicki JR and Marx AH: Cdc7
overexpression is an independent prognostic marker and a potential
therapeutic target in colorectal cancer. Diagn Pathol. 10:1252015.
View Article : Google Scholar : PubMed/NCBI
|
|
64
|
el-Deiry WS, Nelkin BD, Celano P, Yen RW,
Falco JP, Hamilton SR and Baylin SB: High expression of the DNA
methyltransferase gene characterizes human neoplastic cells and
progression stages of colon cancer. Proc Natl Acad Sci USA.
88:3470–3474. 1991. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Lu ZH, Ding Y, Wang YJ, Chen C, Yao XR,
Yuan XM, Bu F, Bao H, Dong YW, Zhou Q, et al: Early administration
of Wumei Wan inhibit myeloid-derived suppressor cells via PI3K/Akt
pathway and amino acids metabolism to prevent colitis-associated
colorectal cancer. J Ethnopharmacol. 333:1182602024.(Epub ahead of
print). View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Chen J, Zheng X, Xu G, Wang B, Hu L, Mao
J, Lu X, Cai Y, Chai K and Chen W: Sini decoction inhibits tumor
progression and enhances the anti-tumor immune response in a murine
model of colon cancer. Comb Chem High Throughput Screen.
26:2517–2526. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Okuno K, Pratama MY, Li J, Tokunaga M,
Wang X, Kinugasa Y and Goel A: Ginseng mediates its anticancer
activity by inhibiting the expression of DNMTs and reactivating
methylation-silenced genes in colorectal cancer. Carcinogenesis.
44:394–403. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Boughanem H, Kompella P, Tinahones FJ and
Macias-Gonzalez M: An overview of vitamins as epidrugs for
colorectal cancer prevention. Nutr Rev. 81:455–479. 2023.
View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Brockmueller A, Sajeev A, Koklesova L,
Samuel SM, Kubatka P, Büsselberg D, Kunnumakkara AB and Shakibaei
M: Resveratrol as sensitizer in colorectal cancer plasticity.
Cancer Metastasis Rev. 43:55–85. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Link A, Balaguer F, Shen Y, Lozano JJ,
Leung HC, Boland CR and Goel A: Curcumin modulates DNA methylation
in colorectal cancer cells. PLoS One. 8:e577092013. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Lopez M, Gilbert J, Contreras J, Halby L
and Arimondo PB: Inhibitors of DNA methylation. Adv Exp Med Biol.
1389:471–513. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Fabianowska-Majewska K, Kaufman-Szymczyk
A, Szymanska-Kolba A, Jakubik J, Majewski G and Lubecka K: Curcumin
from turmeric rhizome: A potential modulator of DNA methylation
machinery in breast cancer inhibition. Nutrients. 13:3322021.
View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Sharma M and Tollefsbol TO: Combinatorial
epigenetic mechanisms of sulforaphane, genistein and sodium
butyrate in breast cancer inhibition. Exp Cell Res. 416:1131602022.
View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Futterman B, Derr J, Beisler JA, Abbasi MM
and Voytek P: Studies on the cytostatic action, phosphorylation and
deamination of 5-azacytidine and 5,6-dihydro-5-azacytidine in HeLa
cells. Biochem Pharmacol. 27:907–909. 1978. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Ghanim V, Herrmann H, Heller G, Peter B,
Hadzijusufovic E, Blatt K, Schuch K, Cerny-Reiterer S, Mirkina I,
Karlic H, et al: 5-Azacytidine and decitabine exert proapoptotic
effects on neoplastic mast cells: role of FAS-demethylation and FAS
re-expression, and synergism with FAS-ligand. Blood. 119:4242–4252.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Wang Y, Chen FR, Wei CC, Sun LL, Liu CY,
Yang LB and Guo XY: Zinc finger protein 671 has a cancer-inhibiting
function in colorectal carcinoma via the deactivation of Notch
signaling. Toxicol Appl Pharmacol. 458:1163262023. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Bhullar DS, Barriuso J, Mullamitha S,
Saunders MP, O'Dwyer ST and Aziz O: Biomarker concordance between
primary colorectal cancer and its metastases. EBioMedicine.
40:363–374. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Guo H, Vuille JA, Wittner BS, Lachtara EM,
Hou Y, Lin M, Zhao T, Raman AT, Russell HC, Reeves BA, et al: DNA
hypomethylation silences anti-tumor immune genes in early prostate
cancer and CTCs. Cell. 186:2765–2782.e28. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Gkountela S, Castro-Giner F, Szczerba BM,
Vetter M, Landin J, Scherrer R, Krol I, Scheidmann MC, Beisel C,
Stirnimann CU, et al: Circulating tumor cell clustering shapes DNA
methylation to enable metastasis seeding. Cell. 176:98–112.e14.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Padmanaban V, Krol I, Suhail Y, Szczerba
BM, Aceto N, Bader JS and Ewald AJ: E-cadherin is required for
metastasis in multiple models of breast cancer. Nature.
573:439–444. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Warton K and Samimi G: Methylation of
cell-free circulating DNA in the diagnosis of cancer. Front Mol
Biosci. 2:132015. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Zhou X, Yu L, Wang L, Xiao J, Sun J, Zhou
Y, Xu X, Xu W, Spiliopoulou A, Timofeeva M, et al: Alcohol
consumption, blood DNA methylation and breast cancer: A Mendelian
randomisation study. Eur J Epidemiol. 37:701–712. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Gaiani F, Marchesi F, Negri F, Greco L,
Malesci A, de'Angelis GL and Laghi L: Heterogeneity of colorectal
cancer progression: Molecular gas and brakes. Int J Mol Sci.
22:52462021. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Bao Y, Zhai J, Chen H, Wong CC, Liang C,
Ding Y, Huang D, Gou H, Chen D, Pan Y, et al: Targeting
m6A reader YTHDF1 augments antitumour immunity and
boosts anti-PD-1 efficacy in colorectal cancer. Gut. 72:1497–1509.
2023. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Zhai J, Chen H, Wong CC, Peng Y, Gou H,
Zhang J, Pan Y, Chen D, Lin Y, Wang S, et al: ALKBH5 drives immune
suppression via targeting AXIN2 to promote colorectal cancer and is
a target for boosting immunotherapy. Gastroenterology. 165:445–462.
2023. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Liu Y, Jiang C, Xu C and Gu L: Systematic
analysis of integrated bioinformatics to identify upregulated THBS2
expression in colorectal cancer cells inhibiting tumour immunity
through the HIF1A/Lactic Acid/GPR132 pathway. Cancer Cell Int.
23:2532023. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Yang L, Chen X, Lee C, Shi J, Lawrence EB,
Zhang L, Li Y, Gao N, Jung SY, Creighton CJ, et al: Functional
characterization of age-dependent p16 epimutation reveals
biological drivers and therapeutic targets for colorectal cancer. J
Exp Clin Cancer Res. 42:1132023. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Sheikhnejad G, Brank A, Christman JK,
Goddard A, Alvarez E, Ford H Jr, Marquez VE, Marasco CJ, Sufrin JR,
O'Gara M and Cheng X: Mechanism of inhibition of DNA (cytosine
C5)-methyltransferases by oligodeoxyribonucleotides containing
5,6-dihydro-5-azacytosine. J Mol Biol. 285:2021–2034. 1999.
View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Zheng Z, Zeng S, Liu C, Li W, Zhao L, Cai
C, Nie G and He Y: The DNA methylation inhibitor RG108 protects
against noise-induced hearing loss. Cell Biol Toxicol. 37:751–771.
2021. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Ou Y, Zhang Q, Tang Y, Lu Z, Lu X, Zhou X
and Liu C: DNA methylation enzyme inhibitor RG108 suppresses the
radioresistance of esophageal cancer. Oncol Rep. 39:993–1002.
2018.PubMed/NCBI
|
|
91
|
Tanaka S, Hosokawa M, Matsumura J,
Matsubara E, Kobori A, Ueda K and Iwakawa S: Effects of zebularine
on invasion activity and intracellular expression level of let-7b
in colorectal cancer cells. Biol Pharm Bull. 40:1320–1325. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Guo Y, Shu L, Zhang C, Su ZY and Kong ANT:
Curcumin inhibits anchorage-independent growth of HT29 human colon
cancer cells by targeting epigenetic restoration of the tumor
suppressor gene DLEC1. Biochem Pharmacol. 94:69–78. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Singh BN, Shankar S and Srivastava RK:
Green tea catechin, epigallocatechin-3-gallate (EGCG): Mechanisms,
perspectives and clinical applications. Biochem Pharmacol.
82:1807–1821. 2011. View Article : Google Scholar : PubMed/NCBI
|