Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
September-2024 Volume 30 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
September-2024 Volume 30 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Deciphering the spatiotemporal transcriptional landscape of intestinal diseases (Review)

  • Authors:
    • Yajing Guo
    • Chao Ren
    • Yuxi He
    • Yue Wu
    • Xiaojun Yang
  • View Affiliations / Copyright

    Affiliations: School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, P.R. China, Graduate School, Hunan University of Traditional Chinese Medicine, Changsha, Hunan 410208, P.R. China, Department of Digestive Medicine, Chongqing City Hospital of Traditional Chinese Medicine, Chongqing 400021, P.R. China
    Copyright: © Guo et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 157
    |
    Published online on: July 4, 2024
       https://doi.org/10.3892/mmr.2024.13281
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

The intestines are the largest barrier organ in the human body. The intestinal barrier plays a crucial role in maintaining the balance of the intestinal environment and protecting the intestines from harmful bacterial invasion. Single‑cell RNA sequencing technology allows the detection of the different cell types in the intestine in two dimensions and the exploration of cell types that have not been fully characterized. The intestinal mucosa is highly complex in structure, and its proper functioning is linked to multiple structures in the proximal‑distal intestinal and luminal‑mucosal axes. Spatial localization is at the core of the efforts to explore the interactions between the complex structures. Spatial transcriptomics (ST) is a method that allows for comprehensive tissue analysis and the acquisition of spatially separated genetic information from individual cells, while preserving their spatial location and interactions. This approach also prevents the loss of fragile cells during tissue disaggregation. The emergence of ST technology allows us to spatially dissect enzymatic processes and interactions between multiple cells, genes, proteins and signals in the intestine. This includes the exchange of oxygen and nutrients in the intestine, different gradients of microbial populations and the role of extracellular matrix proteins. This regionally precise approach to tissue studies is gaining more acceptance and is increasingly applied in the investigation of disease mechanisms related to the gastrointestinal tract. Therefore, this review summarized the application of ST in gastrointestinal diseases.
View Figures

Figure 1

Figure 2

View References

1 

Caruso R, Lo BC and Núñez G: Host-microbiota interactions in inflammatory bowel disease. Nat Rev Immunol. 20:411–426. 2020. View Article : Google Scholar : PubMed/NCBI

2 

Round JL and Mazmanian SK: The gut microbiota shapes intestinal immune responses during health and disease. Nat Rev Immunol. 9:313–323. 2009. View Article : Google Scholar : PubMed/NCBI

3 

Sardinha-Silva A, Alves-Ferreira EVC and Grigg ME: Intestinal immune responses to commensal and pathogenic protozoa. Front Immunol. 13:9637232022. View Article : Google Scholar : PubMed/NCBI

4 

Longstreth GF, Thompson WG, Chey WD, Houghton LA, Mearin F and Spiller RC: Functional bowel disorders. Gastroenterology. 130:1480–1491. 2006. View Article : Google Scholar : PubMed/NCBI

5 

Mayer EA, Ryu HJ and Bhatt RR: The neurobiology of irritable bowel syndrome. Mol Psychiatry. 28:1451–1465. 2023. View Article : Google Scholar : PubMed/NCBI

6 

Flynn S and Eisenstein S: Inflammatory bowel disease presentation and diagnosis. Surg Clin North Am. 99:1051–1062. 2019. View Article : Google Scholar : PubMed/NCBI

7 

Bonetto S, Fagoonee S, Battaglia E, Grassini M, Saracco GM and Pellicano R: Recent advances in the treatment of irritable bowel syndrome. Pol Arch Intern Med. 131:709–715. 2021. View Article : Google Scholar : PubMed/NCBI

8 

Saha L: Irritable bowel syndrome: Pathogenesis, diagnosis, treatment, and evidence-based medicine. World J Gastroenterol. 20:6759–6773. 2014. View Article : Google Scholar : PubMed/NCBI

9 

Singh N and Bernstein CN: Environmental risk factors for inflammatory bowel disease. United European Gastroenterol J. 10:1047–1053. 2022. View Article : Google Scholar : PubMed/NCBI

10 

Rosen MJ, Dhawan A and Saeed SA: Inflammatory bowel disease in children and adolescents. JAMA Pediatr. 169:1053–1060. 2015. View Article : Google Scholar : PubMed/NCBI

11 

Zhang YZ and Li YY: Inflammatory bowel disease: Pathogenesis. World J Gastroenterol. 20:91–99. 2014. View Article : Google Scholar : PubMed/NCBI

12 

Neurath MF: IL-23 in inflammatory bowel diseases and colon cancer. Cytokine Growth Factor Rev. 45:1–8. 2019. View Article : Google Scholar : PubMed/NCBI

13 

Nadeem MS, Kumar V, Al-Abbasi FA, Kamal MA and Anwar F: Risk of colorectal cancer in inflammatory bowel diseases. Semin Cancer Biol. 64:51–60. 2020. View Article : Google Scholar : PubMed/NCBI

14 

Brackmann S, Andersen SN, Aamodt G, Langmark F, Clausen OPF, Aadland E, Fausa O, Rydning A and Vatn MH: Relationship between clinical parameters and the colitis-colorectal cancer interval in a cohort of patients with colorectal cancer in inflammatory bowel disease. Scand J Gastroenterol. 44:46–55. 2009. View Article : Google Scholar : PubMed/NCBI

15 

Borowitz SM: The epidemiology of inflammatory bowel disease: Clues to pathogenesis? Front Pediatr. 10:11037132023. View Article : Google Scholar : PubMed/NCBI

16 

Kaplan GG: The global burden of IBD: From 2015 to 2025. Nat Rev Gastroenterol Hepatol. 12:720–727. 2015. View Article : Google Scholar : PubMed/NCBI

17 

Zheng HB, de la Morena MT and Suskind DL: The growing need to understand very early onset inflammatory bowel disease. Front Immunol. 12:6751862021. View Article : Google Scholar : PubMed/NCBI

18 

Taylor S and Lobo AJ: Diagnosis and treatment of inflammatory bowel disease. Practitioner. 260:19–23. 2016.PubMed/NCBI

19 

Chachu KA and Osterman MT: How to diagnose and treat IBD mimics in the refractory IBD patient who does not have IBD. Inflamm Bowel Dis. 22:1262–1274. 2016. View Article : Google Scholar : PubMed/NCBI

20 

Parkin J and Cohen B: An overview of the immune system. Lancet. 357:1777–1789. 2001. View Article : Google Scholar : PubMed/NCBI

21 

Kayama H, Okumura R and Takeda K: Interaction between the microbiota, epithelia, and immune cells in the intestine. Annu Rev Immunol. 38:23–48. 2020. View Article : Google Scholar : PubMed/NCBI

22 

Groschwitz KR and Hogan SP: Intestinal barrier function: Molecular regulation and disease pathogenesis. J Allergy Clin Immunol. 124:3–22. 2009. View Article : Google Scholar : PubMed/NCBI

23 

Wu S, Yang L, Fu Y, Liao Z, Cai D and Liu Z: Intestinal barrier function and neurodegenerative disease. CNS Neurol Disord Drug Targets. Nov 24–2023.(Epub ahead of print).

24 

Wu Y, Tang L, Wang B, Sun Q, Zhao P and Li W: The role of autophagy in maintaining intestinal mucosal barrier. J Cell Physiol. 234:19406–19419. 2019. View Article : Google Scholar : PubMed/NCBI

25 

Ding JH, Jin Z, Yang XX, Lou J, Shan WX, Hu YX, Du Q, Liao QS, Xie R and Xu JY: Role of gut microbiota via the gut-liver-brain axis in digestive diseases. World J Gastroenterol. 26:6141–6162. 2020. View Article : Google Scholar : PubMed/NCBI

26 

Rutsch A, Kantsjö JB and Ronchi F: The gut-brain axis: How microbiota and host inflammasome influence brain physiology and pathology. Front Immunol. 11:6041792020. View Article : Google Scholar : PubMed/NCBI

27 

Integrative HMP (iHMP) Research Network Consortium, . The integrative human microbiome project. Nature. 569:641–648. 2019. View Article : Google Scholar : PubMed/NCBI

28 

Gueimonde M and Collado MC: Metagenomics and probiotics. Clin Microbiol Infect. 18 (Suppl 4):S32–S34. 2012. View Article : Google Scholar

29 

Adak A and Khan MR: An insight into gut microbiota and its functionalities. Cell Mol Life Sci. 76:473–493. 2019. View Article : Google Scholar : PubMed/NCBI

30 

Patterson E, Ryan PM, Cryan JF, Dinan TG, Ross RP, Fitzgerald GF and Stanton C: Gut microbiota, obesity and diabetes. Postgrad Med J. 92:286–300. 2016. View Article : Google Scholar : PubMed/NCBI

31 

Liu X, Chen Y, Zhang S and Dong L: Gut microbiota-mediated immunomodulation in tumor. J Exp Clin Cancer Res. 40:2212021. View Article : Google Scholar : PubMed/NCBI

32 

Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, Nielsen T, Pons N, Levenez F, Yamada T, et al: A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 464:59–65. 2010. View Article : Google Scholar : PubMed/NCBI

33 

Marx V: Method of the year: Spatially resolved transcriptomics. Nat Methods. 18:9–14. 2021. View Article : Google Scholar : PubMed/NCBI

34 

Ståhl PL, Salmén F, Vickovic S, Lundmark A, Navarro JF, Magnusson J, Giacomello S, Asp M, Westholm JO, Huss M, et al: Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science. 353:78–82. 2016. View Article : Google Scholar : PubMed/NCBI

35 

Wang Y, Liu B, Zhao G, Lee Y, Buzdin A, Mu X, Zhao J, Chen H and Li X: Spatial transcriptomics: Technologies, applications and experimental considerations. Genomics. 115:1106712023. View Article : Google Scholar : PubMed/NCBI

36 

Shah S, Lubeck E, Zhou W and Cai L: In situ transcription profiling of single cells reveals spatial organization of cells in the mouse hippocampus. Neuron. 92:342–357. 2016. View Article : Google Scholar : PubMed/NCBI

37 

Lee JH, Daugharthy ER, Scheiman J, Kalhor R, Yang JL, Ferrante TC, Terry R, Jeanty SS, Li C, Amamoto R, et al: Highly multiplexed subcellular RNA sequencing in situ. Science. 343:1360–1363. 2014. View Article : Google Scholar : PubMed/NCBI

38 

Wang X, Allen WE, Wright MA, Sylwestrak EL, Samusik N, Vesuna S, Evans K, Liu C, Ramakrishnan C, Liu J, et al: Three-dimensional intact-tissue sequencing of single-cell transcriptional states. Science. 361:eaat56912018. View Article : Google Scholar : PubMed/NCBI

39 

Asp M, Bergenstråhle J and Lundeberg J: Spatially Resolved transcriptomes-Next generation tools for tissue exploration. Bioessays. 42:e19002212020. View Article : Google Scholar : PubMed/NCBI

40 

Shi Y, Wu X, Zhou J, Cui W, Wang J, Hu Q, Zhang S, Han L, Zhou M, Luo J, et al: Single-nucleus RNA sequencing reveals that decorin expression in the amygdala regulates perineuronal nets expression and fear conditioning response after traumatic brain injury. Adv Sci (Weinh). 9:e21041122022. View Article : Google Scholar : PubMed/NCBI

41 

Li J, Wu C, Hu H, Qin G, Wu X, Bai F, Zhang J, Cai Y, Huang Y, Wang C, et al: Remodeling of the immune and stromal cell compartment by PD-1 blockade in mismatch repair-deficient colorectal cancer. Cancer Cell. 41:1152–1169.e7. 2023. View Article : Google Scholar : PubMed/NCBI

42 

Moses L and Pachter L: Museum of spatial transcriptomics. Nat Methods. 19:534–546. 2022. View Article : Google Scholar : PubMed/NCBI

43 

Chen KH, Boettiger AN, Moffitt JR, Wang S and Zhuang X: RNA imaging. Spatially resolved, highly multiplexed RNA profiling in single cells. Science. 348:aaa60902015. View Article : Google Scholar : PubMed/NCBI

44 

Schena M, Shalon D, Davis RW and Brown PO: Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science. 270:467–470. 1995. View Article : Google Scholar : PubMed/NCBI

45 

Luo L, Salunga RC, Guo H, Bittner A, Joy KC, Galindo JE, Xiao H, Rogers KE, Wan JS, Jackson MR and Erlander MG: Gene expression profiles of laser-captured adjacent neuronal subtypes. Nat Med. 5:117–122. 1999. View Article : Google Scholar : PubMed/NCBI

46 

Bhatia HS, Brunner AD, Öztürk F, Kapoor S, Rong Z, Mai H, Thielert M, Ali M, Al-Maskari R, Paetzold JC, et al: Spatial proteomics in three-dimensional intact specimens. Cell. 185:5040–5058.e19. 2022. View Article : Google Scholar : PubMed/NCBI

47 

Alfieri CM, Mattinzoli D, Ikehata M, Cresseri D, Moroni G, Vaira V, Ferri G, Ferrero S and Messa P: Laser capture microdissection on formalin-fixed and paraffin-embedded renal transplanted biopsies: Technical perspectives for clinical practice application. Exp Mol Pathol. 116:1045162020. View Article : Google Scholar : PubMed/NCBI

48 

Achanta S, Gorky J, Leung C, Moss A, Robbins S, Eisenman L, Chen J, Tappan S, Heal M, Farahani N, et al: A comprehensive integrated anatomical and molecular atlas of rat intrinsic cardiac nervous system. iScience. 23:1011402020. View Article : Google Scholar : PubMed/NCBI

49 

Zhao T, Chiang ZD, Morriss JW, LaFave LM, Murray EM, Del Priore I, Meli K, Lareau CA, Nadaf NM, Li J, et al: Spatial genomics enables multi-modal study of clonal heterogeneity in tissues. Nature. 601:85–91. 2022. View Article : Google Scholar : PubMed/NCBI

50 

Liao J, Lu X, Shao X, Zhu L and Fan X: Uncovering an organ's molecular architecture at single-cell resolution by spatially resolved transcriptomics. Trends Biotechnol. 39:43–58. 2021. View Article : Google Scholar : PubMed/NCBI

51 

Satija R, Farrell JA, Gennert D, Schier AF and Regev A: Spatial reconstruction of single-cell gene expression data. Nat Biotechnol. 33:495–502. 2015. View Article : Google Scholar : PubMed/NCBI

52 

Sun YM and Chen YQ: Principles and innovative technologies for decrypting noncoding RNAs: From discovery and functional prediction to clinical application. J Hematol Oncol. 13:1092020. View Article : Google Scholar : PubMed/NCBI

53 

Zhang L, Yu X, Zheng L, Zhang Y, Li Y, Fang Q, Gao R, Kang B, Zhang Q, Huang JY, et al: Lineage tracking reveals dynamic relationships of T cells in colorectal cancer. Nature. 564:268–272. 2018. View Article : Google Scholar : PubMed/NCBI

54 

Zhang Q, He Y, Luo N, Patel SJ, Han Y, Gao R, Modak M, Carotta S, Haslinger C, Kind D, et al: Landscape and dynamics of single immune cells in hepatocellular carcinoma. Cell. 179:829–845.e20. 2019. View Article : Google Scholar : PubMed/NCBI

55 

Emmert-Buck MR, Bonner RF, Smith PD, Chuaqui RF, Zhuang Z, Goldstein SR, Weiss RA and Liotta LA: Laser capture microdissection. Science. 274:998–1001. 1996. View Article : Google Scholar : PubMed/NCBI

56 

Liew LC, Narsai R, Wang Y, Berkowitz O, Whelan J and Lewsey MG: Temporal tissue-specific regulation of transcriptomes during barley (Hordeum vulgare) seed germination. Plant J. 101:700–715. 2020. View Article : Google Scholar : PubMed/NCBI

57 

Shaw R, Tian X and Xu J: Single-cell transcriptome analysis in plants: Advances and challenges. Mol Plant. 14:115–126. 2021. View Article : Google Scholar : PubMed/NCBI

58 

Guo W, Hu Y, Qian J, Zhu L, Cheng J, Liao J and Fan X: Laser capture microdissection for biomedical research: Towards high-throughput, multi-omics, and single-cell resolution. J Genet Genomics. 50:641–651. 2023. View Article : Google Scholar : PubMed/NCBI

59 

Nichterwitz S, Chen G, Aguila Benitez J, Yilmaz M, Storvall H, Cao M, Sandberg R, Deng Q and Hedlund E: Laser capture microscopy coupled with Smart-seq2 for precise spatial transcriptomic profiling. Nat Commun. 7:121392016. View Article : Google Scholar : PubMed/NCBI

60 

Chen J, Suo S, Tam PP, Han JDJ, Peng G and Jing N: Spatial transcriptomic analysis of cryosectioned tissue samples with Geo-seq. Nat Protoc. 12:566–580. 2017. View Article : Google Scholar : PubMed/NCBI

61 

Casasent AK, Schalck A, Gao R, Sei E, Long A, Pangburn W, Casasent T, Meric-Bernstam F, Edgerton ME and Navin NE: Multiclonal invasion in breast tumors identified by topographic single cell sequencing. Cell. 172:205–217.e12. 2018. View Article : Google Scholar : PubMed/NCBI

62 

Junker JP, Noël ES, Guryev V, Peterson KA, Shah G, Huisken J, McMahon AP, Berezikov E, Bakkers J and van Oudenaarden A: Genome-wide RNA Tomography in the zebrafish embryo. Cell. 159:662–675. 2014. View Article : Google Scholar : PubMed/NCBI

63 

Moffitt JR, Bambah-Mukku D, Eichhorn SW, Vaughn E, Shekhar K, Perez JD, Rubinstein ND, Hao J, Regev A, Dulac C and Zhuang X: Molecular, spatial, and functional single-cell profiling of the hypothalamic preoptic region. Science. 362:eaau53242018. View Article : Google Scholar : PubMed/NCBI

64 

Xia C, Fan J, Emanuel G, Hao J and Zhuang X: Spatial transcriptome profiling by MERFISH reveals subcellular RNA compartmentalization and cell cycle-dependent gene expression. Proc Natl Acad Sci USA. 116:19490–19499. 2019. View Article : Google Scholar : PubMed/NCBI

65 

Femino AM, Fay FS, Fogarty K and Singer RH: Visualization of single RNA transcripts in situ. Science. 280:585–590. 1998. View Article : Google Scholar : PubMed/NCBI

66 

Wang F, Flanagan J, Su N, Wang LC, Bui S, Nielson A, Wu X, Vo HT, Ma XJ and Luo Y: RNAscope: A novel in situ RNA analysis platform for formalin-fixed, paraffin-embedded tissues. J Mol Diagn. 14:22–29. 2012. View Article : Google Scholar : PubMed/NCBI

67 

Lubeck E, Coskun AF, Zhiyentayev T, Ahmad M and Cai L: Single-cell in situ RNA profiling by sequential hybridization. Nat Methods. 11:360–361. 2014. View Article : Google Scholar : PubMed/NCBI

68 

Rodriques SG, Stickels RR, Goeva A, Martin CA, Murray E, Vanderburg CR, Welch J, Chen LM, Chen F and Macosko EZ: Slide-seq: A scalable technology for measuring genome-wide expression at high spatial resolution. Science. 363:1463–1467. 2019. View Article : Google Scholar : PubMed/NCBI

69 

Fazal FM, Han S, Parker KR, Kaewsapsak P, Xu J, Boettiger AN, Chang HY and Ting AY: Atlas of subcellular RNA localization revealed by APEX-seq. Cell. 178:473–490.e26. 2019. View Article : Google Scholar : PubMed/NCBI

70 

Vickovic S, Eraslan G, Salmén F, Klughammer J, Stenbeck L, Schapiro D, Äijö T, Bonneau R, Bergenstråhle L, Navarro JF, et al: High-definition spatial transcriptomics for in situ tissue profiling. Nat Methods. 16:987–990. 2019. View Article : Google Scholar : PubMed/NCBI

71 

Srivatsan SR, Regier MC, Barkan E, Franks JM, Packer JS, Grosjean P, Duran M, Saxton S, Ladd JJ, Spielmann M, et al: Embryo-scale, single-cell spatial transcriptomics. Science. 373:111–117. 2021. View Article : Google Scholar : PubMed/NCBI

72 

Liu Y, Yang M, Deng Y, Su G, Enninful A, Guo CC, Tebaldi T, Zhang D, Kim D, Bai Z, et al: High-spatial-resolution multi-omics sequencing via deterministic barcoding in tissue. Cell. 183:1665–1681.e18. 2020. View Article : Google Scholar : PubMed/NCBI

73 

Su G, Qin X, Enninful A, Bai Z, Deng Y, Liu Y and Fan R: Spatial multi-omics sequencing for fixed tissue via DBiT-seq. STAR Protoc. 2:1005322021. View Article : Google Scholar : PubMed/NCBI

74 

Dixon EE, Wu H, Sulvarán-Guel E, Guo J and Humphreys BD: Spatially resolved transcriptomics and the kidney: Many opportunities. Kidney Int. 102:482–491. 2022. View Article : Google Scholar : PubMed/NCBI

75 

Chen A, Liao S, Cheng M, Ma K, Wu L, Lai Y, Qiu X, Yang J, Xu J, Hao S, et al: Spatiotemporal transcriptomic atlas of mouse organogenesis using DNA nanoball-patterned arrays. Cell. 185:1777–1792.e21. 2022. View Article : Google Scholar : PubMed/NCBI

76 

Cho CS, Xi J, Si Y, Park SR, Hsu JE, Kim M, Jun G, Kang HM and Lee JH: Microscopic examination of spatial transcriptome using Seq-Scope. Cell. 184:3559–3572.e22. 2021. View Article : Google Scholar : PubMed/NCBI

77 

Levsky JM, Shenoy SM, Pezo RC and Singer RH: Single-cell gene expression profiling. Science. 297:836–840. 2002. View Article : Google Scholar : PubMed/NCBI

78 

Lubeck E and Cai L: Single-cell systems biology by super- resolution imaging and combinatorial labeling. Nat Methods. 9:743–748. 2012. View Article : Google Scholar : PubMed/NCBI

79 

Ke R, Mignardi M, Pacureanu A, Svedlund J, Botling J, Wählby C and Nilsson M: In situ sequencing for RNA analysis in preserved tissue and cells. Nat Methods. 10:857–860. 2013. View Article : Google Scholar : PubMed/NCBI

80 

Lee JH, Daugharthy ER, Scheiman J, Kalhor R, Ferrante TC, Terry R, Turczyk BM, Yang JL, Lee HS, Aach J, et al: Fluorescent in situ sequencing (FISSEQ) of RNA for gene expression profiling in intact cells and tissues. Nat Protoc. 10:442–458. 2015. View Article : Google Scholar : PubMed/NCBI

81 

Olin A, Henckel E, Chen Y, Lakshmikanth T, Pou C, Mikes J, Gustafsson A, Bernhardsson AK, Zhang C, Bohlin K and Brodin P: Stereotypic immune system development in newborn children. Cell. 174:1277–1292.e14. 2018. View Article : Google Scholar : PubMed/NCBI

82 

Soderholm AT and Pedicord VA: Intestinal epithelial cells: At the interface of the microbiota and mucosal immunity. Immunology. 158:267–280. 2019. View Article : Google Scholar : PubMed/NCBI

83 

Schreurs RRCE, Baumdick ME, Sagebiel AF, Kaufmann M, Mokry M, Klarenbeek PL, Schaltenberg N, Steinert FL, van Rijn JM, Drewniak A, et al: Human fetal TNF-α-cytokine-producing CD4+ effector memory T cells promote intestinal development and mediate inflammation early in life. Immunity. 50:462–476.e8. 2019. View Article : Google Scholar : PubMed/NCBI

84 

Olsen TK and Baryawno N: Introduction to single-cell RNA sequencing. Curr Protoc Mol Biol. 122:e572018. View Article : Google Scholar : PubMed/NCBI

85 

Rodaway A and Patient R: Mesendoderm. An ancient germ layer? Cell. 105:169–172. 2001.PubMed/NCBI

86 

Zorn AM and Wells JM: Molecular basis of vertebrate endoderm development. Int Rev Cytol. 259:49–111. 2007. View Article : Google Scholar : PubMed/NCBI

87 

Zorn AM and Wells JM: Vertebrate endoderm development and organ formation. Annu Rev Cell Dev Biol. 25:221–251. 2009. View Article : Google Scholar : PubMed/NCBI

88 

Kimelman D and Griffin KJ: Vertebrate mesendoderm induction and patterning. Curr Opin Genet Dev. 10:350–356. 2000. View Article : Google Scholar : PubMed/NCBI

89 

Spence JR, Lauf R and Shroyer NF: Vertebrate intestinal endoderm development. Dev Dyn. 240:501–520. 2011. View Article : Google Scholar : PubMed/NCBI

90 

Que J, Okubo T, Goldenring JR, Nam KT, Kurotani R, Morrisey EE, Taranova O, Pevny LH and Hogan BL: Multiple dose-dependent roles for Sox2 in the patterning and differentiation of anterior foregut endoderm. Development. 134:2521–2531. 2007. View Article : Google Scholar : PubMed/NCBI

91 

Sherwood RI, Chen TYA and Melton DA: Transcriptional dynamics of endodermal organ formation. Dev Dyn. 238:29–42. 2009. View Article : Google Scholar : PubMed/NCBI

92 

Walton KD, Whidden M, Kolterud Å, Shoffner SK, Czerwinski MJ, Kushwaha J, Parmar N, Chandhrasekhar D, Freddo AM, Schnell S and Gumucio DL: Villification in the mouse: Bmp signals control intestinal villus patterning. Development. 143:427–436. 2016.PubMed/NCBI

93 

Grey RD: Morphogenesis of intestinal villi. I. Scanning electron microscopy of the duodenal epithelium of the developing chick embryo. J Morphol. 137:193–213. 1972. View Article : Google Scholar : PubMed/NCBI

94 

Fawkner-Corbett D, Antanaviciute A, Parikh K, Jagielowicz M, Gerós AS, Gupta T, Ashley N, Khamis D, Fowler D, Morrissey E, et al: Spatiotemporal analysis of human intestinal development at single-cell resolution. Cell. 184:810–826.e23. 2021. View Article : Google Scholar : PubMed/NCBI

95 

Martin JC, Chang C, Boschetti G, Ungaro R, Giri M, Grout JA, Gettler K, Chuang LS, Nayar S, Greenstein AJ, et al: Single-cell analysis of Crohn's disease lesions identifies a pathogenic cellular module associated with resistance to anti-TNF therapy. Cell. 178:1493–1508.e20. 2019. View Article : Google Scholar : PubMed/NCBI

96 

Parikh K, Antanaviciute A, Fawkner-Corbett D, Jagielowicz M, Aulicino A, Lagerholm C, Davis S, Kinchen J, Chen HH, Alham NK, et al: Colonic epithelial cell diversity in health and inflammatory bowel disease. Nature. 567:49–55. 2019. View Article : Google Scholar : PubMed/NCBI

97 

Smillie CS, Biton M, Ordovas-Montanes J, Sullivan KM, Burgin G, Graham DB, Herbst RH, Rogel N, Slyper M, Waldman J, et al: Intra- and inter-cellular rewiring of the human colon during ulcerative colitis. Cell. 178:714–730.e22. 2019. View Article : Google Scholar : PubMed/NCBI

98 

Fenderico N, van Scherpenzeel RC, Goldflam M, Proverbio D, Jordens I, Kralj T, Stryeck S, Bass TZ, Hermans G, Ullman C, et al: Anti-LRP5/6 VHHs promote differentiation of Wnt-hypersensitive intestinal stem cells. Nat Commun. 10:3652019. View Article : Google Scholar : PubMed/NCBI

99 

Kinchen J, Chen HH, Parikh K, Antanaviciute A, Jagielowicz M, Fawkner-Corbett D, Ashley N, Cubitt L, Mellado-Gomez E, Attar M, et al: Structural remodeling of the human colonic mesenchyme in inflammatory bowel disease. Cell. 175:372–386.e17. 2018. View Article : Google Scholar : PubMed/NCBI

100 

Powell DW, Pinchuk IV, Saada JI, Chen X and Mifflin RC: Mesenchymal cells of the intestinal lamina propria. Annu Rev Physiol. 73:213–237. 2011. View Article : Google Scholar : PubMed/NCBI

101 

McCarthy N, Manieri E, Storm EE, Saadatpour A, Luoma AM, Kapoor VN, Madha S, Gaynor LT, Cox C, Keerthivasan S, et al: Distinct mesenchymal cell populations generate the essential intestinal BMP signaling gradient. Cell Stem Cell. 26:391–402.e5. 2020. View Article : Google Scholar : PubMed/NCBI

102 

Degirmenci B, Valenta T, Dimitrieva S, Hausmann G and Basler K: GLI1-expressing mesenchymal cells form the essential Wnt-secreting niche for colon stem cells. Nature. 558:449–453. 2018. View Article : Google Scholar : PubMed/NCBI

103 

van Es JH, Sato T, van de Wetering M, Lyubimova A, Yee Nee AN, Gregorieff A, Sasaki N, Zeinstra L, van den Born M, Korving J, et al: Dll1+ secretory progenitor cells revert to stem cells upon crypt damage. Nat Cell Biol. 14:1099–1104. 2012. View Article : Google Scholar : PubMed/NCBI

104 

van de Pavert SA and Mebius RE: New insights into the development of lymphoid tissues. Nat Rev Immunol. 10:664–674. 2010. View Article : Google Scholar : PubMed/NCBI

105 

Scheich S, Chen J, Liu J, Schnütgen F, Enssle JC, Ceribelli M, Thomas CJ, Choi J, Morris V, Hsiao T, et al: Targeting N-linked glycosylation for the therapy of aggressive lymphomas. Cancer Discov. 13:1862–1883. 2023. View Article : Google Scholar : PubMed/NCBI

106 

Guan Q: A comprehensive review and update on the pathogenesis of inflammatory bowel disease. J Immunol Res. 2019:72472382019. View Article : Google Scholar : PubMed/NCBI

107 

Tang F, Barbacioru C, Wang Y, Nordman E, Lee C, Xu N, Wang X, Bodeau J, Tuch BB, Siddiqui A, et al: mRNA-Seq whole-transcriptome analysis of a single cell. Nat Methods. 6:377–382. 2009. View Article : Google Scholar : PubMed/NCBI

108 

Yu X, Abbas-Aghababazadeh F, Chen YA and Fridley BL: Statistical and bioinformatics analysis of data from bulk and single-cell RNA sequencing experiments. Methods Mol Biol. 2194:143–175. 2021. View Article : Google Scholar : PubMed/NCBI

109 

Nath A and Bild AH: Leveraging single-cell approaches in cancer precision medicine. Trends Cancer. 7:359–372. 2021. View Article : Google Scholar : PubMed/NCBI

110 

Czarnewski P, Parigi SM, Sorini C, Diaz OE, Das S, Gagliani N and Villablanca EJ: Conserved transcriptomic profile between mouse and human colitis allows unsupervised patient stratification. Nat Commun. 10:28922019. View Article : Google Scholar : PubMed/NCBI

111 

Parigi SM, Larsson L, Das S, Ramirez Flores RO, Frede A, Tripathi KP, Diaz OE, Selin K, Morales RA, Luo X, et al: The spatial transcriptomic landscape of the healing mouse intestine following damage. Nat Commun. 13:8282022. View Article : Google Scholar : PubMed/NCBI

112 

Ayyaz A, Kumar S, Sangiorgi B, Ghoshal B, Gosio J, Ouladan S, Fink M, Barutcu S, Trcka D, Shen J, et al: Single-cell transcriptomes of the regenerating intestine reveal a revival stem cell. Nature. 569:121–125. 2019. View Article : Google Scholar : PubMed/NCBI

113 

Smythies LE, Sellers M, Clements RH, Mosteller-Barnum M, Meng G, Benjamin WH, Orenstein JM and Smith PD: Human intestinal macrophages display profound inflammatory anergy despite avid phagocytic and bacteriocidal activity. J Clin Invest. 115:66–75. 2005. View Article : Google Scholar : PubMed/NCBI

114 

Martinez FO and Gordon S: The M1 and M2 paradigm of macrophage activation: Time for reassessment. F1000Prime Rep. 6:132014. View Article : Google Scholar : PubMed/NCBI

115 

Garrido-Trigo A, Corraliza AM, Veny M, Dotti I, Melón-Ardanaz E, Rill A, Crowell HL, Corbí Á, Gudiño V, Esteller M, et al: Macrophage and neutrophil heterogeneity at single-cell spatial resolution in human inflammatory bowel disease. Nat Commun. 14:45062023. View Article : Google Scholar : PubMed/NCBI

116 

Schoeler M and Caesar R: Dietary lipids, gut microbiota and lipid metabolism. Rev Endocr Metab Disord. 20:461–472. 2019. View Article : Google Scholar : PubMed/NCBI

117 

Milani C, Duranti S, Bottacini F, Casey E, Turroni F, Mahony J, Belzer C, Delgado Palacio S, Arboleya Montes S, Mancabelli L, et al: The first microbial colonizers of the human gut: Composition, activities, and health implications of the infant gut microbiota. Microbiol Mol Biol Rev. 81:e00036–17. 2017. View Article : Google Scholar : PubMed/NCBI

118 

Human Microbiome Project Consortium, . Structure, function and diversity of the healthy human microbiome. Nature. 486:207–214. 2012. View Article : Google Scholar : PubMed/NCBI

119 

Lloyd-Price J, Arze C, Ananthakrishnan AN, Schirmer M, Avila-Pacheco J, Poon TW, Andrews E, Ajami NJ, Bonham KS, Brislawn CJ, et al: Multi-omics of the gut microbial ecosystem in inflammatory bowel diseases. Nature. 569:655–662. 2019. View Article : Google Scholar : PubMed/NCBI

120 

Huang H, Ren Z, Gao X, Hu X, Zhou Y, Jiang J, Lu H, Yin S, Ji J, Zhou L and Zheng S: Integrated analysis of microbiome and host transcriptome reveals correlations between gut microbiota and clinical outcomes in HBV-related hepatocellular carcinoma. Genome Med. 12:1022020. View Article : Google Scholar : PubMed/NCBI

121 

Zhang SL, Cheng LS, Zhang ZY, Sun HT and Li JJ: Untangling determinants of gut microbiota and tumor immunologic status through a multi-omics approach in colorectal cancer. Pharmacol Res. 188:1066332023. View Article : Google Scholar : PubMed/NCBI

122 

Pereira FC and Berry D: Microbial nutrient niches in the gut. Environ Microbiol. 19:1366–1378. 2017. View Article : Google Scholar : PubMed/NCBI

123 

Kim HJ, Boedicker JQ, Choi JW and Ismagilov RF: Defined spatial structure stabilizes a synthetic multispecies bacterial community. Proc Natl Acad Sci USA. 105:18188–18193. 2008. View Article : Google Scholar : PubMed/NCBI

124 

Rausch P, Basic M, Batra A, Bischoff SC, Blaut M, Clavel T, Gläsner J, Gopalakrishnan S, Grassl GA, Günther C, et al: Analysis of factors contributing to variation in the C57BL/6J fecal microbiota across German animal facilities. Int J Med Microbiol. 306:343–355. 2016. View Article : Google Scholar : PubMed/NCBI

125 

Seekatz AM, Schnizlein MK, Koenigsknecht MJ, Baker JR, Hasler WL, Bleske BE, Young VB and Sun D: Spatial and temporal analysis of the stomach and small-intestinal microbiota in fasted healthy humans. mSphere. 4:e00126–19. 2019. View Article : Google Scholar : PubMed/NCBI

126 

Sheth RU, Li M, Jiang W, Sims PA, Leong KW and Wang HH: Spatial metagenomic characterization of microbial biogeography in the gut. Nat Biotechnol. 37:877–883. 2019. View Article : Google Scholar : PubMed/NCBI

127 

Choi CH and Chang SK: Role of small intestinal bacterial overgrowth in functional gastrointestinal disorders. J Neurogastroenterol Motil. 22:3–5. 2016. View Article : Google Scholar : PubMed/NCBI

128 

Evans DF, Pye G, Bramley R, Clark AG, Dyson TJ and Hardcastle JD: Measurement of gastrointestinal pH profiles in normal ambulant human subjects. Gut. 29:1035–1041. 1988. View Article : Google Scholar : PubMed/NCBI

129 

Macfarlane GT, Gibson GR and Cummings JH: Comparison of fermentation reactions in different regions of the human colon. J Appl Bacteriol. 72:57–64. 1992. View Article : Google Scholar : PubMed/NCBI

130 

Birchenough GM, Johansson ME, Gustafsson JK, Bergström JH and Hansson GC: New developments in goblet cell mucus secretion and function. Mucosal Immunol. 8:712–719. 2015. View Article : Google Scholar : PubMed/NCBI

131 

Kotarsky K, Sitnik KM, Stenstad H, Kotarsky H, Schmidtchen A, Koslowski M, Wehkamp J and Agace WW: A novel role for constitutively expressed epithelial-derived chemokines as antibacterial peptides in the intestinal mucosa. Mucosal Immunol. 3:40–48. 2010. View Article : Google Scholar : PubMed/NCBI

132 

McCallum G and Tropini C: The gut microbiota and its biogeography. Nat Rev Microbiol. 22:105–118. 2024. View Article : Google Scholar : PubMed/NCBI

133 

Cremer J, Arnoldini M and Hwa T: Effect of water flow and chemical environment on microbiota growth and composition in the human colon. Proc Natl Acad Sci USA. 114:6438–6443. 2017. View Article : Google Scholar : PubMed/NCBI

134 

Cremer J, Segota I, Yang CY, Arnoldini M, Sauls JT, Zhang Z, Gutierrez E, Groisman A and Hwa T: Effect of flow and peristaltic mixing on bacterial growth in a gut-like channel. Proc Natl Acad Sci USA. 113:11414–11419. 2016. View Article : Google Scholar : PubMed/NCBI

135 

Nagara Y, Takada T, Nagata Y, Kado S and Kushiro A: Microscale spatial analysis provides evidence for adhesive monopolization of dietary nutrients by specific intestinal bacteria. PLoS One. 12:e01754972017. View Article : Google Scholar : PubMed/NCBI

136 

Walker AW, Duncan SH, Harmsen HJ, Holtrop G, Welling GW and Flint HJ: The species composition of the human intestinal microbiota differs between particle-associated and liquid phase communities. Environ Microbiol. 10:3275–3283. 2008. View Article : Google Scholar : PubMed/NCBI

137 

Leitch ECMW, Walker AW, Duncan SH, Holtrop G and Flint HJ: Selective colonization of insoluble substrates by human faecal bacteria. Environ Microbiol. 9:667–679. 2007. View Article : Google Scholar : PubMed/NCBI

138 

Sobhani I, Bergsten E, Couffin S, Amiot A, Nebbad B, Barau C, de'Angelis N, Rabot S, Canoui-Poitrine F, Mestivier D, et al: Colorectal cancer-associated microbiota contributes to oncogenic epigenetic signatures. Proc Natl Acad Sci USA. 116:24285–24295. 2019. View Article : Google Scholar : PubMed/NCBI

139 

David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, Ling AV, Devlin AS, Varma Y, Fischbach MA, et al: Diet rapidly and reproducibly alters the human gut microbiome. Nature. 505:559–563. 2014. View Article : Google Scholar : PubMed/NCBI

140 

Nguyen J, Pepin DM and Tropini C: Cause or effect? The spatial organization of pathogens and the gut microbiota in disease. Microbes Infect. 23:1048152021. View Article : Google Scholar : PubMed/NCBI

141 

Borghini R, Donato G, Alvaro D and Picarelli A: New insights in IBS-like disorders: Pandora's box has been opened; a review. Gastroenterol Hepatol Bed Bench. 10:79–89. 2017.PubMed/NCBI

142 

Ng QX, Soh AYS, Loke W, Lim DY and Yeo WS: The role of inflammation in irritable bowel syndrome (IBS). J Inflamm Res. 11:345–349. 2018. View Article : Google Scholar : PubMed/NCBI

143 

Qiao LY and Tiwari N: Spinal neuron-glia-immune interaction in cross-organ sensitization. Am J Physiol Gastrointest Liver Physiol. 319:G748–G760. 2020. View Article : Google Scholar : PubMed/NCBI

144 

North RY, Li Y, Ray P, Rhines LD, Tatsui CE, Rao G, Johansson CA, Zhang H, Kim YH, Zhang B, et al: Electrophysiological and transcriptomic correlates of neuropathic pain in human dorsal root ganglion neurons. Brain. 142:1215–1226. 2019. View Article : Google Scholar : PubMed/NCBI

145 

Tavares-Ferreira D, Shiers S, Ray PR, Wangzhou A, Jeevakumar V, Sankaranarayanan I, Cervantes AM, Reese JC, Chamessian A, Copits BA, et al: Spatial transcriptomics of dorsal root ganglia identifies molecular signatures of human nociceptors. Sci Transl Med. 14:eabj81862022. View Article : Google Scholar : PubMed/NCBI

146 

Bonaz BL and Bernstein CN: Brain-gut interactions in inflammatory bowel disease. Gastroenterology. 144:36–49. 2013. View Article : Google Scholar : PubMed/NCBI

147 

Tsigos C and Chrousos GP: Hypothalamic-pituitary-adrenal axis, neuroendocrine factors and stress. J Psychosom Res. 53:865–871. 2002. View Article : Google Scholar : PubMed/NCBI

148 

Kitaoka S: Inflammation in the brain and periphery found in animal models of depression and its behavioral relevance. J Pharmacol Sci. 148:262–266. 2022. View Article : Google Scholar : PubMed/NCBI

149 

De Bellis MD, Casey BJ, Dahl RE, Birmaher B, Williamson DE, Thomas KM, Axelson DA, Frustaci K, Boring AM, Hall J and Ryan ND: A pilot study of amygdala volumes in pediatric generalized anxiety disorder. Biol Psychiatry. 48:51–57. 2000. View Article : Google Scholar : PubMed/NCBI

150 

Schienle A, Ebner F and Schäfer A: Localized gray matter volume abnormalities in generalized anxiety disorder. Eur Arch Psychiatry Clin Neurosci. 261:303–307. 2011. View Article : Google Scholar : PubMed/NCBI

151 

Qiao J, Li A, Cao C, Wang Z, Sun J and Xu G: Aberrant functional network connectivity as a biomarker of generalized anxiety disorder. Front Hum Neurosci. 11:6262017. View Article : Google Scholar : PubMed/NCBI

152 

Moffitt JR, Hao J, Bambah-Mukku D, Lu T, Dulac C and Zhuang X: High-performance multiplexed fluorescence in situ hybridization in culture and tissue with matrix imprinting and clearing. Proc Natl Acad Sci USA. 113:14456–14461. 2016. View Article : Google Scholar : PubMed/NCBI

153 

Zhou X, Lu Y, Zhao F, Dong J, Ma W, Zhong S, Wang M, Wang B, Zhao Y, Shi Y, et al: Deciphering the spatial-temporal transcriptional landscape of human hypothalamus development. Cell Stem Cell. 29:328–343.e5. 2022. View Article : Google Scholar : PubMed/NCBI

154 

Oh SW, Harris JA, Ng L, Winslow B, Cain N, Mihalas S, Wang Q, Lau C, Kuan L, Henry AM, et al: A mesoscale connectome of the mouse brain. Nature. 508:207–214. 2014. View Article : Google Scholar : PubMed/NCBI

155 

Qian J, Olbrecht S, Boeckx B, Vos H, Laoui D, Etlioglu E, Wauters E, Pomella V, Verbandt S, Busschaert P, et al: A pan-cancer blueprint of the heterogeneous tumor microenvironment revealed by single-cell profiling. Cell Res. 30:745–762. 2020. View Article : Google Scholar : PubMed/NCBI

156 

Galeano Niño JL, Wu H, LaCourse KD, Kempchinsky AG, Baryiames A, Barber B, Futran N, Houlton J, Sather C, Sicinska E, et al: Effect of the intratumoral microbiota on spatial and cellular heterogeneity in cancer. Nature. 611:810–817. 2022. View Article : Google Scholar : PubMed/NCBI

157 

Ozato Y, Kojima Y, Kobayashi Y, Hisamatsu Y, Toshima T, Yonemura Y, Masuda T, Kagawa K, Goto Y, Utou M, et al: Spatial and single-cell transcriptomics decipher the cellular environment containing HLA-G+ cancer cells and SPP1+ macrophages in colorectal cancer. Cell Rep. 42:1119292023. View Article : Google Scholar : PubMed/NCBI

158 

Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A and Bray F: Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 71:209–249. 2021. View Article : Google Scholar : PubMed/NCBI

159 

Dekker E, Tanis PJ, Vleugels JLA, Kasi PM and Wallace MB: Colorectal cancer. Lancet. 394:1467–1480. 2019. View Article : Google Scholar : PubMed/NCBI

160 

Zhao W, Dai S, Yue L, Xu F, Gu J, Dai X and Qian X: Emerging mechanisms progress of colorectal cancer liver metastasis. Front Endocrinol (Lausanne). 13:10815852022. View Article : Google Scholar : PubMed/NCBI

161 

Brouwer NP, Webbink L, Haddad TS, Rutgers N, van Vliet S, Wood CS, Jansen PW, Lafarge MW; imCMS Consortium; de Wilt JH, ; et al: Transcriptomics and proteomics reveal distinct biology for lymph node metastases and tumour deposits in colorectal cancer. J Pathol. 261:401–412. 2023. View Article : Google Scholar : PubMed/NCBI

162 

Kobayashi H, Gieniec KA, Lannagan TRM, Wang T, Asai N, Mizutani Y, Iida T, Ando R, Thomas EM, Sakai A, et al: The origin and contribution of cancer-associated fibroblasts in colorectal carcinogenesis. Gastroenterology. 162:890–906. 2022. View Article : Google Scholar : PubMed/NCBI

163 

Peng Z, Ye M, Ding H, Feng Z and Hu K: Spatial transcriptomics atlas reveals the crosstalk between cancer-associated fibroblasts and tumor microenvironment components in colorectal cancer. J Transl Med. 20:3022022. View Article : Google Scholar : PubMed/NCBI

164 

Qi J, Sun H, Zhang Y, Wang Z, Xun Z, Li Z, Ding X, Bao R, Hong L, Jia W, et al: Single-cell and spatial analysis reveal interaction of FAP+ fibroblasts and SPP1+ macrophages in colorectal cancer. Nat Commun. 13:17422022. View Article : Google Scholar : PubMed/NCBI

165 

Valdeolivas A, Amberg B, Giroud N, Richardson M, Gálvez EJC, Badillo S, Julien-Laferrière A, Túrós D, Voith von Voithenberg L, Wells I, et al: Profiling the heterogeneity of colorectal cancer consensus molecular subtypes using spatial transcriptomics. NPJ Precis Oncol. 8:102024. View Article : Google Scholar : PubMed/NCBI

166 

Roelands J, van der Ploeg M, Ijsselsteijn ME, Dang H, Boonstra JJ, Hardwick JCH, Hawinkels LJAC, Morreau H and de Miranda NFCC: Transcriptomic and immunophenotypic profiling reveals molecular and immunological hallmarks of colorectal cancer tumourigenesis. Gut. 72:1326–1339. 2023. View Article : Google Scholar : PubMed/NCBI

167 

Zwing N, Failmezger H, Ooi CH, Hibar DP, Cañamero M, Gomes B, Gaire F and Korski K: Analysis of spatial organization of suppressive myeloid cells and effector T cells in colorectal cancer-A potential tool for discovering prognostic biomarkers in clinical research. Front Immunol. 11:5502502020. View Article : Google Scholar : PubMed/NCBI

168 

Liu HT, Chen SY, Peng LL, Zhong L, Zhou L, Liao SQ, Chen ZJ, Wang QL, He S and Zhou ZH: Spatially resolved transcriptomics revealed local invasion-related genes in colorectal cancer. Front Oncol. 13:10890902023. View Article : Google Scholar : PubMed/NCBI

169 

Manfredi S, Lepage C, Hatem C, Coatmeur O, Faivre J and Bouvier AM: Epidemiology and management of liver metastases from colorectal cancer. Ann Surg. 244:254–259. 2006. View Article : Google Scholar : PubMed/NCBI

170 

Hu Z, Ding J, Ma Z, Sun R, Seoane JA, Scott Shaffer J, Suarez CJ, Berghoff AS, Cremolini C, Falcone A, et al: Quantitative evidence for early metastatic seeding in colorectal cancer. Nat Genet. 51:1113–1122. 2019. View Article : Google Scholar : PubMed/NCBI

171 

Wang F, Long J, Li L, Wu ZX, Da TT, Wang XQ, Huang C, Jiang YH, Yao XQ, Ma HQ, et al: Single-cell and spatial transcriptome analysis reveals the cellular heterogeneity of liver metastatic colorectal cancer. Sci Adv. 9:eadf54642023. View Article : Google Scholar : PubMed/NCBI

172 

Garbarino O, Lambroia L, Basso G, Marrella V, Franceschini B, Soldani C, Pasqualini F, Giuliano D, Costa G, Peano C, et al: Spatial resolution of cellular senescence dynamics in human colorectal liver metastasis. Aging Cell. 22:e138532023. View Article : Google Scholar : PubMed/NCBI

173 

Cheng LK, O'Grady G, Du P, Egbuji JU, Windsor JA and Pullan AJ: Gastrointestinal system. Wiley Interdiscip Rev Syst Biol Med. 2:65–79. 2010. View Article : Google Scholar : PubMed/NCBI

174 

Peterson LW and Artis D: Intestinal epithelial cells: Regulators of barrier function and immune homeostasis. Nat Rev Immunol. 14:141–153. 2014. View Article : Google Scholar : PubMed/NCBI

175 

Pelka K, Hofree M, Chen JH, Sarkizova S, Pirl JD, Jorgji V, Bejnood A, Dionne D, Ge WH, Xu KH, et al: Spatially organized multicellular immune hubs in human colorectal cancer. Cell. 184:4734–4752.e20. 2021. View Article : Google Scholar : PubMed/NCBI

176 

Frede A, Czarnewski P, Monasterio G, Tripathi KP, Bejarano DA, Ramirez Flores RO, Sorini C, Larsson L, Luo X, Geerlings L, et al: B cell expansion hinders the stroma-epithelium regenerative cross talk during mucosal healing. Immunity. 55:2336–2351.e12. 2022. View Article : Google Scholar : PubMed/NCBI

177 

Zhang X, Hu C, Huang C, Wei Y, Li X, Hu M, Li H, Wu J, Czajkowsky DM, Guo Y and Shao Z: Robust Acquisition of spatial transcriptional programs in tissues with immunofluorescence-guided laser capture microdissection. Front Cell Dev Biol. 10:8531882022. View Article : Google Scholar : PubMed/NCBI

178 

Ghaddar B and De S: Reconstructing physical cell interaction networks from single-cell data using Neighbor-seq. Nucleic Acids Res. 50:e822022. View Article : Google Scholar : PubMed/NCBI

179 

Zhu Z, Cai J, Hou W, Xu K, Wu X, Song Y, Bai C, Mo YY and Zhang Z: Microbiome and spatially resolved metabolomics analysis reveal the anticancer role of gut Akkermansia muciniphila by crosstalk with intratumoral microbiota and reprogramming tumoral metabolism in mice. Gut Microbes. 15:21667002023. View Article : Google Scholar : PubMed/NCBI

180 

Sun C, Wang A, Zhou Y, Chen P, Wang X, Huang J, Gao J, Wang X, Shu L, Lu J, et al: Spatially resolved multi-omics highlights cell-specific metabolic remodeling and interactions in gastric cancer. Nat Commun. 14:26922023. View Article : Google Scholar : PubMed/NCBI

181 

Tun HM, Peng Y, Massimino L, Sin ZY, Parigi TL, Facoetti A, Rahman S, Danese S and Ungaro F: Gut virome in inflammatory bowel disease and beyond. Gut. 73:350–360. 2024. View Article : Google Scholar : PubMed/NCBI

182 

Zhao E, Stone MR, Ren X, Guenthoer J, Smythe KS, Pulliam T, Williams SR, Uytingco CR, Taylor SEB, Nghiem P, et al: Spatial transcriptomics at subspot resolution with BayesSpace. Nat Biotechnol. 39:1375–1384. 2021. View Article : Google Scholar : PubMed/NCBI

183 

Saviano A, Henderson NC and Baumert TF: Single-cell genomics and spatial transcriptomics: Discovery of novel cell states and cellular interactions in liver physiology and disease biology. J Hepatol. 73:1219–1230. 2020. View Article : Google Scholar : PubMed/NCBI

184 

Peterson VM, Zhang KX, Kumar N, Wong J, Li L, Wilson DC, Moore R, McClanahan TK, Sadekova S and Klappenbach JA: Multiplexed quantification of proteins and transcripts in single cells. Nat Biotechnol. 35:936–939. 2017. View Article : Google Scholar : PubMed/NCBI

185 

Thornton CA, Mulqueen RM, Torkenczy KA, Nishida A, Lowenstein EG, Fields AJ, Steemers FJ, Zhang W, McConnell HL, Woltjer RL, et al: Spatially mapped single-cell chromatin accessibility. Nat Commun. 12:12742021. View Article : Google Scholar : PubMed/NCBI

186 

Stoeckius M, Hafemeister C, Stephenson W, Houck-Loomis B, Chattopadhyay PK, Swerdlow H, Satija R and Smibert P: Simultaneous epitope and transcriptome measurement in single cells. Nat Methods. 14:865–868. 2017. View Article : Google Scholar : PubMed/NCBI

187 

Vickovic S, Lötstedt B, Klughammer J, Mages S, Segerstolpe Å, Rozenblatt-Rosen O and Regev A: SM-omics is an automated platform for high-throughput spatial multi-omics. Nat Commun. 13:7952022. View Article : Google Scholar : PubMed/NCBI

188 

Park HE, Jo SH, Lee RH, Macks CP, Ku T, Park J, Lee CW, Hur JK and Sohn CH: Spatial transcriptomics: Technical aspects of recent developments and their applications in neuroscience and cancer research. Adv Sci (Weinh). 10:e22069392023. View Article : Google Scholar : PubMed/NCBI

189 

Rao A, Barkley D, França GS and Yanai I: Exploring tissue architecture using spatial transcriptomics. Nature. 596:211–220. 2021. View Article : Google Scholar : PubMed/NCBI

190 

Zhang L, Chen D, Song D, Liu X, Zhang Y, Xu X and Wang X: Clinical and translational values of spatial transcriptomics. Signal Transduct Target Ther. 7:1112022. View Article : Google Scholar : PubMed/NCBI

191 

Li Y, Stanojevic S and Garmire LX: Emerging artificial intelligence applications in spatial transcriptomics analysis. Comput Struct Biotechnol J. 20:2895–2908. 2022. View Article : Google Scholar : PubMed/NCBI

192 

Hao M, Hua K and Zhang X: SOMDE: A scalable method for identifying spatially variable genes with self-organizing map. Bioinformatics. 37:4392–4398. 2021. View Article : Google Scholar : PubMed/NCBI

193 

Dries R, Zhu Q, Dong R, Eng CL, Li H, Liu K, Fu Y, Zhao T, Sarkar A, Bao F, et al: Giotto: A toolbox for integrative analysis and visualization of spatial expression data. Genome Biol. 22:782021. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Guo Y, Ren C, He Y, Wu Y and Yang X: Deciphering the spatiotemporal transcriptional landscape of intestinal diseases (Review). Mol Med Rep 30: 157, 2024.
APA
Guo, Y., Ren, C., He, Y., Wu, Y., & Yang, X. (2024). Deciphering the spatiotemporal transcriptional landscape of intestinal diseases (Review). Molecular Medicine Reports, 30, 157. https://doi.org/10.3892/mmr.2024.13281
MLA
Guo, Y., Ren, C., He, Y., Wu, Y., Yang, X."Deciphering the spatiotemporal transcriptional landscape of intestinal diseases (Review)". Molecular Medicine Reports 30.3 (2024): 157.
Chicago
Guo, Y., Ren, C., He, Y., Wu, Y., Yang, X."Deciphering the spatiotemporal transcriptional landscape of intestinal diseases (Review)". Molecular Medicine Reports 30, no. 3 (2024): 157. https://doi.org/10.3892/mmr.2024.13281
Copy and paste a formatted citation
x
Spandidos Publications style
Guo Y, Ren C, He Y, Wu Y and Yang X: Deciphering the spatiotemporal transcriptional landscape of intestinal diseases (Review). Mol Med Rep 30: 157, 2024.
APA
Guo, Y., Ren, C., He, Y., Wu, Y., & Yang, X. (2024). Deciphering the spatiotemporal transcriptional landscape of intestinal diseases (Review). Molecular Medicine Reports, 30, 157. https://doi.org/10.3892/mmr.2024.13281
MLA
Guo, Y., Ren, C., He, Y., Wu, Y., Yang, X."Deciphering the spatiotemporal transcriptional landscape of intestinal diseases (Review)". Molecular Medicine Reports 30.3 (2024): 157.
Chicago
Guo, Y., Ren, C., He, Y., Wu, Y., Yang, X."Deciphering the spatiotemporal transcriptional landscape of intestinal diseases (Review)". Molecular Medicine Reports 30, no. 3 (2024): 157. https://doi.org/10.3892/mmr.2024.13281
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team