|
1
|
Rahib L, Wehner MR, Matrisian LM and Nead
KT: Estimated projection of US cancer incidence and death to 2040.
JAMA Netw Open. 4:e2147082021. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Huang J, Lok V, Ngai CH, Zhang L, Yuan J,
Lao XQ, Ng K, Chong C, Zheng ZJ and Wong MCS: Worldwide burden of,
risk factors for, and trends in pancreatic cancer.
Gastroenterology. 160:744–754. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Infante-Cossio P, Duran-Romero AJ,
Castaño-Seiquer A, Martinez-De-Fuentes R and Pereyra-Rodriguez JJ:
Estimated projection of oral cavity and oropharyngeal cancer deaths
in Spain to 2044. BMC Oral Health. 22:4442022. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Viale PH: The American cancer society's
facts & figures: 2020 Edition. J Adv Pract Oncol. 11:135–136.
2020.PubMed/NCBI
|
|
5
|
Blackford AL, Canto MI, Klein AP, Hruban
RH and Goggins M: Recent trends in the incidence and survival of
stage 1A pancreatic cancer: A surveillance, epidemiology, and end
results analysis. J Natl Cancer Inst. 112:1162–1169. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Cao K, Xia Y, Yao J, Han X, Lambert L,
Zhang T, Tang W, Jin G, Jiang H, Fang X, et al: Large-scale
pancreatic cancer detection via non-contrast CT and deep learning.
Nat Med. 29:3033–3043. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Zheng R, Zhang S, Zeng H, Wang S, Sun K,
Chen R, Li L, Wei W and He J: Cancer incidence and mortality in
China, 2016. J Nat Cancer Cent. 2:1–9. 2022. View Article : Google Scholar
|
|
8
|
Yachida S, Jones S, Bozic I, Antal T,
Leary R, Fu B, Kamiyama M, Hruban RH, Eshleman JR, Nowak MA, et al:
Distant metastasis occurs late during the genetic evolution of
pancreatic cancer. Nature. 467:1114–1117. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Werba G, Weissinger D, Kawaler EA, Zhao E,
Kalfakakou D, Dhara S, Wang L, Lim HB, Oh G, Jing X, et al:
Single-cell RNA sequencing reveals the effects of chemotherapy on
human pancreatic adenocarcinoma and its tumor microenvironment. Nat
Commun. 14:7972023. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Du W, Xia X, Hu F and Yu J: Extracellular
matrix remodeling in the tumor immunity. Front Immunol.
14:13406342024. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Chen K, Wang Q, Li M, Guo H, Liu W, Wang
F, Tian X and Yang Y: Single-cell RNA-seq reveals dynamic change in
tumor microenvironment during pancreatic ductal adenocarcinoma
malignant progression. EBioMedicine. 66:1033152021. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Storz P and Crawford H: Carcinogenesis of
pancreatic ductal adenocarcinoma. Gastroenterology. 158:2072–2081.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Wang S, Li Y, Xing C, Ding C, Zhang H,
Chen L, You L, Dai M and Zhao Y: Tumor microenvironment in
chemoresistance, metastasis and immunotherapy of pancreatic cancer.
Am J Cancer Res. 10:1937–1953. 2020.PubMed/NCBI
|
|
14
|
Shi C, Washington MK, Chaturvedi R, Drosos
Y, Revetta FL, Weaver CJ, Buzhardt E, Yull FE, Blackwell TS,
Sosa-Pineda B, et al: Fibrogenesis in pancreatic cancer is a
dynamic process regulated by macrophage-stellate cell interaction.
Lab Invest. 94:409–421. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Briukhovetska D, Dörr J, Endres S, Libby
P, Dinarello CA and Kobold S: Interleukins in cancer: From biology
to therapy. Nature Rev Cancer. 21:481–499. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Kartsonaki C, Pang Y, Millwood I, Yang L,
Guo Y, Walters R, Lv J, Hill M, Yu C, Chen Y, et al: Circulating
proteins and risk of pancreatic cancer: A case-subcohort study
among Chinese adults. Int J Epidemiol. 51:817–829. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Nie YJ, Wu SH, Xuan YH and Yan G: Role of
IL-17 family cytokines in the progression of IPF from inflammation
to fibrosis. Mil Med Res. 9:212022.PubMed/NCBI
|
|
18
|
Apte MV, Haber PS, Applegate TL, Norton
ID, McCaughan GW, Korsten MA, Pirola RC and Wilson JS: Periacinar
stellate shaped cells in rat pancreas: identification, isolation,
and culture. Gut. 43:128–133. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Zhou Y, Wang H, Zhou J, Qiu S, Cai T, Li
H, Shen Z, Hu Y, Ding B, Luo M, et al: Vitamin A and its
multi-effects on pancreas: Recent advances and prospects. Front
Endocrinol (Lausanne). 12:6209412021. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Baron M, Veres A, Wolock SL, Faust AL,
Gaujoux R, Vetere A, Ryu JH, Wagner BK, Shen-Orr SS, Klein AM, et
al: A single-cell transcriptomic map of the human and mouse
pancreas reveals inter- and intra-cell population structure. Cell
Syst. 3:346–360.e4. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Ikejiri N: The vitamin A-storing cells in
the human and rat pancreas. Kurume Med J. 37:67–81. 1990.
View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Ahmad RS, Eubank TD, Lukomski S and Boone
BA: Immune cell modulation of the extracellular matrix contributes
to the pathogenesis of pancreatic cancer. Biomolecules. 11:9012021.
View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Bazzichetto C, Conciatori F, Luchini C,
Simionato F, Santoro R, Vaccaro V, Corbo V, Falcone I, Ferretti G,
Cognetti F, et al: From genetic alterations to tumor
microenvironment: The Ariadne's String in pancreatic cancer. Cells.
9:3092020. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Mews P, Phillips P, Fahmy R, Korsten M,
Pirola R, Wilson J and Apte M: Pancreatic stellate cells respond to
inflammatory cytokines: Potential role in chronic pancreatitis.
Gut. 50:535–541. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Yang X, Chen J, Wang J, Ma S, Feng W, Wu
Z, Guo Y, Zhou H, Mi W, Chen W, et al: Very-low-density lipoprotein
receptor-enhanced lipid metabolism in pancreatic stellate cells
promotes pancreatic fibrosis. Immunity. 55:1185–1199.e8. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Elyada E, Bolisetty M, Laise P, Flynn WF,
Courtois ET, Burkhart RA, Teinor JA, Belleau P, Biffi G, Lucito MS,
et al: Cross-species single-cell analysis of pancreatic ductal
adenocarcinoma reveals antigen-presenting cancer-associated
fibroblasts. Cancer Discov. 9:1102–1123. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Öhlund D, Handly-Santana A, Biffi G,
Elyada E, Almeida AS, Ponz-Sarvise M, Corbo V, Oni TE, Hearn SA,
Lee EJ, et al: Distinct populations of inflammatory fibroblasts and
myofibroblasts in pancreatic cancer. J Exp Med. 214:579–596. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Schnittert J, Bansal R and Prakash J:
Targeting pancreatic stellate cells in cancer. Trends Cancer.
5:128–142. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Chen Y, McAndrews KM and Kalluri R:
Clinical and therapeutic relevance of cancer-associated
fibroblasts. Nat Rev Clin Oncol. 18:792–804. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Chen Y, Kim J, Yang S, Wang H, Wu CJ,
Sugimoto H, LeBleu VS and Kalluri R: Type I collagen deletion in
αSMA+ myofibroblasts augments immune suppression and
accelerates progression of pancreatic cancer. Cancer Cell.
39:548–565.e6. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
van Duijneveldt G, Griffin MDW and
Putoczki TL: Emerging roles for the IL-6 family of cytokines in
pancreatic cancer. Clin Sci (Lond). 134:2091–2115. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Biffi G, Oni TE, Spielman B, Hao Y, Elyada
E, Park Y, Preall J and Tuveson DA: IL1-induced JAK/STAT signaling
is antagonized by TGFβ to shape CAF heterogeneity in pancreatic
ductal adenocarcinoma. Cancer Discov. 9:282–301. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Huber M, Brehm CU, Gress TM, Buchholz M,
Alashkar Alhamwe B, von Strandmann EP, Slater EP, Bartsch JW, Bauer
C and Lauth M: The immune microenvironment in pancreatic cancer.
Int J Mol Sci. 21:73072020. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Miyai Y, Esaki N, Takahashi M and Enomoto
A: Cancer-associated fibroblasts that restrain cancer progression:
Hypotheses and perspectives. Cancer Sci. 111:1047–1057. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Opitz F, Haeberle L, Daum A and Esposito
I: Tumor microenvironment in pancreatic intraepithelial neoplasia.
Cancers (Basel). 13:61882021. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Carpenter ES, Elhossiny AM, Kadiyala P, Li
J, McGue J, Griffith BD, Zhang Y, Edwards J, Nelson S, Lima F, et
al: Analysis of donor pancreata defines the transcriptomic
signature and microenvironment of early neoplastic lesions. Cancer
Discov. 13:1324–1345. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Xue J, Sharma V, Hsieh MH, Chawla A,
Murali R, Pandol SJ and Habtezion A: Alternatively activated
macrophages promote pancreatic fibrosis in chronic pancreatitis.
Nat Commun. 6:71582015. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Wu J, Zhang L, Shi J, He R, Yang W,
Habtezion A, Niu N, Lu P and Xue J: Macrophage phenotypic switch
orchestrates the inflammation and repair/regeneration following
acute pancreatitis injury. EBioMedicine. 58:1029202020. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Hingorani SR: Epithelial and stromal
co-evolution and complicity in pancreatic cancer. Nat Rev Cancer.
23:57–77. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Garlanda C and Mantovani A: Interleukin-1
in tumor progression, therapy, and prevention. Cancer Cell.
39:1023–1027. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Boersma B, Jiskoot W, Lowe P and Bourquin
C: The interleukin-1 cytokine family members: Role in cancer
pathogenesis and potential therapeutic applications in cancer
immunotherapy. Cytokine Growth Factor Rev. 62:1–14. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Dinarello CA, Simon A and van der Meer
JWM: Treating inflammation by blocking interleukin-1 in a broad
spectrum of diseases. Nat Rev Drug Discov. 11:633–652. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Dinarello C: Overview of the IL-1 family
in innate inflammation and acquired immunity. Immunol Rev.
281:8–27. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Narros-Fernández P, Chomanahalli
Basavarajappa S and Walsh PT: Interleukin-1 family cytokines at the
crossroads of microbiome regulation in barrier health and disease.
FEBS J. 291:1849–1869. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Tomimatsu S, Ichikura T and Mochizuki H:
Significant correlation between expression of interleukin-1alpha
and liver metastasis in gastric carcinoma. Cancer. 91:1272–1276.
2001. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Xue M, Zhu Y, Jiang Y, Han L, Shi M, Su R,
Wang L, Xiong C, Wang C, Wang T, et al: Schwann cells regulate
tumor cells and cancer-associated fibroblasts in the pancreatic
ductal adenocarcinoma microenvironment. Nat Commun. 14:46002023.
View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Das S, Shapiro B, Vucic E, Vogt S and
Bar-Sagi D: Tumor cell-derived IL1β promotes desmoplasia and immune
suppression in pancreatic cancer. Cancer Res. 80:1088–1101. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Caronni N, La Terza F, Vittoria FM,
Barbiera G, Mezzanzanica L, Cuzzola V, Barresi S, Pellegatta M,
Canevazzi P, Dunsmore G, et al: IL-1β+ macrophages fuel
pathogenic inflammation in pancreatic cancer. Nature. 623:415–422.
2023. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Herremans KD, Szymkiewicz DD, Riner AN,
Bohan RP, Tushoski GW, Davidson AM, Lou X, Leong MC, Dean BD,
Gerber M, et al: The interleukin-1 axis and the tumor immune
microenvironment in pancreatic ductal adenocarcinoma. Neoplasia.
28:1007892022. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Chen L, Huang H, Zheng X, Li Y, Chen J,
Tan B, Liu Y, Sun R, Xu B, Yang M, et al: IL1R2 increases
regulatory T cell population in the tumor microenvironment by
enhancing MHC-II expression on cancer-associated fibroblasts. J
Immunother Cancer. 10:e0045852022. View Article : Google Scholar
|
|
51
|
Underwood PW, Gerber MN, Nguyen K, Delitto
D, Han S, Thomas RM, Forsmark CE, Trevino JG, Gooding WE and Hughes
SJ: Protein signatures and tissue diagnosis of pancreatic cancer. J
Am Coll Surg. 230:26–36.e1. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Waldmann T: Cytokines in cancer
immunotherapy. Cold Spring Hard Perspect Biol. 10:a0284722018.
View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Yasuda K, Nakanishi K and Tsutsui H:
Interleukin-18 in health and disease. Int J Mol Sci. 20:6492019.
View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Kaplanski G: Interleukin-18: Biological
properties and role in disease pathogenesis. Immunol Rev.
281:138–153. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Schneider A, Haas SL, Hildenbrand R,
Siegmund S, Reinhard I, Nakovics H, Singer MV and Feick P: Enhanced
expression of interleukin-18 in serum and pancreas of patients with
chronic pancreatitis. World J Gastroentero. 12:6507–6514. 2006.
View Article : Google Scholar
|
|
56
|
Manohar M, Verma AK, Venkateshaiah SU and
Mishra A: Role of eosinophils in the initiation and progression of
pancreatitis pathogenesis. Am J Physiol Gastrointest Liver Physiol.
314:G211–G222. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Li CX, Cui LH, Zhang LQ, Yang L, Zhuo YZ,
Cui NQ and Zhang SK: Role of NLR family pyrin domain-containing 3
inflammasome in the activation of pancreatic stellate cells. Exp
Cell Res. 404:1126342021. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Liu Y, Xu X, Lei W, Hou Y, Zhang Y, Tang
R, Yang Z, Tian Y, Zhu Y, Wang C, et al: The NLRP3 inflammasome in
fibrosis and aging: The known unknowns. Ageing Res Rev.
79:1016382022. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Zhou T, Damsky W, Weizman OE, McGeary MK,
Hartmann KP, Rosen CE, Fischer S, Jackson R, Flavell RA, Wang J, et
al: IL-18BP is a secreted immune checkpoint and barrier to IL-18
immunotherapy. Nature. 583:609–614. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Ahmed A, Klotz R, Köhler S, Giese N,
Hackert T, Springfeld C, Jäger D and Halama N: Immune features of
the peritumoral stroma in pancreatic ductal adenocarcinoma. Front
Immunol. 13:9474072022. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Tarhini AA, Millward M, Mainwaring P,
Kefford R, Logan T, Pavlick A, Kathman SJ, Laubscher KH, Dar MM and
Kirkwood JM: A phase 2, randomized study of SB-485232, rhIL-18, in
patients with previously untreated metastatic melanoma. Cancer.
115:859–868. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Kim SH, Eisenstein M, Reznikov L, Fantuzzi
G, Novick D, Rubinstein M and Dinarello CA: Structural requirements
of six naturally occurring isoforms of the IL-18 binding protein to
inhibit IL-18. Proc Natl Acad Sci USA. 97:1190–1195. 2000.
View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Menachem A, Alteber Z, Cojocaru G, Fridman
Kfir T, Blat D, Leiderman O, Galperin M, Sever L, Cohen N, Cohen K,
et al: Unleashing natural IL18 activity using an anti-IL18BP
blocker induces potent immune stimulation and antitumor effects.
Cancer Immunol Res. 12:687–703. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Yang Y, Zhang ZX, Lian D, Haig A,
Bhattacharjee R and Jevnikar AM: IL-37 inhibits IL-18-induced
tubular epithelial cell expression of pro-inflammatory cytokines
and renal ischemia-reperfusion injury. Kidney Int. 87:396–408.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Liew FY, Girard JP and Turnquist HR:
Interleukin-33 in health and disease. Nat Rev Immunol. 16:676–689.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Larsen KM, Minaya MK, Vaish V and Peña
MMO: The role of IL-33/ST2 pathway in tumorigenesis. Int J Mol Sci.
19:26762018. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Park JH, Ameri AH, Dempsey KE, Conrad DN,
Kem M, Mino-Kenudson M and Demehri S: Nuclear IL-33/SMAD signaling
axis promotes cancer development in chronic inflammation. EMBO J.
40:e1061512021. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Alam A, Levanduski E, Denz P,
Villavicencio HS, Bhatta M, Alhorebi L, Zhang Y, Gomez EC, Morreale
B, Senchanthisai S, et al: Fungal mycobiome drives IL-33 secretion
and type 2 immunity in pancreatic cancer. Cancer Cell.
40:153–167.e11. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Andersson P, Yang Y, Hosaka K, Zhang Y,
Fischer C, Braun H, Liu S, Yu G, Liu S, Beyaert R, et al: Molecular
mechanisms of IL-33-mediated stromal interactions in cancer
metastasis. JCI insight. 3:e1223752018. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Moral JA, Leung J, Rojas LA, Ruan J, Zhao
J, Sethna Z, Ramnarain A, Gasmi B, Gururajan M, Redmond D, et al:
ILC2s amplify PD-1 blockade by activating tissue-specific cancer
immunity. Nature. 579:130–135. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Sun X, He X, Zhang Y, Hosaka K, Andersson
P, Wu J, Wu J, Jing X, Du Q, Hui X, et al: Inflammatory
cell-derived CXCL3 promotes pancreatic cancer metastasis through a
novel myofibroblast-hijacked cancer escape mechanism. Gut.
71:129–147. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Alonso-Curbelo D, Ho YJ, Burdziak C, Maag
JLV, Morris JP IV, Chandwani R, Chen HA, Tsanov KM, Barriga FM,
Luan W, et al: A gene-environment-induced epigenetic program
initiates tumorigenesis. Nature. 590:642–648. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Burdziak C, Alonso-Curbelo D, Walle T,
Reyes J, Barriga FM, Haviv D, Xie Y, Zhao Z, Zhao CJ, Chen HA, et
al: Epigenetic plasticity cooperates with cell-cell interactions to
direct pancreatic tumorigenesis. Science. 380:eadd53272023.
View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Hatzioannou A, Banos A, Sakelaropoulos T,
Fedonidis C, Vidali MS, Köhne M, Händler K, Boon L, Henriques A,
Koliaraki V, et al: An intrinsic role of IL-33 in Treg
cell-mediated tumor immunoevasion. Nat Immunol. 21:75–85. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Martínez-Pérez C, Kay C, Meehan J, Gray M,
Dixon JM and Turnbull AK: The IL6-like cytokine family: Role and
biomarker potential in breast cancer. J Pers Med. 11:10732021.
View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Shi Y, Gao W, Lytle NK, Huang P, Yuan X,
Dann AM, Ridinger-Saison M, DelGiorno KE, Antal CE, Liang G, et al:
Targeting LIF-mediated paracrine interaction for pancreatic cancer
therapy and monitoring. Nature. 569:131–135. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Johnson DE, O'Keefe RA and Grandis JR:
Targeting the IL-6/JAK/STAT3 signalling axis in cancer. Nat Rev
Clin Oncol. 15:234–248. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Heinrich PC, Behrmann I, Haan S, Hermanns
HM, Müller-Newen G and Schaper F: Principles of interleukin
(IL)-6-type cytokine signalling and its regulation. Biochem J.
374:1–20. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Zhang Y, Yan W, Collins MA, Bednar F,
Rakshit S, Zetter BR, Stanger BZ, Chung I, Rhim AD and di Magliano
MP: Interleukin-6 is required for pancreatic cancer progression by
promoting MAPK signaling activation and oxidative stress
resistance. Cancer Res. 73:6359–6374. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Lee YE, Go GY, Koh EY, Yoon HN, Seo M,
Hong SM, Jeong JH, Kim JC, Cho D, Kim TS, et al: Synergistic
therapeutic combination with a CAF inhibitor enhances
CAR-NK-mediated cytotoxicity via reduction of CAF-released IL-6. J
Immunother Cancer. 11:e0061302023. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Ramsey ML, Talbert E, Ahn D, Bekaii-Saab
T, Badi N, Bloomston PM, Conwell DL, Cruz-Monserrate Z, Dillhoff M,
Farren MR, et al: Circulating interleukin-6 is associated with
disease progression, but not cachexia in pancreatic cancer.
Pancreatology. 19:80–87. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Ebrahimi B, Tucker SL, Li D, Abbruzzese JL
and Kurzrock R: Cytokines in pancreatic carcinoma: Correlation with
phenotypic characteristics and prognosis. Cancer. 101:2727–2736.
2004. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Kumari N, Dwarakanath BS, Das A and Bhatt
AN: Role of interleukin-6 in cancer progression and therapeutic
resistance. Tumour Biol. 37:11553–11572. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Nagathihalli NS, Castellanos JA, VanSaun
MN, Dai X, Ambrose M, Guo Q, Xiong Y and Merchant NB: Pancreatic
stellate cell secreted IL-6 stimulates STAT3 dependent invasiveness
of pancreatic intraepithelial neoplasia and cancer cells.
Oncotarget. 7:65982–65992. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Angevin E, Tabernero J, Elez E, Cohen SJ,
Bahleda R, van Laethem JL, Ottensmeier C, Lopez-Martin JA, Clive S,
Joly F, et al: A phase I/II, multiple-dose, dose-escalation study
of siltuximab, an anti-interleukin-6 monoclonal antibody, in
patients with advanced solid tumors. Clin Cancer Res. 20:2192–2204.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Goumas FA, Holmer R, Egberts JH,
Gontarewicz A, Heneweer C, Geisen U, Hauser C, Mende MM, Legler K,
Röcken C, et al: Inhibition of IL-6 signaling significantly reduces
primary tumor growth and recurrencies in orthotopic xenograft
models of pancreatic cancer. Int J Cancer. 137:1035–1046. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Hurwitz H, Van Cutsem E, Bendell J,
Hidalgo M, Li CP, Salvo MG, Macarulla T, Sahai V, Sama A, Greeno E,
et al: Ruxolitinib + capecitabine in advanced/metastatic pancreatic
cancer after disease progression/intolerance to first-line therapy:
JANUS 1 and 2 randomized phase III studies. Invest New Drugs.
36:683–695. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Wong ALA, Hirpara JL, Pervaiz S, Eu JQ,
Sethi G and Goh BC: Do STAT3 inhibitors have potential in the
future for cancer therapy? Expert Opin Investig Drugs. 26:883–887.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Ouyang W, Rutz S, Crellin NK, Valdez PA
and Hymowitz SG: Regulation and functions of the IL-10 family of
cytokines in inflammation and disease. Annu Rev Immunol. 29:71–109.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Lazear HM, Schoggins JW and Diamond MS:
Shared and distinct functions of type I and type III interferons.
Immunity. 50:907–923. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Marcon F, Zuo J, Pearce H, Nicol S,
Margielewska-Davies S, Farhat M, Mahon B, Middleton G, Brown R,
Roberts KJ and Moss P: NK cells in pancreatic cancer demonstrate
impaired cytotoxicity and a regulatory IL-10 phenotype.
Oncoimmunology. 9:18454242020. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Xuan X, Tian Z, Zhang M, Zhou J, Gao W,
Zhang Y, Zhang Y, Lei B, Ni B, Wu Y and Fan W: Diverse effects of
interleukin-22 on pancreatic diseases. Pancreatology. 18:231–237.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Zhao Y, Chen J, Andreatta M, Feng B, Xie
YQ, Wenes M, Wang Y, Gao M, Hu X, Romero P, et al: IL-10-expressing
CAR T cells resist dysfunction and mediate durable clearance of
solid tumors and metastases. Nat Biotechnol. Jan 2–2024.(Epub ahead
of print). View Article : Google Scholar
|
|
94
|
Ip WKE, Hoshi N, Shouval DS, Snapper S and
Medzhitov R: Anti-inflammatory effect of IL-10 mediated by
metabolic reprogramming of macrophages. Science. 356:513–519. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Lin WR, Lim SN, Yen TH and Alison MR: The
influence of bone marrow-secreted IL-10 in a mouse model of
cerulein-induced pancreatic fibrosis. Biomed Res Int.
2016:46015322016. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Qiao J, Liu Z, Dong C, Luan Y, Zhang A,
Moore C, Fu K, Peng J, Wang Y, Ren Z, et al: Targeting tumors with
IL-10 prevents dendritic cell-mediated CD8+ T cell
apoptosis. Cancer Cell. 35:901–915.e4. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Naing A, Infante JR, Papadopoulos KP, Chan
IH, Shen C, Ratti NP, Rojo B, Autio KA, Wong DJ, Patel MR, et al:
PEGylated IL-10 (pegilodecakin) induces systemic immune activation,
CD8+ T cell invigoration and polyclonal T cell expansion
in cancer patients. Cancer Cell. 34:775–791.e3. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Labadie KP, Kreuser SA, Brempelis KJ,
Daniel SK, Jiang X, Sullivan KM, Utria AF, Kenerson HL, Kim TS,
Crane CA and Pillarisetty VG: Production of an interleukin-10
blocking antibody by genetically engineered macrophages increases
cancer cell death in human gastrointestinal tumor slice cultures.
Cancer Gene Ther. 30:1227–1233. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Perusina Lanfranca M, Lin Y, Fang J, Zou W
and Frankel T: Biological and pathological activities of
interleukin-22. J Mol Med (Berl). 94:523–534. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Perusina Lanfranca M, Zhang Y, Girgis A,
Kasselman S, Lazarus J, Kryczek I, Delrosario L, Rhim A, Koneva L,
Sartor M, et al: Interleukin 22 signaling regulates acinar cell
plasticity to promote pancreatic tumor development in mice.
Gastroenterology. 158:1417–1432.e11. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Curd LM, Favors SE and Gregg RK:
Pro-tumour activity of interleukin-22 in HPAFII human pancreatic
cancer cells. Clin Exp Immunol. 168:192–199. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Arshad T, Mansur F, Palek R, Manzoor S and
Liska V: A double edged sword role of interleukin-22 in wound
healing and tissue regeneration. Front Immunol. 11:21482020.
View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Feng D, Park O, Radaeva S, Wang H, Yin S,
Kong X, Zheng M, Zakhari S, Kolls JK and Gao B: Interleukin-22
ameliorates cerulein-induced pancreatitis in mice by inhibiting the
autophagic pathway. Int J Biol Sci. 8:249–257. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Yang H, Cao R, Zhou F, Wang B, Xu Q, Li R,
Zhang C and Xu H: The role of Interleukin-22 in severe acute
pancreatitis. Mol Med. 30:602024. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Zhang T, Wahib R, Zazara DE, Lücke J,
Shiri AM, Kempski J, Zhao L, Agalioti T, Machicote AP, Giannou O,
et al: CD4+ T cell-derived IL-22 enhances liver metastasis by
promoting angiogenesis. Oncoimmunology. 12:22696342023. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Xue J, Zhao Q, Sharma V, Nguyen LP, Lee
YN, Pham KL, Edderkaoui M, Pandol SJ, Park W and Habtezion A: Aryl
hydrocarbon receptor ligands in cigarette smoke induce production
of interleukin-22 to promote pancreatic fibrosis in models of
chronic pancreatitis. Gastroenterology. 151:1206–1217. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Zelante T, Iannitti RG, Cunha C, De Luca
A, Giovannini G, Pieraccini G, Zecchi R, D'Angelo C,
Massi-Benedetti C, Fallarino F, et al: Tryptophan catabolites from
microbiota engage aryl hydrocarbon receptor and balance mucosal
reactivity via interleukin-22. Immunity. 39:372–385. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Liu B, Fu T, He P, Du C and Xu K:
Construction of a five-gene prognostic model based on
immune-related genes for the prediction of survival in pancreatic
cancer. Biosci Rep. 41:BSR202043012021. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Lu SW, Pan HC, Hsu YH, Chang KC, Wu LW,
Chen WY and Chang MS: IL-20 antagonist suppresses PD-L1 expression
and prolongs survival in pancreatic cancer models. Nat Commun.
11:46112020. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
McGeachy MJ, Cua DJ and Gaffen SL: The
IL-17 family of cytokines in health and disease. Immunity.
50:892–906. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Meehan EV and Wang K: Interleukin-17
family cytokines in metabolic disorders and cancer. Genes (Basel).
13:16432022. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Jovanovic DV, Di Battista JA,
Martel-Pelletier J, Jolicoeur FC, He Y, Zhang M, Mineau F and
Pelletier JP: IL-17 stimulates the production and expression of
proinflammatory cytokines, IL-beta and TNF-alpha, by human
macrophages. J Immunol. 160:3513–3521. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Loncle C, Bonjoch L, Folch-Puy E,
Lopez-Millan MB, Lac S, Molejon MI, Chuluyan E, Cordelier P, Dubus
P, Lomberk G, et al: IL17 functions through the novel
REG3β-JAK2-STAT3 inflammatory pathway to promote the transition
from chronic pancreatitis to pancreatic cancer. Cancer Res.
75:4852–4862. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Chen Z, Qiao S, Yang L, Sun M, Li B, Lu A
and Li F: Mechanistic insights into the roles of the IL-17/IL-17R
families in pancreatic cancer. Int J Mol Sci. 24:135392023.
View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Chandra V, Li L, Le Roux O, Zhang Y,
Howell RM, Rupani DN, Baydogan S, Miller HD, Riquelme E, Petrosino
J, et al: Gut epithelial Interleukin-17 receptor A signaling can
modulate distant tumors growth through microbial regulation. Cancer
Cell. 42:85–100.e6. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Hu F, Guo F, Zhu Y, Zhou Q, Li T, Xiang H
and Shang D: IL-17 in pancreatic disease: Pathogenesis and
pharmacotherapy. Am J Cancer Res. 10:3551–3564. 2020.PubMed/NCBI
|
|
117
|
Picard FSR, Lutz V, Brichkina A, Neuhaus
F, Ruckenbrod T, Hupfer A, Raifer H, Klein M, Bopp T, Pfefferle PI,
et al: IL-17A-producing CD8+ T cells promote PDAC via
induction of inflammatory cancer-associated fibroblasts. Gut.
72:1510–1522. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Mucciolo G, Curcio C, Roux C, Li WY,
Capello M, Curto R, Chiarle R, Giordano D, Satolli MA, Lawlor R, et
al: IL17A critically shapes the transcriptional program of
fibroblasts in pancreatic cancer and switches on their
protumorigenic functions. Proc Natl Acad Sci USA.
118:e20203951182021. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Li J, Betzler C, Lohneis P, Popp MC, Qin
J, Kalinski T, Wartmann T, Bruns CJ, Zhao Y and Popp FC: The
IL-17A/IL-17RA axis is not related to overall survival and cancer
stem cell modulation in pancreatic cancer. Int J Mol Sci.
21:22152020. View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Qian X, Chen H, Wu X, Hu L, Huang Q and
Jin Y: Interleukin-17 acts as double-edged sword in anti-tumor
immunity and tumorigenesis. Cytokine. 89:34–44. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Wang J, Zhang Y, Yin K, Xu P, Tian J, Ma
J, Tian X, Wang Y, Tang X, Xu H and Wang S: IL-17A weakens the
antitumor immuity by inhibiting apoptosis of MDSCs in Lewis lung
carcinoma bearing mice. Oncotarget. 8:4814–4825. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
122
|
McAndrews KM, Chen Y, Darpolor JK, Zheng
X, Yang S, Carstens JL, Li B, Wang H, Miyake T, Correa de Sampaio
P, et al: Identification of functional heterogeneity of
carcinoma-associated fibroblasts with distinct IL6-mediated therapy
resistance in pancreatic cancer. Cancer Discov. 12:1580–1597. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Ware MJ, Keshishian V, Law JJ, Ho JC,
Favela CA, Rees P, Smith B, Mohammad S, Hwang RF, Rajapakshe K, et
al: Generation of an in vitro 3D PDAC stroma rich spheroid model.
Biomaterials. 108:129–142. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
124
|
Jiang L, Qin J, Dai Y, Zhao S, Zhan Q, Cui
P, Ren L, Wang X, Zhang R, Gao C, et al: Prospective observational
study on biomarkers of response in pancreatic ductal
adenocarcinoma. Nat Med. 30:749–761. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
125
|
Bärthel S, Falcomatà C, Rad R, Theis FJ
and Saur D: Single-cell profiling to explore pancreatic cancer
heterogeneity, plasticity and response to therapy. Nat Cancer.
4:454–467. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
126
|
Ayars M, O'Sullivan E, Macgregor-Das A,
Shindo K, Kim H, Borges M, Yu J, Hruban RH and Goggins M: IL2RG,
identified as overexpressed by RNA-seq profiling of pancreatic
intraepithelial neoplasia, mediates pancreatic cancer growth.
Oncotarget. 8:83370–83383. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
127
|
Hulst SPL: Zur kenntnis der Genese des
Adenokarzinoms und Karzinoms des Pankreas. Virchows Arch.
180:288–316. 1905. View Article : Google Scholar
|
|
128
|
Dougan M, Ingram JR, Jeong HJ, Mosaheb MM,
Bruck PT, Ali L, Pishesha N, Blomberg O, Tyler PM, Servos MM, et
al: Targeting cytokine therapy to the pancreatic tumor
microenvironment using PD-L1-specific VHHs. Cancer Immunol Res.
6:389–401. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
129
|
Ahmed A, Köhler S, Klotz R, Giese N,
Lasitschka F, Hackert T, Springfeld C, Zörnig I, Jäger D and Halama
N: Peripheral blood and tissue assessment highlights differential
tumor-circulatory gradients of IL2 and MIF with prognostic
significance in resectable pancreatic ductal adenocarcinoma.
Oncoimmunology. 10:19621352021. View Article : Google Scholar : PubMed/NCBI
|
|
130
|
Mayer P, Linnebacher A, Glennemeier-Marke
H, Marnet N, Bergmann F, Hackert T, Klauss M, Poth T and Gaida MM:
The microarchitecture of pancreatic cancer as measured by
diffusion-weighted magnetic resonance imaging is altered by T cells
with a tumor promoting Th17 phenotype. Int J Mol Sci. 21:3462020.
View Article : Google Scholar : PubMed/NCBI
|
|
131
|
Linnebacher A, Mayer P, Marnet N, Bergmann
F, Herpel E, Revia S, Yin L, Liu L, Hackert T, Giese T, et al:
Interleukin 21 receptor/ligand interaction is linked to disease
progression in pancreatic cancer. Cells. 8:11042019. View Article : Google Scholar : PubMed/NCBI
|
|
132
|
Zaidi N, Quezada SA, Kuroiwa JMY, Zhang L,
Jaffee EM, Steinman RM and Wang B: Anti-CTLA-4 synergizes with
dendritic cell-targeted vaccine to promote IL-3-dependent
CD4+ effector T cell infiltration into murine pancreatic
tumors. Ann N Y Acad Sci. 1445:62–73. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
133
|
Savid-Frontera C, Viano ME, Baez NS, Lidon
NL, Fontaine Q, Young HA, Vimeux L, Donnadieu E and Rodriguez-Galan
MC: Exploring the immunomodulatory role of virtual memory
CD8+ T cells: Role of IFN gamma in tumor growth control.
Front Immunol. 13:9710012022. View Article : Google Scholar : PubMed/NCBI
|
|
134
|
Hussain SM, Reed LF, Krasnick BA,
Miranda-Carboni G, Fields RC, Bi Y, Elahi A, Ajidahun A, Dickson
PV, Deneve JL, et al: IL23 and TGF-ß diminish macrophage associated
metastasis in pancreatic carcinoma. Sci Rep. 8:58082018. View Article : Google Scholar : PubMed/NCBI
|
|
135
|
Mirlekar B, Michaud D, Lee SJ, Kren NP,
Harris C, Greene K, Goldman EC, Gupta GP, Fields RC, Hawkins WG, et
al: B cell-derived IL35 drives STAT3-dependent CD8+
T-cell exclusion in pancreatic cancer. Cancer Immunol Res.
8:292–308. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
136
|
Liou GY, Bastea L, Fleming A, Döppler H,
Edenfield BH, Dawson DW, Zhang L, Bardeesy N and Storz P: The
presence of interleukin-13 at pancreatic ADM/PanIN lesions alters
macrophage populations and mediates pancreatic tumorigenesis. Cell
Rep. 19:1322–1333. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
137
|
Shi J, Shen X, Kang Q, Yang X, Denzinger
M, Kornmann M and Traub B: Loss of interleukin-13-receptor-alpha-1
induces apoptosis and promotes EMT in pancreatic cancer. Int J Mol
Sci. 23:36592022. View Article : Google Scholar : PubMed/NCBI
|
|
138
|
Fujisawa T, Shimamura T, Goto K, Nakagawa
R, Muroyama R, Ino Y, Horiuchi H, Endo I, Maeda S, Harihara Y, et
al: A novel role of interleukin 13 receptor alpha2 in perineural
invasion and its association with poor prognosis of patients with
pancreatic ductal adenocarcinoma. Cancers (Basel). 12:12942020.
View Article : Google Scholar : PubMed/NCBI
|
|
139
|
Arnoletti JP, Reza J, Rosales A, Monreal
A, Fanaian N, Whisner S, Srivastava M, Rivera-Otero J, Yu G,
Phanstiel Iv O, et al: Pancreatic ductal adenocarcinoma (PDAC)
circulating tumor cells influence myeloid cell differentiation to
support their survival and immunoresistance in portal vein
circulation. PLoS One. 17:e02657252022. View Article : Google Scholar : PubMed/NCBI
|