Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
September-2024 Volume 30 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
September-2024 Volume 30 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Application and research progress of cordycepin in the treatment of tumours (Review)

  • Authors:
    • Ru He
    • Wence Zhou
  • View Affiliations / Copyright

    Affiliations: The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, P.R. China, The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
    Copyright: © He et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 161
    |
    Published online on: July 8, 2024
       https://doi.org/10.3892/mmr.2024.13285
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Cordycepin is a nucleoside molecule found in Cordyceps sinensis and can be obtained through chemical synthesis and biotransformation. Cordycepin has been extensively studied and has been shown to have antitumour activity. This activity includes effects on the autophagy process and inhibition of the MAPK/ERK and Hedgehog pathways. Ultimately, the inhibitory effect of cordycepin on tumour cells is due to the interplay of these effects. Cordycepin was shown to enhance the therapeutic effects of radiotherapy. There is increasing evidence indicating that cordycepin plays an anticancer role in the treatment of various cancers. The present review aims to provide a clear understanding of the antitumour mechanisms of cordycepin and discuss its present application in the treatment of tumours. This information can be an important theoretical basis and provide clinical guidance for the further development of cordycepin as an antitumour drug.
View Figures

Figure 1

View References

1 

Hu Y, Chen L, Tang Q, Wei W, Cao Y, Xie J and Ji J: Pan-cancer analysis revealed the significance of the GTPBP family in cancer. Aging (Albany NY). 14((6)): 2558–2573. 2022. View Article : Google Scholar : PubMed/NCBI

2 

Huang C, Azizi P, Vazirzadeh M, Aghaei-Zarch SM, Aghaei-Zarch F, Ghanavi J and Farnia P: Non-coding RNAs/DNMT3B axis in human cancers: From pathogenesis to clinical significance. J Transl Med. 21:6212023. View Article : Google Scholar : PubMed/NCBI

3 

Sepp T, Ujvari B, Ewald PW, Thomas F and Giraudeau M: Urban environment and cancer in wildlife: Available evidence and future research avenues. Proc Biol Sci. 286:201824342019.PubMed/NCBI

4 

Fane M and Weeraratna AT: How the ageing microenvironment influences tumour progression. Nat Rev Cancer. 20:89–106. 2020. View Article : Google Scholar : PubMed/NCBI

5 

Maomao C, He L, Dianqin S, Siyi H, Xinxin Y, Fan Y, Shaoli Z, Changfa X, Lin L, Ji P, et al: Current cancer burden in China: epidemiology, etiology, and prevention. Cancer Biol Med. 19:1121–1138. 2022. View Article : Google Scholar : PubMed/NCBI

6 

Chi Y, Wang D, Wang J, Yu W and Yang J: Long Non-Coding RNA in the pathogenesis of cancers. Cells. 8:10152019. View Article : Google Scholar : PubMed/NCBI

7 

Siegel RL, Miller KD, Wagle NS and Jemal A: Cancer statistics, 2023. CA Cancer J Clin. 73:17–48. 2023. View Article : Google Scholar : PubMed/NCBI

8 

Miao K, Liu W, Xu J, Qian Z and Zhang Q: Harnessing the power of traditional Chinese medicine monomers and compound prescriptions to boost cancer immunotherapy. Front Immunol. 14:12772432023. View Article : Google Scholar : PubMed/NCBI

9 

Chen YC, Chen YH, Pan BS, Chang MM and Huang BM: Functional study of Cordyceps sinensis and cordycepin in male reproduction: A review. J Food Drug Anal. 25:197–205. 2017. View Article : Google Scholar : PubMed/NCBI

10 

Tuli HS, Sharma AK, Sandhu SS and Kashyap D: Cordycepin: A bioactive metabolite with therapeutic potential. Life Sci. 93:863–869. 2013. View Article : Google Scholar : PubMed/NCBI

11 

Yue K, Ye M, Zhou Z, Sun W and Lin X: The genus Cordyceps: A chemical and pharmacological review. J Pharm Pharmacol. 65:474–493. 2013. View Article : Google Scholar : PubMed/NCBI

12 

Kontogiannatos D, Koutrotsios G, Xekalaki S and Zervakis GI: Biomass and cordycepin production by the medicinal mushroom Cordyceps militaris-A review of various aspects and recent trends towards the exploitation of a valuable fungus. J Fungi (Basel). 7:9862021. View Article : Google Scholar : PubMed/NCBI

13 

Khan M, Tania M, Zhang D and Chen H: Cordyceps Mushroom: A Potent Anticancer Nutraceutical. Open Nutraceuticals J. 3:179–183. 2010. View Article : Google Scholar : PubMed/NCBI

14 

Huang S, Liu H, Sun Y, Chen J, Li X, Xu J, Hu Y, Li Y, Deng Z and Zhong S: An effective and convenient synthesis of cordycepin from adenosine. Chem Pap. 72:149–160. 2018. View Article : Google Scholar

15 

Ashraf SA, Elkhalifa AEO, Siddiqui AJ, Patel M, Awadelkareem AM, Snoussi M, Ashraf MS, Adnan M and Hadi S: Cordycepin for health and wellbeing: A potent bioactive metabolite of an entomopathogenic cordyceps medicinal fungus and its nutraceutical and therapeutic potential. Molecules. 25:27352020. View Article : Google Scholar : PubMed/NCBI

16 

Wang L, Yan H, Zeng B and Hu Z: Research progress on cordycepin synthesis and methods for enhancement of cordycepin production in cordyceps militaris. Bioengineering (Basel). 9:692022. View Article : Google Scholar : PubMed/NCBI

17 

Zheng P, Xia Y, Xiao G, Xiong C, Hu X, Zhang S, Zheng H, Huang Y, Zhou Y, Wang S, et al: Genome sequence of the insect pathogenic fungus Cordyceps militaris, a valued traditional Chinese medicine. Genome Biol. 12:R1162011. View Article : Google Scholar : PubMed/NCBI

18 

Jędrejko KJ, Lazur J and Muszyńska B: Cordyceps militaris: An overview of its chemical constituents in relation to biological activity. Foods. 10:26342021. View Article : Google Scholar : PubMed/NCBI

19 

Xia Y, Luo F, Shang Y, Chen P, Lu Y and Wang C: Fungal cordycepin biosynthesis is coupled with the production of the safeguard molecule pentostatin. Cell Chem Biol. 24:1479–1489.e4. 2017. View Article : Google Scholar : PubMed/NCBI

20 

Liu Y, Guo ZJ and Zhou XW: Chinese cordyceps: Bioactive components, antitumor effects and underlying mechanism-a review. Molecules. 27:65762022. View Article : Google Scholar : PubMed/NCBI

21 

Ma YC, Huang P, Wang XL and Liu GQ: Multi-omics analysis unravels positive effect of rotenone on the cordycepin biosynthesis in submerged fermentation of Cordyceps militaris. Bioresour Technol. 373:1287052023. View Article : Google Scholar : PubMed/NCBI

22 

Raethong N, Thananusak R, Cheawchanlertfa P, Prabhakaran P, Rattanaporn K, Laoteng K, Koffas M and Vongsangnak W: Functional genomics and systems biology of Cordyceps species for biotechnological applications. Curr Opin Biotechnol. 81:1029392023. View Article : Google Scholar : PubMed/NCBI

23 

Wu X, Wu T, Huang A, Shen Y, Zhang X, Song W, Wang S and Ruan H: New insights into the biosynthesis of typical bioactive components in the traditional Chinese medicinal fungus cordyceps militaris. Front Bioeng Biotechnol. 9:8017212021. View Article : Google Scholar : PubMed/NCBI

24 

Zhang Y, Cheng J, Su Y, Li M, Wen J and Li S: Cordycepin induces M1/M2 macrophage polarization to attenuate the liver and lung damage and immunodeficiency in immature mice with sepsis via NF-κB/p65 inhibition. J Pharm Pharmacol. 74:227–235. 2022. View Article : Google Scholar : PubMed/NCBI

25 

Yang R, Wang X, Xi D, Mo J, Wang K, Luo S, Wei J, Ren Z, Pang H and Luo Y: Cordycepin Attenuates IFN-γ-Induced Macrophage IP-10 and Mig Expressions by Inhibiting STAT1 Activity in CFA-Induced Inflammation Mice Model. Inflammation. 43:752–764. 2020. View Article : Google Scholar : PubMed/NCBI

26 

Liu S, Yang L and Fu J, Li T, Zhou B, Wang K, Wei C and Fu J: Comprehensive analysis, immune, and cordycepin regulation for SOX9 expression in pan-cancers and the matched healthy tissues. Front Immunol. 14:11499862023. View Article : Google Scholar : PubMed/NCBI

27 

Chen L, Zheng X, Huang H, Feng C, Wu S, Chen R, Jiang H, Yuan M, Fu Y, Ying H, Zhou J and Jiang J: Cordycepin synergizes with CTLA-4 blockade to remodel the tumor microenvironment for enhanced cancer immunotherapy. Int Immunopharmacol. 124((Pt A)): 1107862023. View Article : Google Scholar : PubMed/NCBI

28 

Khan MA and Tania M: Cordycepin and kinase inhibition in cancer. Drug Discov Today. 28:1034812023. View Article : Google Scholar : PubMed/NCBI

29 

Cao C, Yang S and Zhou Z: The potential application of Cordyceps in metabolic-related disorders. Phytother Res. 34:295–305. 2020. View Article : Google Scholar : PubMed/NCBI

30 

Chen YY, Chen CH, Lin WC, Tung CW, Chen YC, Yang SH, Huang BM and Chen RJ: The role of autophagy in anti-cancer and health promoting effects of cordycepin. Molecules. 26:49542021. View Article : Google Scholar : PubMed/NCBI

31 

Deng Q, Li X, Fang C, Li X, Zhang J, Xi Q, Li Y and Zhang R: Cordycepin enhances anti-tumor immunity in colon cancer by inhibiting phagocytosis immune checkpoint CD47 expression. Int Immunopharmacol. 107:1086952022. View Article : Google Scholar : PubMed/NCBI

32 

Asl ER, Amini M, Najafi S, Mansoori B, Mokhtarzadeh A, Mohammadi A, Lotfinejad P, Bagheri M, Shirjang S, Lotfi Z, et al: Interplay between MAPK/ERK signaling pathway and MicroRNAs: A crucial mechanism regulating cancer cell metabolism and tumor progression. Life Sci. 278:1194992021. View Article : Google Scholar : PubMed/NCBI

33 

Ullah R, Yin Q, Snell AH and Wan L: RAF-MEK-ERK pathway in cancer evolution and treatment. Semin Cancer Biol. 85:123–154. 2022. View Article : Google Scholar : PubMed/NCBI

34 

Li K, Liu Y, Ding Y, Zhang Z, Feng J, Hu J, Chen J, Lian Z, Chen Y, Hu K, et al: BCL6 is regulated by the MAPK/ELK1 axis and promotes KRAS-driven lung cancer. J Clin Invest. 132:e1613082022. View Article : Google Scholar : PubMed/NCBI

35 

Zhang Q, Wang X, Cao S, Sun Y, He X, Jiang B, Yu Y, Duan J, Qiu F and Kang N: Berberine represses human gastric cancer cell growth in vitro and in vivo by inducing cytostatic autophagy via inhibition of MAPK/mTOR/p70S6K and Akt signaling pathways. Biomed Pharmacother. 128:1102452020. View Article : Google Scholar : PubMed/NCBI

36 

Ma H, Qi G, Han F, Gai P, Peng J and Kong B: HMGB3 promotes the malignant phenotypes and stemness of epithelial ovarian cancer through the MAPK/ERK signaling pathway. Cell Commun Signal. 21:1442023. View Article : Google Scholar : PubMed/NCBI

37 

Yuan J, Dong X, Yap J and Hu J: The MAPK and AMPK signalings: Interplay and implication in targeted cancer therapy. J Hematol Oncol. 13:1132020. View Article : Google Scholar : PubMed/NCBI

38 

Barbosa R, Acevedo LA and Marmorstein R: The MEK/ERK network as a therapeutic target in human cancer. Mol Cancer Res. 19:361–374. 2021. View Article : Google Scholar : PubMed/NCBI

39 

Greer PFC, Rich A and Coates DE: Effects of galectin-1 inhibitor OTX008 on oral squamous cell carcinoma cells in vitro and the role of AP-1 and the MAPK/ERK pathway. Arch Oral Biol. 134:1053352022. View Article : Google Scholar : PubMed/NCBI

40 

Zhou Y, Mei X, Li Y, Yang W, Su X and Hu H: Cordycepin inhibits the proliferation and progression of NPC by targeting the MAPK/ERK and β-catenin pathways. Oncol Lett. 23:202022. View Article : Google Scholar : PubMed/NCBI

41 

Xu JC, Zhou XP, Wang XA, Xu MD, Chen T, Chen TY, Zhou PH and Zhang YQ: Cordycepin Induces Apoptosis and G2/M Phase Arrest through the ERK pathways in esophageal cancer cells. J Cancer. 10:2415–2424. 2019. View Article : Google Scholar : PubMed/NCBI

42 

Li XY, Tao H, Jin C, DU ZY, Liao WF, Tang QJ and Ding K: Cordycepin inhibits pancreatic cancer cell growth in vitro and in vivo via targeting FGFR2 and blocking ERK signaling. Chin J Nat Med. 18:345–355. 2020.PubMed/NCBI

43 

Tewari D, Patni P and Bishayee A, Sah AN and Bishayee A: Natural products targeting the PI3K-Akt-mTOR signaling pathway in cancer: A novel therapeutic strategy. Semin Cancer Biol. 80:1–17. 2022. View Article : Google Scholar : PubMed/NCBI

44 

Yu L, Wei J and Liu P: Attacking the PI3K/Akt/mTOR signaling pathway for targeted therapeutic treatment in human cancer. Semin Cancer Biol. 85:69–94. 2022. View Article : Google Scholar : PubMed/NCBI

45 

Xu F, Na L, Li Y and Chen L: Roles of the PI3K/AKT/mTOR signalling pathways in neurodegenerative diseases and tumours. Cell Biosci. 10:542020. View Article : Google Scholar : PubMed/NCBI

46 

Li Q, Li Z, Luo T and Shi H: Targeting the PI3K/AKT/mTOR and RAF/MEK/ERK pathways for cancer therapy. Mol Biomed. 3:472022. View Article : Google Scholar : PubMed/NCBI

47 

Ediriweera MK, Tennekoon KH and Samarakoon SR: Role of the PI3K/AKT/mTOR signaling pathway in ovarian cancer: Biological and therapeutic significance. Semin Cancer Biol. 59:147–160. 2019. View Article : Google Scholar : PubMed/NCBI

48 

Fattahi S, Amjadi-Moheb F, Tabaripour R, Ashrafi GH and Akhavan-Niaki H: PI3K/AKT/mTOR signaling in gastric cancer: Epigenetics and beyond. Life Sci. 262:1185132020. View Article : Google Scholar : PubMed/NCBI

49 

Alves CL and Ditzel HJ: Drugging the PI3K/AKT/mTOR Pathway in ER+ Breast Cancer. Int J Mol Sci. 24:45222023. View Article : Google Scholar : PubMed/NCBI

50 

Kim SO, Cha HJ, Park C, Lee H, Hong SH, Jeong SJ, Park SH, Kim GY, Leem SH, Jin CY, et al: Cordycepin induces apoptosis in human bladder cancer T24 cells through ROS-dependent inhibition of the PI3K/Akt signaling pathway. Biosci Trends. 13:324–333. 2019. View Article : Google Scholar : PubMed/NCBI

51 

Chang MM, Pan BS, Wang CY and Huang BM: Cordycepin-induced unfolded protein response-dependent cell death, and AKT/MAPK-mediated drug resistance in mouse testicular tumor cells. Cancer Med. 8:3949–3964. 2019. View Article : Google Scholar : PubMed/NCBI

52 

Zhou X, Li Y, Yang C, Chen D, Wang T, Liu T, Yan W, Su Z, Peng B and Ren X: Cordycepin reprogramming lipid metabolism to block metastasis and EMT via ERO1A/mTOR/SREBP1 axis in cholangiocarcinoma. Life Sci. 327:1216982023. View Article : Google Scholar : PubMed/NCBI

53 

Yuan H, Han Y, Wang X, Li N, Liu Q, Yin Y, Wang H, Pan L, Li L, Song K, et al: SETD2 restricts prostate cancer metastasis by integrating EZH2 and AMPK signaling pathways. Cancer Cell. 38:350–365.e7. 2020. View Article : Google Scholar : PubMed/NCBI

54 

Rodríguez C, Muñoz M, Contreras C and Prieto D: AMPK, metabolism, and vascular function. FEBS J. 288:3746–3771. 2021. View Article : Google Scholar : PubMed/NCBI

55 

Wang S, Li H, Yuan M, Fan H and Cai Z: Role of AMPK in autophagy. Front Physiol. 13:10155002022. View Article : Google Scholar : PubMed/NCBI

56 

Steinberg GR and Hardie DG: New insights into activation and function of the AMPK. Nat Rev Mol Cell Biol. 24:255–272. 2023. View Article : Google Scholar : PubMed/NCBI

57 

Keerthana CK, Rayginia TP, Shifana SC, Anto NP, Kalimuthu K, Isakov N and Anto RJ: The role of AMPK in cancer metabolism and its impact on the immunomodulation of the tumor microenvironment. Front Immunol. 14:11145822023. View Article : Google Scholar : PubMed/NCBI

58 

Hsu CC, Peng D, Cai Z and Lin HK: AMPK signaling and its targeting in cancer progression and treatment. Semin Cancer Biol. 85:52–68. 2022. View Article : Google Scholar : PubMed/NCBI

59 

Liao XZ, Gao Y, Zhao HW, Zhou M, Chen DL, Tao LT, Guo W, Sun LL, Gu CY, Chen HR, et al: Cordycepin Reverses cisplatin resistance in non-small cell lung cancer by activating AMPK and Inhibiting AKT signaling pathway. Front Cell Dev Biol. 8:6092852021. View Article : Google Scholar : PubMed/NCBI

60 

Wei C, Yao X, Jiang Z, Wang Y, Zhang D, Chen X, Fan X, Xie C, Cheng J, Fu J and Leung EL: Cordycepin inhibits drug-resistance non-small cell lung cancer progression by activating AMPK signaling pathway. Pharmacol Res. 144:79–89. 2019. View Article : Google Scholar : PubMed/NCBI

61 

Yoon SY, Lindroth AM, Kwon S, Park SJ and Park YJ: Adenosine derivatives from Cordyceps exert antitumor effects against ovarian cancer cells through ENT1-mediated transport, induction of AMPK signaling, and consequent autophagic cell death. Biomed Pharmacother. 153:1134912022. View Article : Google Scholar : PubMed/NCBI

62 

Zhang Y and Beachy PA: Cellular and molecular mechanisms of Hedgehog signalling. Nat Rev Mol Cell Biol. 24:668–687. 2023. View Article : Google Scholar : PubMed/NCBI

63 

Sigafoos AN, Paradise BD and Fernandez-Zapico ME: Hedgehog/GLI Signaling Pathway: Transduction, regulation, and implications for disease. Cancers (Basel). 13:34102021. View Article : Google Scholar : PubMed/NCBI

64 

Xia R, Xu M, Yang J and Ma X: The role of Hedgehog and Notch signaling pathway in cancer. Mol Biomed. 3:442022. View Article : Google Scholar : PubMed/NCBI

65 

Liu C, Qi M, Li L, Yuan Y, Wu X and Fu J: Natural cordycepin induces apoptosis and suppresses metastasis in breast cancer cells by inhibiting the Hedgehog pathway. Food Funct. 11:2107–2116. 2020. View Article : Google Scholar : PubMed/NCBI

66 

Wu W, Li X, Qi M, Hu X, Cao F, Wu X and Fu J: Cordycepin inhibits growth and metastasis formation of MDA-MB-231 ×enografts in nude mice by modulating the hedgehog pathway. Int J Mol Sci. 23:103622022. View Article : Google Scholar : PubMed/NCBI

67 

Albrecht LV, Tejeda-Muñoz N and De Robertis EM: Cell biology of canonical Wnt signaling. Annu Rev Cell Dev Biol. 37:369–389. 2021. View Article : Google Scholar : PubMed/NCBI

68 

Zhao H, Ming T, Tang S, Ren S, Yang H, Liu M, Tao Q and Xu H: Wnt signaling in colorectal cancer: Pathogenic role and therapeutic target. Mol Cancer. 21:1442022. View Article : Google Scholar : PubMed/NCBI

69 

Parsons MJ, Tammela T and Dow LE: WNT as a driver and dependency in cancer. Cancer Discov. 11:2413–2429. 2021. View Article : Google Scholar : PubMed/NCBI

70 

Gruszka AM, Valli D and Alcalay M: Wnt Signalling in Acute Myeloid Leukaemia. Cells. 8:14032019. View Article : Google Scholar : PubMed/NCBI

71 

Abazari N, Stefanucci MR, Bossi LE, Trojani A, Cairoli R and Beghini A: Cordycepin (3′dA) Induces Cell Death of AC133+ Leukemia Cells via Re-Expression of WIF1 and Down-Modulation of MYC. Cancers (Basel). 15:39312023. View Article : Google Scholar : PubMed/NCBI

72 

Li SZ, Ren JW, Fei J, Zhang XD and Du RL: Cordycepin induces Bax dependent apoptosis in colorectal cancer cells. Mol Med Rep. 19:901–908. 2019.PubMed/NCBI

73 

Zheng Q, Sun J, Li W, Li S and Zhang K: Cordycepin induces apoptosis in human tongue cancer cells in vitro and has antitumor effects in vivo. Arch Oral Biol. 118:1048462020. View Article : Google Scholar : PubMed/NCBI

74 

Fong P, Ao CN, Tou KI, Huang KM, Cheong CC and Meng LR: Experimental and In Silico Analysis of Cordycepin and its Derivatives as Endometrial Cancer Treatment. Oncol Res. 27:237–251. 2019. View Article : Google Scholar : PubMed/NCBI

75 

Min Y, Ding Y, Huang Q, Xu Y and Li J: Cordycepin inhibited the retinoblastoma cell proliferation, migration, and invasion as well as lung metastasis via modulating c-Myc/cyclin D1 pathway. Chem Biol Drug Des. 101:605–613. 2023. View Article : Google Scholar : PubMed/NCBI

76 

Shi L, Cao H, Fu S, Jia Z, Lu X, Cui Z and Yu D: Cordycepin enhances hyperthermia-induced apoptosis and cell cycle arrest by modulating the MAPK pathway in human lymphoma U937 cells. Mol Biol Rep. 49:8673–8683. 2022. View Article : Google Scholar : PubMed/NCBI

77 

Tania M, Shawon J, Saif K, Kiefer R, Khorram MS, Halim MA and Khan MA: Cordycepin Downregulates Cdk-2 to Interfere with Cell Cycle and Increases Apoptosis by Generating ROS in Cervical Cancer Cells: In vitro and in silico Study. Curr Cancer Drug Targets. 19:152–159. 2019. View Article : Google Scholar : PubMed/NCBI

78 

Chang MM, Hong SY, Yang SH, Wu CC, Wang CY and Huang BM: Anti-Cancer Effect of Cordycepin on FGF9-Induced Testicular Tumorigenesis. Int J Mol Sci. 21:83362020. View Article : Google Scholar : PubMed/NCBI

79 

Liu S, Yao S, Yang H, Liu S and Wang Y: Autophagy: Regulator of cell death. Cell Death Dis. 14:6482023. View Article : Google Scholar : PubMed/NCBI

80 

Klionsky DJ, Petroni G, Amaravadi RK, Baehrecke EH, Ballabio A, Boya P, Bravo-San Pedro JM, Cadwell K, Cecconi F, Choi AMK, et al: Autophagy in major human diseases. EMBO J. 40:e1088632021. View Article : Google Scholar : PubMed/NCBI

81 

Debnath J, Gammoh N and Ryan KM: Autophagy and autophagy-related pathways in cancer. Nat Rev Mol Cell Biol. 24:560–575. 2023. View Article : Google Scholar : PubMed/NCBI

82 

Binlateh T, Uppatcha N, Thepchai J, Pleungtuk Y, Noisa P, Hutamekalin P and Jitprasertwong P: Cordycepin attenuates migration and invasion of HSC-4 oral squamous carcinoma cells through autophagy-dependent FAK/Akt and MMP2/MMP9 suppression. J Dent Sci. 17:1677–1688. 2022. View Article : Google Scholar : PubMed/NCBI

83 

Jang HJ, Yang KE, Hwang IH, Huh YH, Kim DJ, Yoo HS, Park SJ and Jang IS: Cordycepin inhibits human ovarian cancer by inducing autophagy and apoptosis through Dickkopf-related protein 1/β-catenin signaling. Am J Transl Res. 11:6890–6906. 2019.PubMed/NCBI

84 

Wang CY, Tsai SW, Chien HH, Chen TY, Sheu SY, So EC and Huang BM: Cordycepin inhibits human gestational choriocarcinoma cell growth by disrupting centrosome homeostasis. Drug Des Devel Ther. 14:2987–3000. 2020. View Article : Google Scholar : PubMed/NCBI

85 

Chen R, Feng C, Chen L, Zheng X, Fang W, Wu S, Gao X, Chen C, Yang J, Wu Y, et al: Single-cell RNA sequencing indicates cordycepin remodels the tumor immune microenvironment to enhance TIGIT blockade's anti-tumor effect in colon cancer. Int Immunopharmacol. 126:1112682024. View Article : Google Scholar : PubMed/NCBI

86 

Panwong S, Wathikthinnakon M, Kaewkod T, Sawasdee N, Tragoolpua Y, Yenchitsomanus PT and Panya A: Cordycepin sensitizes cholangiocarcinoma cells to be killed by natural killer-92 (NK-92) cells. Molecules. 26:59732021. View Article : Google Scholar : PubMed/NCBI

87 

Feng C, Chen R, Fang W, Gao X, Ying H, Zheng X, Chen L and Jiang J: Synergistic effect of CD47 blockade in combination with cordycepin treatment against cancer. Front Pharmacol. 14:11443302023. View Article : Google Scholar : PubMed/NCBI

88 

Wei C, Khan MA, Du J, Cheng J, Tania M, Leung EL and Fu J: Cordycepin inhibits triple-negative breast cancer cell migration and invasion by regulating EMT-TFs SLUG, TWIST1, SNAIL1, and ZEB1. Front Oncol. 12:8985832022. View Article : Google Scholar : PubMed/NCBI

89 

Lin YT, Liang SM, Wu YJ, Wu YJ, Lu YJ, Jan YJ, Ko BS, Chuang YJ, Shyue SK, Kuo CC and Liou JY: Cordycepin Suppresses endothelial cell proliferation, migration, angiogenesis, and tumor growth by regulating focal adhesion kinase and p53. Cancers (Basel). 11:1682019. View Article : Google Scholar : PubMed/NCBI

90 

Guo Z, Chen W, Dai G and Huang Y: Cordycepin suppresses the migration and invasion of human liver cancer cells by downregulating the expression of CXCR4. Int J Mol Med. 45:141–150. 2020.PubMed/NCBI

91 

Zhang X, Zhou X, Gao M, Lyu Y, Wang Y, Yang C, Piao Y and Ren X: Cordycepin inhibits the proliferation and migration of human gastric cancer cells by suppressing lipid metabolism via AMPK and MAPK activation. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi. 38:513–521. 2022.(In Chineae). PubMed/NCBI

92 

Zhang Z, Li K, Zheng Z and Liu Y: Cordycepin inhibits colon cancer proliferation by suppressing MYC expression. BMC Pharmacol Toxicol. 23:122022. View Article : Google Scholar : PubMed/NCBI

93 

Lee SC, Alaali L, Kwon H, Rigi M and Eberhart CG: Cordycepin (3′-Deoxyadenosine) suppresses heat shock protein 90 function and targets tumor growth in an adenosine deaminase-dependent manner. Cancers (Basel). 14:31222022. View Article : Google Scholar : PubMed/NCBI

94 

Khuntawee W, Amornloetwattana R, Vongsangnak W, Namdee K, Yata T, Karttunen M and Wong-Ekkabut J: In silico and in vitro design of cordycepin encapsulation in liposomes for colon cancer treatment. RSC Adv. 11:8475–8484. 2021. View Article : Google Scholar : PubMed/NCBI

95 

Levy A, Mercier O and Le Péchoux C: Indications and parameters around postoperative radiation therapy for lung cancer. J Clin Oncol. 40:556–566. 2022. View Article : Google Scholar : PubMed/NCBI

96 

Wirth A, Mikhaeel NG, Aleman BMP, Pinnix CC, Constine LS, Ricardi U, Illidge TM, Eich HT, Hoppe BS, Dabaja B, et al: Involved Site Radiation Therapy in Adult Lymphomas: An Overview of International Lymphoma Radiation Oncology Group Guidelines. Int J Radiat Oncol Biol Phys. 107:909–933. 2020. View Article : Google Scholar : PubMed/NCBI

97 

Verma S, Young S, Boldt G, Blanchette P, Lock M, Helou J and Raphael J: Immunotherapy and radiation therapy sequencing in breast cancer: A systematic review. Int J Radiat Oncol Biol Phys. 118:1422–1434. 2024. View Article : Google Scholar : PubMed/NCBI

98 

Huang R and Zhou PK: DNA damage repair: historical perspectives, mechanistic pathways and clinical translation for targeted cancer therapy. Signal Transduct Target Ther. 6:2542021. View Article : Google Scholar : PubMed/NCBI

99 

Lee YP, Huang WR, Wu WS, Wu YH, Ho SY, Wang YJ and Huang BM: Cordycepin enhances radiosensitivity to induce apoptosis through cell cycle arrest, caspase pathway and ER stress in MA-10 mouse Leydig tumor cells. Am J Cancer Res. 12:3601–3624. 2022.PubMed/NCBI

100 

Lee YP, Lin CR, Chen SS, Chen RJ, Wu YH, Chen YH and Huang BM: Combination treatment of cordycepin and radiation induces MA-10 mouse Leydig tumor cell death via ROS accumulation and DNA damage. Am J Cancer Res. 13:1329–1346. 2023.PubMed/NCBI

101 

Dong J, Li Y, Xiao H, Luo D, Zhang S, Zhu C, Jiang M, Cui M, Lu L and Fan S: Cordycepin sensitizes breast cancer cells toward irradiation through elevating ROS production involving Nrf2. Toxicol Appl Pharmacol. 364:12–21. 2019. View Article : Google Scholar : PubMed/NCBI

102 

Lee D, Lee WY, Jung K, Kwon YS, Kim D, Hwang GS, Kim CE, Lee S and Kang KS: The inhibitory effect of cordycepin on the proliferation of MCF-7 breast cancer cells, and its mechanism: An investigation using network pharmacology-based analysis. Biomolecules. 9:4142019. View Article : Google Scholar : PubMed/NCBI

103 

Su NW, Wu SH, Chi CW, Tsai TH and Chen YJ: Cordycepin, isolated from medicinal fungus Cordyceps sinensis, enhances radiosensitivity of oral cancer associated with modulation of DNA damage repair. Food Chem Toxicol. 124:400–410. 2019. View Article : Google Scholar : PubMed/NCBI

104 

Oh SS, Lee KW, Madhi H, Jeong JW, Park S, Kim M, Lee Y, Han HT, Hwangbo C, Yoo J and Kim KD: Cordycepin Resensitizes T24R2 cisplatin-resistant human bladder cancer cells to cisplatin by inactivating Ets-1 Dependent MDR1 transcription. Int J Mol Sci. 21:17102020. View Article : Google Scholar : PubMed/NCBI

105 

Li HB, Chen JK, Su ZX, Jin QL, Deng LW, Huang G and Shen JN: Cordycepin augments the chemosensitivity of osteosarcoma to cisplatin by activating AMPK and suppressing the AKT signaling pathway. Cancer Cell Int. 21:7062021. View Article : Google Scholar : PubMed/NCBI

106 

Gao Y, Chen DL, Zhou M, Zheng ZS, He MF, Huang S, Liao XZ and Zhang JX: Cordycepin enhances the chemosensitivity of esophageal cancer cells to cisplatin by inducing the activation of AMPK and suppressing the AKT signaling pathway. Cell Death Dis. 11:8662020. View Article : Google Scholar : PubMed/NCBI

107 

Zheng SX, Chen J, Zhuang BB, Zhang Q, Shi SS and Zhang GL: Cordycepin improves sensitivity to temozolomide in glioblastoma cells by down-regulating MYC. J Cancer Res Clin Oncol. 149:16055–16067. 2023. View Article : Google Scholar : PubMed/NCBI

108 

Chen J, Zhuang YD, Zhang Q, Liu S, Zhuang BB, Wang CH and Liang RS: Exploring the mechanism of cordycepin combined with doxorubicin in treating glioblastoma based on network pharmacology and biological verification. PeerJ. 10:e129422022. View Article : Google Scholar : PubMed/NCBI

109 

Liao X, Tao L, Guo W, Wu ZX, Du H, Wang J, Zhang J, Chen H, Chen ZS, Lin L and Sun L: Combination of cordycepin and apatinib synergistically inhibits NSCLC Cells by Down-Regulating VEGF/PI3K/Akt signaling pathway. Front Oncol. 10:17322020. View Article : Google Scholar : PubMed/NCBI

110 

Woolley VC, Teakle GR, Prince G, de Moor CH and Chandler D: Cordycepin, a metabolite of Cordyceps militaris, reduces immune-related gene expression in insects. J Invertebr Pathol. 177:1074802020. View Article : Google Scholar : PubMed/NCBI

111 

Lan T, Yu Y, Zhang J, Li H, Weng Q, Jiang S, Tian S, Xu T, Hu S, Yang G, et al: Cordycepin ameliorates nonalcoholic steatohepatitis by activation of the AMP-Activated protein kinase signaling pathway. Hepatology. 74:686–703. 2021. View Article : Google Scholar : PubMed/NCBI

112 

Tan L, Song X, Ren Y, Wang M, Guo C, Guo D, Gu Y, Li Y, Cao Z and Deng Y: Anti-inflammatory effects of cordycepin: A review. Phytother Res. Oct 8–2020.(Epub ahead of print).

113 

Khan MA and Tania M: Cordycepin in anticancer research: Molecular mechanism of therapeutic effects. Curr Med Chem. 27:983–996. 2020. View Article : Google Scholar : PubMed/NCBI

114 

Seong da B, Hong S, Muthusami S, Kim WD, Yu JR and Park WY: Cordycepin increases radiosensitivity in cervical cancer cells by overriding or prolonging radiation-induced G2/M arrest. Eur J Pharmacol. 771:77–83. 2016. View Article : Google Scholar : PubMed/NCBI

115 

Dalla Rosa L, da Silva AS, Gressler LT, Oliveira CB, Dambrós MG, Miletti LC, França RT, Lopes ST, Samara YN, da Veiga ML and Monteiro SG: Cordycepin (3′-deoxyadenosine) pentostatin (deoxycoformycin) combination treatment of mice experimentally infected with Trypanosoma evansi. Parasitology. 140:663–671. 2013. View Article : Google Scholar : PubMed/NCBI

116 

Qin P, Li X, Yang H, Wang ZY and Lu D: Therapeutic potential and biological applications of cordycepin and metabolic mechanisms in cordycepin-producing fungi. Molecules. 24:22312019. View Article : Google Scholar : PubMed/NCBI

117 

Chen M, Luo J, Jiang W, Chen L, Miao L and Han C: Cordycepin: A review of strategies to improve the bioavailability and efficacy. Phytother Res. 37:3839–3858. 2023. View Article : Google Scholar : PubMed/NCBI

118 

Lee JB, Adrower C, Qin C, Fischer PM, de Moor CH and Gershkovich P: Development of cordycepin formulations for preclinical and clinical studies. AAPS PharmSciTech. 18:3219–3226. 2017. View Article : Google Scholar : PubMed/NCBI

119 

Posadino AM, Giordo R, Pintus G, Mohammed SA, Orhan IE, Fokou PVT, Sharopov F, Adetunji CO, Gulsunoglu-Konuskan Z, Ydyrys A, et al: Medicinal and mechanistic overview of artemisinin in the treatment of human diseases. Biomed Pharmacother. 163:1148662023. View Article : Google Scholar : PubMed/NCBI

120 

Talman AM, Clain J, Duval R, Ménard R and Ariey F: Artemisinin bioactivity and resistance in malaria parasites. Trends Parasitol. 35:953–963. 2019. View Article : Google Scholar : PubMed/NCBI

121 

Chen GQ, Benthani FA, Wu J, Liang D, Bian ZX and Jiang X: Artemisinin compounds sensitize cancer cells to ferroptosis by regulating iron homeostasis. Cell Death Differ. 27:242–254. 2020. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
He R and Zhou W: Application and research progress of cordycepin in the treatment of tumours (Review). Mol Med Rep 30: 161, 2024.
APA
He, R., & Zhou, W. (2024). Application and research progress of cordycepin in the treatment of tumours (Review). Molecular Medicine Reports, 30, 161. https://doi.org/10.3892/mmr.2024.13285
MLA
He, R., Zhou, W."Application and research progress of cordycepin in the treatment of tumours (Review)". Molecular Medicine Reports 30.3 (2024): 161.
Chicago
He, R., Zhou, W."Application and research progress of cordycepin in the treatment of tumours (Review)". Molecular Medicine Reports 30, no. 3 (2024): 161. https://doi.org/10.3892/mmr.2024.13285
Copy and paste a formatted citation
x
Spandidos Publications style
He R and Zhou W: Application and research progress of cordycepin in the treatment of tumours (Review). Mol Med Rep 30: 161, 2024.
APA
He, R., & Zhou, W. (2024). Application and research progress of cordycepin in the treatment of tumours (Review). Molecular Medicine Reports, 30, 161. https://doi.org/10.3892/mmr.2024.13285
MLA
He, R., Zhou, W."Application and research progress of cordycepin in the treatment of tumours (Review)". Molecular Medicine Reports 30.3 (2024): 161.
Chicago
He, R., Zhou, W."Application and research progress of cordycepin in the treatment of tumours (Review)". Molecular Medicine Reports 30, no. 3 (2024): 161. https://doi.org/10.3892/mmr.2024.13285
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team