|
1
|
Hu Y, Chen L, Tang Q, Wei W, Cao Y, Xie J
and Ji J: Pan-cancer analysis revealed the significance of the
GTPBP family in cancer. Aging (Albany NY). 14((6)): 2558–2573.
2022. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Huang C, Azizi P, Vazirzadeh M,
Aghaei-Zarch SM, Aghaei-Zarch F, Ghanavi J and Farnia P: Non-coding
RNAs/DNMT3B axis in human cancers: From pathogenesis to clinical
significance. J Transl Med. 21:6212023. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Sepp T, Ujvari B, Ewald PW, Thomas F and
Giraudeau M: Urban environment and cancer in wildlife: Available
evidence and future research avenues. Proc Biol Sci.
286:201824342019.PubMed/NCBI
|
|
4
|
Fane M and Weeraratna AT: How the ageing
microenvironment influences tumour progression. Nat Rev Cancer.
20:89–106. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Maomao C, He L, Dianqin S, Siyi H, Xinxin
Y, Fan Y, Shaoli Z, Changfa X, Lin L, Ji P, et al: Current cancer
burden in China: epidemiology, etiology, and prevention. Cancer
Biol Med. 19:1121–1138. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Chi Y, Wang D, Wang J, Yu W and Yang J:
Long Non-Coding RNA in the pathogenesis of cancers. Cells.
8:10152019. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Siegel RL, Miller KD, Wagle NS and Jemal
A: Cancer statistics, 2023. CA Cancer J Clin. 73:17–48. 2023.
View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Miao K, Liu W, Xu J, Qian Z and Zhang Q:
Harnessing the power of traditional Chinese medicine monomers and
compound prescriptions to boost cancer immunotherapy. Front
Immunol. 14:12772432023. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Chen YC, Chen YH, Pan BS, Chang MM and
Huang BM: Functional study of Cordyceps sinensis and cordycepin in
male reproduction: A review. J Food Drug Anal. 25:197–205. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Tuli HS, Sharma AK, Sandhu SS and Kashyap
D: Cordycepin: A bioactive metabolite with therapeutic potential.
Life Sci. 93:863–869. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Yue K, Ye M, Zhou Z, Sun W and Lin X: The
genus Cordyceps: A chemical and pharmacological review. J Pharm
Pharmacol. 65:474–493. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Kontogiannatos D, Koutrotsios G, Xekalaki
S and Zervakis GI: Biomass and cordycepin production by the
medicinal mushroom Cordyceps militaris-A review of various aspects
and recent trends towards the exploitation of a valuable fungus. J
Fungi (Basel). 7:9862021. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Khan M, Tania M, Zhang D and Chen H:
Cordyceps Mushroom: A Potent Anticancer Nutraceutical. Open
Nutraceuticals J. 3:179–183. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Huang S, Liu H, Sun Y, Chen J, Li X, Xu J,
Hu Y, Li Y, Deng Z and Zhong S: An effective and convenient
synthesis of cordycepin from adenosine. Chem Pap. 72:149–160. 2018.
View Article : Google Scholar
|
|
15
|
Ashraf SA, Elkhalifa AEO, Siddiqui AJ,
Patel M, Awadelkareem AM, Snoussi M, Ashraf MS, Adnan M and Hadi S:
Cordycepin for health and wellbeing: A potent bioactive metabolite
of an entomopathogenic cordyceps medicinal fungus and its
nutraceutical and therapeutic potential. Molecules. 25:27352020.
View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Wang L, Yan H, Zeng B and Hu Z: Research
progress on cordycepin synthesis and methods for enhancement of
cordycepin production in cordyceps militaris. Bioengineering
(Basel). 9:692022. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Zheng P, Xia Y, Xiao G, Xiong C, Hu X,
Zhang S, Zheng H, Huang Y, Zhou Y, Wang S, et al: Genome sequence
of the insect pathogenic fungus Cordyceps militaris, a valued
traditional Chinese medicine. Genome Biol. 12:R1162011. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Jędrejko KJ, Lazur J and Muszyńska B:
Cordyceps militaris: An overview of its chemical constituents in
relation to biological activity. Foods. 10:26342021. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Xia Y, Luo F, Shang Y, Chen P, Lu Y and
Wang C: Fungal cordycepin biosynthesis is coupled with the
production of the safeguard molecule pentostatin. Cell Chem Biol.
24:1479–1489.e4. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Liu Y, Guo ZJ and Zhou XW: Chinese
cordyceps: Bioactive components, antitumor effects and underlying
mechanism-a review. Molecules. 27:65762022. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Ma YC, Huang P, Wang XL and Liu GQ:
Multi-omics analysis unravels positive effect of rotenone on the
cordycepin biosynthesis in submerged fermentation of Cordyceps
militaris. Bioresour Technol. 373:1287052023. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Raethong N, Thananusak R, Cheawchanlertfa
P, Prabhakaran P, Rattanaporn K, Laoteng K, Koffas M and
Vongsangnak W: Functional genomics and systems biology of Cordyceps
species for biotechnological applications. Curr Opin Biotechnol.
81:1029392023. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Wu X, Wu T, Huang A, Shen Y, Zhang X, Song
W, Wang S and Ruan H: New insights into the biosynthesis of typical
bioactive components in the traditional Chinese medicinal fungus
cordyceps militaris. Front Bioeng Biotechnol. 9:8017212021.
View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Zhang Y, Cheng J, Su Y, Li M, Wen J and Li
S: Cordycepin induces M1/M2 macrophage polarization to attenuate
the liver and lung damage and immunodeficiency in immature mice
with sepsis via NF-κB/p65 inhibition. J Pharm Pharmacol.
74:227–235. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Yang R, Wang X, Xi D, Mo J, Wang K, Luo S,
Wei J, Ren Z, Pang H and Luo Y: Cordycepin Attenuates IFN-γ-Induced
Macrophage IP-10 and Mig Expressions by Inhibiting STAT1 Activity
in CFA-Induced Inflammation Mice Model. Inflammation. 43:752–764.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Liu S, Yang L and Fu J, Li T, Zhou B, Wang
K, Wei C and Fu J: Comprehensive analysis, immune, and cordycepin
regulation for SOX9 expression in pan-cancers and the matched
healthy tissues. Front Immunol. 14:11499862023. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Chen L, Zheng X, Huang H, Feng C, Wu S,
Chen R, Jiang H, Yuan M, Fu Y, Ying H, Zhou J and Jiang J:
Cordycepin synergizes with CTLA-4 blockade to remodel the tumor
microenvironment for enhanced cancer immunotherapy. Int
Immunopharmacol. 124((Pt A)): 1107862023. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Khan MA and Tania M: Cordycepin and kinase
inhibition in cancer. Drug Discov Today. 28:1034812023. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Cao C, Yang S and Zhou Z: The potential
application of Cordyceps in metabolic-related disorders. Phytother
Res. 34:295–305. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Chen YY, Chen CH, Lin WC, Tung CW, Chen
YC, Yang SH, Huang BM and Chen RJ: The role of autophagy in
anti-cancer and health promoting effects of cordycepin. Molecules.
26:49542021. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Deng Q, Li X, Fang C, Li X, Zhang J, Xi Q,
Li Y and Zhang R: Cordycepin enhances anti-tumor immunity in colon
cancer by inhibiting phagocytosis immune checkpoint CD47
expression. Int Immunopharmacol. 107:1086952022. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Asl ER, Amini M, Najafi S, Mansoori B,
Mokhtarzadeh A, Mohammadi A, Lotfinejad P, Bagheri M, Shirjang S,
Lotfi Z, et al: Interplay between MAPK/ERK signaling pathway and
MicroRNAs: A crucial mechanism regulating cancer cell metabolism
and tumor progression. Life Sci. 278:1194992021. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Ullah R, Yin Q, Snell AH and Wan L:
RAF-MEK-ERK pathway in cancer evolution and treatment. Semin Cancer
Biol. 85:123–154. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Li K, Liu Y, Ding Y, Zhang Z, Feng J, Hu
J, Chen J, Lian Z, Chen Y, Hu K, et al: BCL6 is regulated by the
MAPK/ELK1 axis and promotes KRAS-driven lung cancer. J Clin Invest.
132:e1613082022. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Zhang Q, Wang X, Cao S, Sun Y, He X, Jiang
B, Yu Y, Duan J, Qiu F and Kang N: Berberine represses human
gastric cancer cell growth in vitro and in vivo by inducing
cytostatic autophagy via inhibition of MAPK/mTOR/p70S6K and Akt
signaling pathways. Biomed Pharmacother. 128:1102452020. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Ma H, Qi G, Han F, Gai P, Peng J and Kong
B: HMGB3 promotes the malignant phenotypes and stemness of
epithelial ovarian cancer through the MAPK/ERK signaling pathway.
Cell Commun Signal. 21:1442023. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Yuan J, Dong X, Yap J and Hu J: The MAPK
and AMPK signalings: Interplay and implication in targeted cancer
therapy. J Hematol Oncol. 13:1132020. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Barbosa R, Acevedo LA and Marmorstein R:
The MEK/ERK network as a therapeutic target in human cancer. Mol
Cancer Res. 19:361–374. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Greer PFC, Rich A and Coates DE: Effects
of galectin-1 inhibitor OTX008 on oral squamous cell carcinoma
cells in vitro and the role of AP-1 and the MAPK/ERK pathway. Arch
Oral Biol. 134:1053352022. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Zhou Y, Mei X, Li Y, Yang W, Su X and Hu
H: Cordycepin inhibits the proliferation and progression of NPC by
targeting the MAPK/ERK and β-catenin pathways. Oncol Lett.
23:202022. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Xu JC, Zhou XP, Wang XA, Xu MD, Chen T,
Chen TY, Zhou PH and Zhang YQ: Cordycepin Induces Apoptosis and
G2/M Phase Arrest through the ERK pathways in esophageal cancer
cells. J Cancer. 10:2415–2424. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Li XY, Tao H, Jin C, DU ZY, Liao WF, Tang
QJ and Ding K: Cordycepin inhibits pancreatic cancer cell growth in
vitro and in vivo via targeting FGFR2 and blocking ERK signaling.
Chin J Nat Med. 18:345–355. 2020.PubMed/NCBI
|
|
43
|
Tewari D, Patni P and Bishayee A, Sah AN
and Bishayee A: Natural products targeting the PI3K-Akt-mTOR
signaling pathway in cancer: A novel therapeutic strategy. Semin
Cancer Biol. 80:1–17. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Yu L, Wei J and Liu P: Attacking the
PI3K/Akt/mTOR signaling pathway for targeted therapeutic treatment
in human cancer. Semin Cancer Biol. 85:69–94. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Xu F, Na L, Li Y and Chen L: Roles of the
PI3K/AKT/mTOR signalling pathways in neurodegenerative diseases and
tumours. Cell Biosci. 10:542020. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Li Q, Li Z, Luo T and Shi H: Targeting the
PI3K/AKT/mTOR and RAF/MEK/ERK pathways for cancer therapy. Mol
Biomed. 3:472022. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Ediriweera MK, Tennekoon KH and Samarakoon
SR: Role of the PI3K/AKT/mTOR signaling pathway in ovarian cancer:
Biological and therapeutic significance. Semin Cancer Biol.
59:147–160. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Fattahi S, Amjadi-Moheb F, Tabaripour R,
Ashrafi GH and Akhavan-Niaki H: PI3K/AKT/mTOR signaling in gastric
cancer: Epigenetics and beyond. Life Sci. 262:1185132020.
View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Alves CL and Ditzel HJ: Drugging the
PI3K/AKT/mTOR Pathway in ER+ Breast Cancer. Int J Mol Sci.
24:45222023. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Kim SO, Cha HJ, Park C, Lee H, Hong SH,
Jeong SJ, Park SH, Kim GY, Leem SH, Jin CY, et al: Cordycepin
induces apoptosis in human bladder cancer T24 cells through
ROS-dependent inhibition of the PI3K/Akt signaling pathway. Biosci
Trends. 13:324–333. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Chang MM, Pan BS, Wang CY and Huang BM:
Cordycepin-induced unfolded protein response-dependent cell death,
and AKT/MAPK-mediated drug resistance in mouse testicular tumor
cells. Cancer Med. 8:3949–3964. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Zhou X, Li Y, Yang C, Chen D, Wang T, Liu
T, Yan W, Su Z, Peng B and Ren X: Cordycepin reprogramming lipid
metabolism to block metastasis and EMT via ERO1A/mTOR/SREBP1 axis
in cholangiocarcinoma. Life Sci. 327:1216982023. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Yuan H, Han Y, Wang X, Li N, Liu Q, Yin Y,
Wang H, Pan L, Li L, Song K, et al: SETD2 restricts prostate cancer
metastasis by integrating EZH2 and AMPK signaling pathways. Cancer
Cell. 38:350–365.e7. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Rodríguez C, Muñoz M, Contreras C and
Prieto D: AMPK, metabolism, and vascular function. FEBS J.
288:3746–3771. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Wang S, Li H, Yuan M, Fan H and Cai Z:
Role of AMPK in autophagy. Front Physiol. 13:10155002022.
View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Steinberg GR and Hardie DG: New insights
into activation and function of the AMPK. Nat Rev Mol Cell Biol.
24:255–272. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Keerthana CK, Rayginia TP, Shifana SC,
Anto NP, Kalimuthu K, Isakov N and Anto RJ: The role of AMPK in
cancer metabolism and its impact on the immunomodulation of the
tumor microenvironment. Front Immunol. 14:11145822023. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Hsu CC, Peng D, Cai Z and Lin HK: AMPK
signaling and its targeting in cancer progression and treatment.
Semin Cancer Biol. 85:52–68. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Liao XZ, Gao Y, Zhao HW, Zhou M, Chen DL,
Tao LT, Guo W, Sun LL, Gu CY, Chen HR, et al: Cordycepin Reverses
cisplatin resistance in non-small cell lung cancer by activating
AMPK and Inhibiting AKT signaling pathway. Front Cell Dev Biol.
8:6092852021. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Wei C, Yao X, Jiang Z, Wang Y, Zhang D,
Chen X, Fan X, Xie C, Cheng J, Fu J and Leung EL: Cordycepin
inhibits drug-resistance non-small cell lung cancer progression by
activating AMPK signaling pathway. Pharmacol Res. 144:79–89. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Yoon SY, Lindroth AM, Kwon S, Park SJ and
Park YJ: Adenosine derivatives from Cordyceps exert antitumor
effects against ovarian cancer cells through ENT1-mediated
transport, induction of AMPK signaling, and consequent autophagic
cell death. Biomed Pharmacother. 153:1134912022. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Zhang Y and Beachy PA: Cellular and
molecular mechanisms of Hedgehog signalling. Nat Rev Mol Cell Biol.
24:668–687. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Sigafoos AN, Paradise BD and
Fernandez-Zapico ME: Hedgehog/GLI Signaling Pathway: Transduction,
regulation, and implications for disease. Cancers (Basel).
13:34102021. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Xia R, Xu M, Yang J and Ma X: The role of
Hedgehog and Notch signaling pathway in cancer. Mol Biomed.
3:442022. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Liu C, Qi M, Li L, Yuan Y, Wu X and Fu J:
Natural cordycepin induces apoptosis and suppresses metastasis in
breast cancer cells by inhibiting the Hedgehog pathway. Food Funct.
11:2107–2116. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Wu W, Li X, Qi M, Hu X, Cao F, Wu X and Fu
J: Cordycepin inhibits growth and metastasis formation of
MDA-MB-231 ×enografts in nude mice by modulating the hedgehog
pathway. Int J Mol Sci. 23:103622022. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Albrecht LV, Tejeda-Muñoz N and De
Robertis EM: Cell biology of canonical Wnt signaling. Annu Rev Cell
Dev Biol. 37:369–389. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Zhao H, Ming T, Tang S, Ren S, Yang H, Liu
M, Tao Q and Xu H: Wnt signaling in colorectal cancer: Pathogenic
role and therapeutic target. Mol Cancer. 21:1442022. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Parsons MJ, Tammela T and Dow LE: WNT as a
driver and dependency in cancer. Cancer Discov. 11:2413–2429. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Gruszka AM, Valli D and Alcalay M: Wnt
Signalling in Acute Myeloid Leukaemia. Cells. 8:14032019.
View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Abazari N, Stefanucci MR, Bossi LE,
Trojani A, Cairoli R and Beghini A: Cordycepin (3′dA) Induces Cell
Death of AC133+ Leukemia Cells via Re-Expression of WIF1 and
Down-Modulation of MYC. Cancers (Basel). 15:39312023. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Li SZ, Ren JW, Fei J, Zhang XD and Du RL:
Cordycepin induces Bax dependent apoptosis in colorectal cancer
cells. Mol Med Rep. 19:901–908. 2019.PubMed/NCBI
|
|
73
|
Zheng Q, Sun J, Li W, Li S and Zhang K:
Cordycepin induces apoptosis in human tongue cancer cells in vitro
and has antitumor effects in vivo. Arch Oral Biol. 118:1048462020.
View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Fong P, Ao CN, Tou KI, Huang KM, Cheong CC
and Meng LR: Experimental and In Silico Analysis of Cordycepin and
its Derivatives as Endometrial Cancer Treatment. Oncol Res.
27:237–251. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Min Y, Ding Y, Huang Q, Xu Y and Li J:
Cordycepin inhibited the retinoblastoma cell proliferation,
migration, and invasion as well as lung metastasis via modulating
c-Myc/cyclin D1 pathway. Chem Biol Drug Des. 101:605–613. 2023.
View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Shi L, Cao H, Fu S, Jia Z, Lu X, Cui Z and
Yu D: Cordycepin enhances hyperthermia-induced apoptosis and cell
cycle arrest by modulating the MAPK pathway in human lymphoma U937
cells. Mol Biol Rep. 49:8673–8683. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Tania M, Shawon J, Saif K, Kiefer R,
Khorram MS, Halim MA and Khan MA: Cordycepin Downregulates Cdk-2 to
Interfere with Cell Cycle and Increases Apoptosis by Generating ROS
in Cervical Cancer Cells: In vitro and in silico Study. Curr Cancer
Drug Targets. 19:152–159. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Chang MM, Hong SY, Yang SH, Wu CC, Wang CY
and Huang BM: Anti-Cancer Effect of Cordycepin on FGF9-Induced
Testicular Tumorigenesis. Int J Mol Sci. 21:83362020. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Liu S, Yao S, Yang H, Liu S and Wang Y:
Autophagy: Regulator of cell death. Cell Death Dis. 14:6482023.
View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Klionsky DJ, Petroni G, Amaravadi RK,
Baehrecke EH, Ballabio A, Boya P, Bravo-San Pedro JM, Cadwell K,
Cecconi F, Choi AMK, et al: Autophagy in major human diseases. EMBO
J. 40:e1088632021. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Debnath J, Gammoh N and Ryan KM: Autophagy
and autophagy-related pathways in cancer. Nat Rev Mol Cell Biol.
24:560–575. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Binlateh T, Uppatcha N, Thepchai J,
Pleungtuk Y, Noisa P, Hutamekalin P and Jitprasertwong P:
Cordycepin attenuates migration and invasion of HSC-4 oral squamous
carcinoma cells through autophagy-dependent FAK/Akt and MMP2/MMP9
suppression. J Dent Sci. 17:1677–1688. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Jang HJ, Yang KE, Hwang IH, Huh YH, Kim
DJ, Yoo HS, Park SJ and Jang IS: Cordycepin inhibits human ovarian
cancer by inducing autophagy and apoptosis through Dickkopf-related
protein 1/β-catenin signaling. Am J Transl Res. 11:6890–6906.
2019.PubMed/NCBI
|
|
84
|
Wang CY, Tsai SW, Chien HH, Chen TY, Sheu
SY, So EC and Huang BM: Cordycepin inhibits human gestational
choriocarcinoma cell growth by disrupting centrosome homeostasis.
Drug Des Devel Ther. 14:2987–3000. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Chen R, Feng C, Chen L, Zheng X, Fang W,
Wu S, Gao X, Chen C, Yang J, Wu Y, et al: Single-cell RNA
sequencing indicates cordycepin remodels the tumor immune
microenvironment to enhance TIGIT blockade's anti-tumor effect in
colon cancer. Int Immunopharmacol. 126:1112682024. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Panwong S, Wathikthinnakon M, Kaewkod T,
Sawasdee N, Tragoolpua Y, Yenchitsomanus PT and Panya A: Cordycepin
sensitizes cholangiocarcinoma cells to be killed by natural
killer-92 (NK-92) cells. Molecules. 26:59732021. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Feng C, Chen R, Fang W, Gao X, Ying H,
Zheng X, Chen L and Jiang J: Synergistic effect of CD47 blockade in
combination with cordycepin treatment against cancer. Front
Pharmacol. 14:11443302023. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Wei C, Khan MA, Du J, Cheng J, Tania M,
Leung EL and Fu J: Cordycepin inhibits triple-negative breast
cancer cell migration and invasion by regulating EMT-TFs SLUG,
TWIST1, SNAIL1, and ZEB1. Front Oncol. 12:8985832022. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Lin YT, Liang SM, Wu YJ, Wu YJ, Lu YJ, Jan
YJ, Ko BS, Chuang YJ, Shyue SK, Kuo CC and Liou JY: Cordycepin
Suppresses endothelial cell proliferation, migration, angiogenesis,
and tumor growth by regulating focal adhesion kinase and p53.
Cancers (Basel). 11:1682019. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Guo Z, Chen W, Dai G and Huang Y:
Cordycepin suppresses the migration and invasion of human liver
cancer cells by downregulating the expression of CXCR4. Int J Mol
Med. 45:141–150. 2020.PubMed/NCBI
|
|
91
|
Zhang X, Zhou X, Gao M, Lyu Y, Wang Y,
Yang C, Piao Y and Ren X: Cordycepin inhibits the proliferation and
migration of human gastric cancer cells by suppressing lipid
metabolism via AMPK and MAPK activation. Xi Bao Yu Fen Zi Mian Yi
Xue Za Zhi. 38:513–521. 2022.(In Chineae). PubMed/NCBI
|
|
92
|
Zhang Z, Li K, Zheng Z and Liu Y:
Cordycepin inhibits colon cancer proliferation by suppressing MYC
expression. BMC Pharmacol Toxicol. 23:122022. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Lee SC, Alaali L, Kwon H, Rigi M and
Eberhart CG: Cordycepin (3′-Deoxyadenosine) suppresses heat shock
protein 90 function and targets tumor growth in an adenosine
deaminase-dependent manner. Cancers (Basel). 14:31222022.
View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Khuntawee W, Amornloetwattana R,
Vongsangnak W, Namdee K, Yata T, Karttunen M and Wong-Ekkabut J: In
silico and in vitro design of cordycepin encapsulation in liposomes
for colon cancer treatment. RSC Adv. 11:8475–8484. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Levy A, Mercier O and Le Péchoux C:
Indications and parameters around postoperative radiation therapy
for lung cancer. J Clin Oncol. 40:556–566. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Wirth A, Mikhaeel NG, Aleman BMP, Pinnix
CC, Constine LS, Ricardi U, Illidge TM, Eich HT, Hoppe BS, Dabaja
B, et al: Involved Site Radiation Therapy in Adult Lymphomas: An
Overview of International Lymphoma Radiation Oncology Group
Guidelines. Int J Radiat Oncol Biol Phys. 107:909–933. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Verma S, Young S, Boldt G, Blanchette P,
Lock M, Helou J and Raphael J: Immunotherapy and radiation therapy
sequencing in breast cancer: A systematic review. Int J Radiat
Oncol Biol Phys. 118:1422–1434. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Huang R and Zhou PK: DNA damage repair:
historical perspectives, mechanistic pathways and clinical
translation for targeted cancer therapy. Signal Transduct Target
Ther. 6:2542021. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Lee YP, Huang WR, Wu WS, Wu YH, Ho SY,
Wang YJ and Huang BM: Cordycepin enhances radiosensitivity to
induce apoptosis through cell cycle arrest, caspase pathway and ER
stress in MA-10 mouse Leydig tumor cells. Am J Cancer Res.
12:3601–3624. 2022.PubMed/NCBI
|
|
100
|
Lee YP, Lin CR, Chen SS, Chen RJ, Wu YH,
Chen YH and Huang BM: Combination treatment of cordycepin and
radiation induces MA-10 mouse Leydig tumor cell death via ROS
accumulation and DNA damage. Am J Cancer Res. 13:1329–1346.
2023.PubMed/NCBI
|
|
101
|
Dong J, Li Y, Xiao H, Luo D, Zhang S, Zhu
C, Jiang M, Cui M, Lu L and Fan S: Cordycepin sensitizes breast
cancer cells toward irradiation through elevating ROS production
involving Nrf2. Toxicol Appl Pharmacol. 364:12–21. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Lee D, Lee WY, Jung K, Kwon YS, Kim D,
Hwang GS, Kim CE, Lee S and Kang KS: The inhibitory effect of
cordycepin on the proliferation of MCF-7 breast cancer cells, and
its mechanism: An investigation using network pharmacology-based
analysis. Biomolecules. 9:4142019. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Su NW, Wu SH, Chi CW, Tsai TH and Chen YJ:
Cordycepin, isolated from medicinal fungus Cordyceps sinensis,
enhances radiosensitivity of oral cancer associated with modulation
of DNA damage repair. Food Chem Toxicol. 124:400–410. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Oh SS, Lee KW, Madhi H, Jeong JW, Park S,
Kim M, Lee Y, Han HT, Hwangbo C, Yoo J and Kim KD: Cordycepin
Resensitizes T24R2 cisplatin-resistant human bladder cancer cells
to cisplatin by inactivating Ets-1 Dependent MDR1 transcription.
Int J Mol Sci. 21:17102020. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Li HB, Chen JK, Su ZX, Jin QL, Deng LW,
Huang G and Shen JN: Cordycepin augments the chemosensitivity of
osteosarcoma to cisplatin by activating AMPK and suppressing the
AKT signaling pathway. Cancer Cell Int. 21:7062021. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Gao Y, Chen DL, Zhou M, Zheng ZS, He MF,
Huang S, Liao XZ and Zhang JX: Cordycepin enhances the
chemosensitivity of esophageal cancer cells to cisplatin by
inducing the activation of AMPK and suppressing the AKT signaling
pathway. Cell Death Dis. 11:8662020. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Zheng SX, Chen J, Zhuang BB, Zhang Q, Shi
SS and Zhang GL: Cordycepin improves sensitivity to temozolomide in
glioblastoma cells by down-regulating MYC. J Cancer Res Clin Oncol.
149:16055–16067. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Chen J, Zhuang YD, Zhang Q, Liu S, Zhuang
BB, Wang CH and Liang RS: Exploring the mechanism of cordycepin
combined with doxorubicin in treating glioblastoma based on network
pharmacology and biological verification. PeerJ. 10:e129422022.
View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Liao X, Tao L, Guo W, Wu ZX, Du H, Wang J,
Zhang J, Chen H, Chen ZS, Lin L and Sun L: Combination of
cordycepin and apatinib synergistically inhibits NSCLC Cells by
Down-Regulating VEGF/PI3K/Akt signaling pathway. Front Oncol.
10:17322020. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Woolley VC, Teakle GR, Prince G, de Moor
CH and Chandler D: Cordycepin, a metabolite of Cordyceps militaris,
reduces immune-related gene expression in insects. J Invertebr
Pathol. 177:1074802020. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Lan T, Yu Y, Zhang J, Li H, Weng Q, Jiang
S, Tian S, Xu T, Hu S, Yang G, et al: Cordycepin ameliorates
nonalcoholic steatohepatitis by activation of the AMP-Activated
protein kinase signaling pathway. Hepatology. 74:686–703. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Tan L, Song X, Ren Y, Wang M, Guo C, Guo
D, Gu Y, Li Y, Cao Z and Deng Y: Anti-inflammatory effects of
cordycepin: A review. Phytother Res. Oct 8–2020.(Epub ahead of
print).
|
|
113
|
Khan MA and Tania M: Cordycepin in
anticancer research: Molecular mechanism of therapeutic effects.
Curr Med Chem. 27:983–996. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Seong da B, Hong S, Muthusami S, Kim WD,
Yu JR and Park WY: Cordycepin increases radiosensitivity in
cervical cancer cells by overriding or prolonging radiation-induced
G2/M arrest. Eur J Pharmacol. 771:77–83. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Dalla Rosa L, da Silva AS, Gressler LT,
Oliveira CB, Dambrós MG, Miletti LC, França RT, Lopes ST, Samara
YN, da Veiga ML and Monteiro SG: Cordycepin (3′-deoxyadenosine)
pentostatin (deoxycoformycin) combination treatment of mice
experimentally infected with Trypanosoma evansi. Parasitology.
140:663–671. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Qin P, Li X, Yang H, Wang ZY and Lu D:
Therapeutic potential and biological applications of cordycepin and
metabolic mechanisms in cordycepin-producing fungi. Molecules.
24:22312019. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Chen M, Luo J, Jiang W, Chen L, Miao L and
Han C: Cordycepin: A review of strategies to improve the
bioavailability and efficacy. Phytother Res. 37:3839–3858. 2023.
View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Lee JB, Adrower C, Qin C, Fischer PM, de
Moor CH and Gershkovich P: Development of cordycepin formulations
for preclinical and clinical studies. AAPS PharmSciTech.
18:3219–3226. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Posadino AM, Giordo R, Pintus G, Mohammed
SA, Orhan IE, Fokou PVT, Sharopov F, Adetunji CO,
Gulsunoglu-Konuskan Z, Ydyrys A, et al: Medicinal and mechanistic
overview of artemisinin in the treatment of human diseases. Biomed
Pharmacother. 163:1148662023. View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Talman AM, Clain J, Duval R, Ménard R and
Ariey F: Artemisinin bioactivity and resistance in malaria
parasites. Trends Parasitol. 35:953–963. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Chen GQ, Benthani FA, Wu J, Liang D, Bian
ZX and Jiang X: Artemisinin compounds sensitize cancer cells to
ferroptosis by regulating iron homeostasis. Cell Death Differ.
27:242–254. 2020. View Article : Google Scholar : PubMed/NCBI
|