Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
September-2024 Volume 30 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
September-2024 Volume 30 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Cellular senescence in metastatic prostate cancer: A therapeutic opportunity or challenge (Review)

  • Authors:
    • Cen Jin
    • Sijian Liao
    • Guoliang Lu
    • Bill D. Geng
    • Zi Ye
    • Jianwei Xu
    • Guo Ge
    • Dan Yang
  • View Affiliations / Copyright

    Affiliations: Center for Tissue Engineering and Stem Cell Research, Guizhou Medical University, Guiyang, Guizhou 561113, P.R. China, Clinical Medicine School, Guizhou Medical University, Guiyang, Guizhou 561113, P.R. China, Department of Pediatrics, Anshun People's Hospital, Anshun, Guizhou 561000, P.R. China, School of Natural Science, University of Texas at Austin, Austin, TX 78712, USA, Department of Human Anatomy, School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou 561113, P.R. China, Department of Surgery, Clinical Medical College, Guizhou Medical University, Guiyang, Guizhou 561113, P.R. China
    Copyright: © Jin et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 162
    |
    Published online on: July 8, 2024
       https://doi.org/10.3892/mmr.2024.13286
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

The treatment of patients with metastatic prostate cancer (PCa) is considered to be a long‑standing challenge. Conventional treatments for metastatic PCa, such as radical prostatectomy, radiotherapy and androgen receptor‑targeted therapy, induce senescence of PCa cells to a certain extent. While senescent cells can impede tumor growth through the restriction of cell proliferation and increasing immune clearance, the senescent microenvironment may concurrently stimulate the secretion of a senescence‑associated secretory phenotype and diminish immune cell function, which promotes PCa recurrence and metastasis. Resistance to established therapies is the primary obstacle in treating metastatic PCa as it can lead to progression towards an incurable state of disease. Therefore, understanding the molecular mechanisms that underly the progression of PCa is crucial for the development of novel therapeutic approaches. The present study reviews the phenomenon of treatment‑induced senescence in PCa, the dual role of senescence in PCa treatments and the mechanisms through which senescence promotes PCa metastasis. Furthermore, the present review discusses potential therapeutic strategies to target the aforementioned processes with the aim of providing insights into the evolving therapeutic landscape for the treatment of metastatic PCa.
View Figures

Figure 1

Figure 2

Figure 3

View References

1 

Xie J, Xiao X, Dong Z and Wang Q: The systemic inflammation score is associated with the survival of patients with prostate cancer. J Inflamm Res. 16:963–975. 2023. View Article : Google Scholar : PubMed/NCBI

2 

Siegel RL, Miller KD, Wagle NS and Jemal A: Cancer statistics, 2023. CA Cancer J Clin. 73:17–48. 2023. View Article : Google Scholar : PubMed/NCBI

3 

Tan Y, Wang L, Du Y, Liu X, Chen Z, Weng X, Guo J, Chen H, Wang M and Wang X: Inhibition of BRD4 suppresses tumor growth in prostate cancer via the enhancement of FOXO1 expression. Int J Oncol. 53:2503–2517. 2018.PubMed/NCBI

4 

Dong D, Zhang L, Bai C, Ma N, Ji W, Jia L, Zhang A, Zhang P, Ren L and Zhou Y: UNC5D, suppressed by promoter hypermethylation, inhibits cell metastasis by activating death-associated protein kinase 1 in prostate cancer. Cancer Sci. 110:1244–1255. 2019. View Article : Google Scholar : PubMed/NCBI

5 

Belmonte M, Saia G, Zugni F, Alessi S, Colombo A, Summers PE, Luzzago S, Marvaso G, Musi G, De Cobelli O, et al: The role of MRI in the management of a prostate cancer patient with bone and lymph nodes metastases. A case report. Acta Biomed. 92:e20212142021.PubMed/NCBI

6 

Witt K, Evans-Axelsson S, Lundqvist A, Johansson M, Bjartell A and Hellsten R: Inhibition of STAT3 augments antitumor efficacy of anti-CTLA-4 treatment against prostate cancer. Cancer Immunol Immunother. 70:3155–3166. 2021. View Article : Google Scholar : PubMed/NCBI

7 

Sun CY, Talukder M, Cao D and Chen CW: Gilteritinib enhances Anti-tumor efficacy of CDK4/6 inhibitor, abemaciclib in lung cancer cells. Front Pharmacol. 13:8297592022. View Article : Google Scholar : PubMed/NCBI

8 

Rysanek D, Vasicova P, Kolla JN, Sedlak D, Andera L, Bartek J and Hodny Z: Synergism of BCL-2 family inhibitors facilitates selective elimination of senescent cells. Aging. 14:6381–6414. 2022. View Article : Google Scholar : PubMed/NCBI

9 

Rhinn M, Zapata-Bodalo I, Klein A, Plassat JL, Knauer-Meyer T and Keyes WM: Aberrant induction of p19Arf-mediated cellular senescence contributes to neurodevelopmental defects. PLoS Biol. 20:e30016642022. View Article : Google Scholar : PubMed/NCBI

10 

Alessio N, Aprile D, Squillaro T, Di Bernardo G, Finicelli M, Melone MA, Peluso G and Galderisi U: The senescence-associated secretory phenotype (SASP) from mesenchymal stromal cells impairs growth of immortalized prostate cells but has no effect on metastatic prostatic cancer cells. Aging (Albany NY). 11:5817–5828. 2019. View Article : Google Scholar : PubMed/NCBI

11 

Kallenbach J, Atri Roozbahani G, Heidari Horestani M and Baniahmad A: Distinct mechanisms mediating therapy-induced cellular senescence in prostate cancer. Cell Biosci. 12:2002022. View Article : Google Scholar : PubMed/NCBI

12 

Mori JO, Elhussin I, Brennen WN, Graham MK, Lotan TL, Yates CC, De Marzo AM, Denmeade SR, Yegnasubramanian S, Nelson WG, et al: Prognostic and therapeutic potential of senescent stromal fibroblasts in prostate cancer. Nat Rev Urol. 21:258–273. 2024. View Article : Google Scholar : PubMed/NCBI

13 

Takemoto K, Kobatake K, Miura K, Fukushima T, Babasaki T, Miyamoto S, Sekino Y, Kitano H, Goto K, Ikeda K, et al: BACH1 promotes clear cell renal cell carcinoma progression by upregulating oxidative stress-related tumorigenicity. Cancer Sci. 114:436–448. 2023. View Article : Google Scholar : PubMed/NCBI

14 

Hayflick L and Moorhead PS: The serial cultivation of human diploid cell strains. Exp Cell Res. 25:585–621. 1961. View Article : Google Scholar : PubMed/NCBI

15 

Huang Y, Ge MX, Li YH, Li JL, Yu Q, Xiao FH, Ao HS, Yang LQ, Li J, He Y and Kong QP: Longevity-associated transcription factor ATF7 promotes Healthspan by suppressing cellular senescence and systematic inflammation. Aging Dis. 14:1374–1389. 2023.PubMed/NCBI

16 

Ngoi NY, Liew AQx, Chong SJF, Davids MS, Clement MV and Pervaiz S: The redox-senescence axis and its therapeutic targeting. Redox Biol. 45:1020322021. View Article : Google Scholar : PubMed/NCBI

17 

Park SS, Choi YW, Kim JH, Kim HS and Park TJ: Senescent tumor cells: An overlooked adversary in the battle against cancer. Exp Mol Med. 53:1834–1841. 2021. View Article : Google Scholar : PubMed/NCBI

18 

Alhaddad L, Nofal Z, Pustovalova M, Osipov AN and Leonov S: Long-term cultured human glioblastoma multiforme cells demonstrate increased radiosensitivity and senescence-associated secretory phenotype in response to irradiation. Int J Mol Sci. 24:20022023. View Article : Google Scholar : PubMed/NCBI

19 

Wu Z, Uhl B, Gires O and Reichel CA: A transcriptomic pan-cancer signature for survival prognostication and prediction of immunotherapy response based on endothelial senescence. J Biomed Sci. 30:212023. View Article : Google Scholar : PubMed/NCBI

20 

Mirzakhani K, Kallenbach J, Rasa SMM, Ribaudo F, Ungelenk M, Ehsani M, Gong W, Gassler N, Leeder M, Grimm MO, et al: The androgen receptor-lncRNASAT1-AKT-p15 axis mediates androgen-induced cellular senescence in prostate cancer cells. Oncogene. 41:943–959. 2022. View Article : Google Scholar : PubMed/NCBI

21 

Birch J and Gil J: Senescence and the SASP: Many therapeutic avenues. Genes Dev. 34:1565–1576. 2020. View Article : Google Scholar : PubMed/NCBI

22 

Coppé JP, Patil CK, Rodier F, Sun Y, Muñoz DP, Goldstein J, Nelson PS, Desprez PY and Campisi J: Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol. 6:2853–2868. 2008. View Article : Google Scholar : PubMed/NCBI

23 

Georgilis A, Klotz S, Hanley CJ, Herranz N, Weirich B, Morancho B, Leote AC, D'Artista L, Gallage S, Seehawer M, et al: PTBP1-mediated alternative splicing regulates the inflammatory Secretome and the Pro-tumorigenic effects of senescent cells. Cancer Cell. 34:85–102.e9. 2018. View Article : Google Scholar : PubMed/NCBI

24 

Yue Z, Nie L, Zhao P, Ji N, Liao G and Wang Q: Senescence-associated secretory phenotype and its impact on oral immune homeostasis. Front Immunol. 13:10193132022. View Article : Google Scholar : PubMed/NCBI

25 

Liu L, Yue X, Sun Z, Hambright WS, Wei J, Li Y, Matre P, Cui Y, Wang Z, Rodney G, et al: Reduction of senescent fibro-adipogenic progenitors in progeria-aged muscle by senolytics rescues the function of muscle stem cells. J Cachexia Sarcopenia Muscle. 13:3137–3148. 2022. View Article : Google Scholar : PubMed/NCBI

26 

Khalil R, Diab-Assaf M and Lemaitre JM: Emerging therapeutic approaches to target the dark side of senescent cells: New hopes to treat aging as a disease and to delay age-related pathologies. Cells. 12:9152023. View Article : Google Scholar : PubMed/NCBI

27 

Zhang L, Pitcher LE, Yousefzadeh MJ, Niedernhofer LJ, Robbins PD and Zhu Y: Cellular senescence: A key therapeutic target in aging and diseases. J Clin Invest. 132:e1584502022. View Article : Google Scholar : PubMed/NCBI

28 

Duan D, Shang M, Han Y, Liu J, Liu J, Kong SH, Hou J, Huang B, Lu J and Zhang Y: EZH2-CCF-cGAS axis promotes breast cancer metastasis. Int J Mol Sci. 23:17882022. View Article : Google Scholar : PubMed/NCBI

29 

Huang M, Cha Z, Liu R, Lin M, Gafoor NA, Kong T, Ge F and Chen W: Enhancing immunotherapy outcomes by targeted remodeling of the tumor microenvironment via combined cGAS-STING pathway strategies. Front Immunol. 15:13999262024. View Article : Google Scholar : PubMed/NCBI

30 

Lee KS, Lin S, Copland DA, Dick AD and Liu J: Cellular senescence in the aging retina and developments of senotherapies for age-related macular degeneration. J Neuroinflammation. 18:322021. View Article : Google Scholar : PubMed/NCBI

31 

Toso A, Revandkar A, Di Mitri D, Guccini I, Proietti M, Sarti M, Pinton S, Zhang J, Kalathur M, Civenni G, et al: Enhancing chemotherapy efficacy in Pten-Deficient prostate tumors by activating the senescence-associated antitumor immunity. Cell Rep. 9:75–89. 2014. View Article : Google Scholar : PubMed/NCBI

32 

Parry AJ, Hoare M, Bihary D, Hänsel-Hertsch R, Smith S, Tomimatsu K, Mannion E, Smith A, D'Santos P, Russell IA, et al: NOTCH-mediated non-cell autonomous regulation of chromatin structure during senescence. Nat Commun. 9:18402018. View Article : Google Scholar : PubMed/NCBI

33 

Tan SYX, Zhang J and Tee WW: Epigenetic regulation of inflammatory signaling and inflammation-induced cancer. Front Cell Dev Biol. 10:9314932022. View Article : Google Scholar : PubMed/NCBI

34 

Chandrasekaran A, Idelchik MDPS and Melendez JA: Redox control of senescence and age-related disease. Redox Biol. 11:91–102. 2017. View Article : Google Scholar : PubMed/NCBI

35 

Takasugi M, Yoshida Y and Ohtani N: Cellular senescence and the tumour microenvironment. Mol Oncol. 16:3333–3351. 2022. View Article : Google Scholar : PubMed/NCBI

36 

Wan R, Long S, Ma S, Yan P, Li Z, Xu K, Lian H, Li W, Duan Y, Zhu M, et al: NR2F2 alleviates pulmonary fibrosis by inhibition of epithelial cell senescence. Respir Res. 25:1542024. View Article : Google Scholar : PubMed/NCBI

37 

Zhao B, Wu B, Feng N, Zhang X, Zhang X, Wei Y and Zhang W: Aging microenvironment and antitumor immunity for geriatric oncology: the landscape and future implications. J Hematol OncolJ Hematol Oncol. 16:282023. View Article : Google Scholar : PubMed/NCBI

38 

Hwang HJ, Lee YR, Kang D, Lee HC, Seo HR, Ryu JK, Kim YN, Ko YG, Park HJ and Lee JS: Endothelial cells under therapy-induced senescence secrete CXCL11, which increases aggressiveness of breast cancer cells. Cancer Lett. 490:100–110. 2020. View Article : Google Scholar : PubMed/NCBI

39 

Chibaya L, Snyder J and Ruscetti M: Senescence and the tumor-immune landscape: Implications for cancer immunotherapy. Semin Cancer Biol. 86:827–845. 2022. View Article : Google Scholar : PubMed/NCBI

40 

Volonte D and Galbiati F: Caveolin-1, a master regulator of cellular senescence. Cancer Metastasis Rev. 39:397–414. 2020. View Article : Google Scholar : PubMed/NCBI

41 

Pardella E, Pranzini E, Nesi I, Parri M, Spatafora P, Torre E, Muccilli A, Castiglione F, Fambrini M, Sorbi F, et al: Therapy-induced stromal senescence promoting aggressiveness of prostate and ovarian cancer. Cells. 11:40262022. View Article : Google Scholar : PubMed/NCBI

42 

Xu MY, Xia ZY, Sun JX, Liu CQ, An Y, Xu JZ, Zhang SH, Zhong XY, Zeng N, Ma SY, et al: A new perspective on prostate cancer treatment: The interplay between cellular senescence and treatment resistance. Front Immunol. 15:13950472024. View Article : Google Scholar : PubMed/NCBI

43 

Meng F, Han X, Min Z, He X and Zhu S: Prognostic signatures associated with high infiltration of Tregs in bone metastatic prostate cancer. Aging. 13:17442–17461. 2021. View Article : Google Scholar : PubMed/NCBI

44 

Gilbert S, Péant B, Malaquin N, Tu V, Fleury H, Leclerc-Desaulniers K, Rodier F, Mes-Masson AM and Saad F: Targeting IKKε in androgen-independent prostate cancer causes phenotypic senescence and genomic instability. Mol Cancer Ther. 21:407–418. 2022. View Article : Google Scholar : PubMed/NCBI

45 

Pernicová Z, Slabáková E, Kharaishvili G, Bouchal J, Král M, Kunická Z, Machala M, Kozubík A and Souček K: Androgen depletion induces senescence in prostate cancer cells through down-regulation of Skp2. Neoplasia. 13:526–536. 2011. View Article : Google Scholar : PubMed/NCBI

46 

Blute ML, Damaschke N, Wagner J, Yang B, Gleave M, Fazli L, Shi F, Abel EJ, Downs TM, Huang W and Jarrard DF: Persistence of senescent prostate cancer cells following prolonged neoadjuvant androgen deprivation therapy. PLoS One. 12:e01720482017. View Article : Google Scholar : PubMed/NCBI

47 

Zhang X, Peng Y, Yuan Y, Gao Y, Hu F, Wang J, Zhu X, Feng X, Cheng Y, Wei Y, et al: Histone methyltransferase SET8 is regulated by miR-192/215 and induces oncogene-induced senescence via p53-dependent DNA damage in human gastric carcinoma cells. Cell Death Dis. 11:9372020. View Article : Google Scholar : PubMed/NCBI

48 

Tao YP, Zhu HY, Shi QY, Wang CX, Hua YX, Hu HY, Zhou QY, Zhou ZL, Sun Y, Wang XM, et al: S1PR1 regulates ovarian cancer cell senescence through the PDK1-LATS1/2-YAP pathway. Oncogene. 42:3491–3502. 2023. View Article : Google Scholar : PubMed/NCBI

49 

Fang L, Li D, Yin J, Pan H, Ye H, Bowman J, Capaldo B and Kelly K: TMPRSS2-ERG promotes the initiation of prostate cancer by suppressing oncogene-induced senescence. Cancer Gene Ther. 29:1463–1476. 2022. View Article : Google Scholar : PubMed/NCBI

50 

Saleh T, Khasawneh AI, Himsawi N, Abu-Raideh J, Ejeilat V, Elshazly AM and Gewirtz DA: Senolytic therapy: A potential approach for the elimination of oncogene-induced senescent HPV-positive cells. Int J Mol Sci. 23:155122022. View Article : Google Scholar : PubMed/NCBI

51 

Ye M, Huang X, Wu Q and Liu F: Senescent stromal cells in the tumor microenvironment: Victims or accomplices? Cancers. 15:19272023. View Article : Google Scholar : PubMed/NCBI

52 

Brandmaier A, Hou SQ and Shen WH: Cell cycle control by PTEN. J Mol Biol. 429:2265–2277. 2017. View Article : Google Scholar : PubMed/NCBI

53 

Zhou X, Yang X, Sun X, Xu X, Li X, Guo Y, Wang J, Li X, Yao L, Wang H and Shen L: Effect of PTEN loss on metabolic reprogramming in prostate cancer cells. Oncol Lett. 17:2856–2866. 2019.PubMed/NCBI

54 

Parisotto M, Grelet E, El Bizri R, Dai Y, Terzic J, Eckert D, Gargowitsch L, Bornert JM and Metzger D: PTEN deletion in luminal cells of mature prostate induces replication stress and senescence in vivo. J Exp Med. 215:1749–1763. 2018. View Article : Google Scholar : PubMed/NCBI

55 

Chen Z, Carracedo A, Lin HK, Koutcher JA, Behrendt N, Egia A, Alimonti A, Carver BS, Gerald W, Teruya-Feldstein J, et al: Differential p53-independent outcomes of p19(Arf) loss in oncogenesis. Sci Signal. 2:ra442009. View Article : Google Scholar : PubMed/NCBI

56 

Guo J, Huang X, Dou L, Yan M, Shen T, Tang W and Li J: Aging and aging-related diseases: From molecular mechanisms to interventions and treatments. Signal Transduct Target Ther. 7:3912022. View Article : Google Scholar : PubMed/NCBI

57 

Hua H, Zheng C, Fan J, Li X, Xie W, Chen J and Yu C: The senescence-related signature predicts prognosis and characterization of tumor microenvironment infiltration in pancreatic cancer. BioMed Res Int. 2022:1–28. 2022. View Article : Google Scholar

58 

Dyachkova U, Vigovskiy M, Basalova N, Efimenko A and Grigorieva O: M2-Macrophage-induced chronic inflammation promotes reversible mesenchymal stromal cell senescence and reduces their anti-fibrotic properties. Int J Mol Sci. 24:170892023. View Article : Google Scholar : PubMed/NCBI

59 

Stanojković TP, Matić IZ, Petrović N, Stanković V, Kopčalić K, Besu I, Đorđić Crnogorac M, Mališić E, Mirjačić-Martinović K, Vuletić A, et al: Evaluation of cytokine expression and circulating immune cell subsets as potential parameters of acute radiation toxicity in prostate cancer patients. Sci Rep. 10:190022020. View Article : Google Scholar : PubMed/NCBI

60 

González-Ochoa S, Tellez-Bañuelos MC, Méndez-Clemente AS, Bravo-Cuellar A, Hernández Flores G, Palafox-Mariscal LA, Haramati J, Pedraza-Brindis EJ, Sánchez-Reyes K and Ortiz-Lazareno PC: Combination blockade of the IL6R/STAT-3 Axis with TIGIT and its impact on the functional activity of NK cells against prostate cancer cells. J Immunol Res. 2022:18108042022. View Article : Google Scholar : PubMed/NCBI

61 

Méndez-Clemente A, Bravo-Cuellar A, González-Ochoa S, Santiago-Mercado M, Palafox-Mariscal L, Jave-Suárez L, Solorzano-Ibarra F, Villaseñor-García M, Ortiz-Lazareno P and Hernández-Flores G: Dual STAT-3 and IL-6R inhibition with stattic and tocilizumab decreases migration, invasion and proliferation of prostate cancer cells by targeting the IL-6/IL-6R/STAT-3 axis. Oncol Rep. 48:1382022. View Article : Google Scholar : PubMed/NCBI

62 

Silk N, Reich J, Sinha R, Chawla S, Geary K and Zhang D: The effects of resveratrol on prostate cancer through targeting the tumor microenvironment. J Xenobiotics. 11:16–32. 2021. View Article : Google Scholar : PubMed/NCBI

63 

Park SY, Cui Z, Kim B, Park G and Choi YW: Treatment with gold nanoparticles using cudrania tricuspidata root extract induced downregulation of MMP-2/-9 and PLD1 and inhibited the invasiveness of human U87 Glioblastoma cells. Int J Mol Sci. 21:12822020. View Article : Google Scholar : PubMed/NCBI

64 

Fahs A, Hussein N, Zalzali H, Ramadan F, Ghamloush F, Tamim H, El Homsi M, Badran B, Boulos F, Tawil A, et al: CD147 promotes tumorigenesis via Exosome-mediated signaling in rhabdomyosarcoma. Cells. 11:22672022. View Article : Google Scholar : PubMed/NCBI

65 

Bair EL, Chen ML, McDaniel K, Sekiguchi K, Cress AE, Nagle RB and Bowden GT: Membrane type 1 Matrix Metalloprotease cleaves Laminin-10 and promotes prostate cancer cell migration. Neoplasia. 7:380–389. 2005. View Article : Google Scholar : PubMed/NCBI

66 

Wei R, Wong JPC, Lyu P, Xi X, Tong O, Zhang SD, Yuen HF, Shirasawa S and Kwok HF: In vitro and clinical data analysis of Osteopontin as a prognostic indicator in colorectal cancer. J Cell Mol Med. 22:4097–4105. 2018. View Article : Google Scholar : PubMed/NCBI

67 

Miftakhova R, Hedblom A, Semenas J, Robinson B, Simoulis A, Malm J, Rizvanov A, Heery DM, Mongan NP, Maitland NJ, et al: Cyclin A1 and P450 aromatase promote metastatic homing and growth of Stem-like prostate cancer cells in the bone marrow. Cancer Res. 76:2453–2464. 2016. View Article : Google Scholar : PubMed/NCBI

68 

Guccini I, Revandkar A, D'Ambrosio M, Colucci M, Pasquini E, Mosole S, Troiani M, Brina D, Sheibani-Tezerji R, Elia AR, et al: Senescence reprogramming by TIMP1 deficiency promotes prostate cancer metastasis. Cancer Cell. 39:68–82.e9. 2021. View Article : Google Scholar : PubMed/NCBI

69 

Rodier F, Coppé JP, Patil CK, Hoeijmakers WA, Muñoz DP, Raza SR, Freund A, Campeau E, Davalos AR and Campisi J: Persistent DNA damage signalling triggers senescence-associated inflammatory cytokine secretion. Nat Cell Biol. 11:973–979. 2009. View Article : Google Scholar : PubMed/NCBI

70 

van Dessel LF, van Riet J, Smits M, Zhu Y, Hamberg P, van der Heijden MS, Bergman AM, van Oort IM, de Wit R, Voest EE, et al: The genomic landscape of metastatic castration-resistant prostate cancers reveals multiple distinct genotypes with potential clinical impact. Nat Commun. 10:52512019. View Article : Google Scholar : PubMed/NCBI

71 

Aggarwal M, Saxena R, Asif N, Sinclair E, Tan J, Cruz I, Berry D, Kallakury B, Pham Q, Wang TTY and Chung FL: p53 mutant-type in human prostate cancer cells determines the sensitivity to phenethyl isothiocyanate induced growth inhibition. J Exp Clin Cancer Res. 38:3072019. View Article : Google Scholar : PubMed/NCBI

72 

Wanjala J, Taylor BS, Chapinski C, Hieronymus H, Wongvipat J, Chen Y, Nanjangud GJ, Schultz N, Xie Y, Liu S, et al: Identifying actionable targets through integrative analyses of GEM model and human prostate cancer genomic profiling. Mol Cancer Ther. 14:278–288. 2015. View Article : Google Scholar : PubMed/NCBI

73 

Haffner MC, Mosbruger T, Esopi DM, Fedor H, Heaphy CM, Walker DA, Adejola N, Gürel M, Hicks J, Meeker AK, et al: Tracking the clonal origin of lethal prostate cancer. J Clin Invest. 123:4918–4922. 2013. View Article : Google Scholar : PubMed/NCBI

74 

Ding D, Blee AM, Zhang J, Pan Y, Becker NA, Maher LJ III, Jimenez R, Wang L and Huang H: Gain-of-function mutant p53 together with ERG proto-oncogene drive prostate cancer by beta-catenin activation and pyrimidine synthesis. Nat Commun. 14:46712023. View Article : Google Scholar : PubMed/NCBI

75 

Jiang SJ and Wang S: Dual targeting of mTORC1 and mTORC2 by INK-128 potently inhibits human prostate cancer cell growth in vitro and in vivo. Tumour Biol. 36:8177–8184. 2015. View Article : Google Scholar : PubMed/NCBI

76 

Shorning BY, Dass MS, Smalley MJ and Pearson HB: The PI3K-AKT-mTOR pathway and prostate cancer: At the crossroads of AR, MAPK, and WNT signaling. Int J Mol Sci. 21:45072020. View Article : Google Scholar : PubMed/NCBI

77 

Shi J, Liu C, Chen C, Guo K, Tang Z, Luo Y, Chen L, Su Y and Xu K: Circular RNA circMBOAT2 promotes prostate cancer progression via a miR-1271-5p/mTOR axis. Aging (Albany NY). 12:13255–13280. 2020. View Article : Google Scholar : PubMed/NCBI

78 

Li Y, Fan A, Zhang Y, Guo Z, Meng W, Pan W, Ma Z and Chen W: Cellular senescence: A potential mode of circular RNAs regulating prostate cancer. MedComm-Oncol. 2:e612023. View Article : Google Scholar

79 

Ellis L, Lehet K, Ramakrishnan S, Adelaiye R, Miles KM, Wang D, Liu S, Atadja P, Carducci MA and Pili R: Concurrent HDAC and mTORC1 inhibition attenuate androgen receptor and hypoxia signaling associated with alterations in microRNA expression. PLoS One. 6:e271782011. View Article : Google Scholar : PubMed/NCBI

80 

Park H, Williams K, Trikalinos NA, Larson S, Tan B, Waqar S, Suresh R, Morgensztern D, Van Tine BA, Govindan R, et al: A phase I trial of temsirolimus and erlotinib in patients with refractory solid tumors. Cancer Chemother Pharmacol. 87:337–347. 2021. View Article : Google Scholar : PubMed/NCBI

81 

Bendell JC, Kurkjian C, Infante JR, Bauer TM, Burris HA III, Greco FA, Shih KC, Thompson DS, Lane CM, Finney LH and Jones SF: A phase 1 study of the sachet formulation of the oral dual PI3K/mTOR inhibitor BEZ235 given twice daily (BID) in patients with advanced solid tumors. Invest New Drugs. 33:463–471. 2015. View Article : Google Scholar : PubMed/NCBI

82 

Li S, Sheng J, Liu Z, Fan Y, Zhang C, Lv T, Hu S, Jin J, Yu W and Song Y: Potent antitumour of the mTORC1/2 dual inhibitor AZD2014 in docetaxel-sensitive and docetaxel-resistant castration-resistant prostate cancer cells. J Cell Mol Med. 25:2436–2449. 2021. View Article : Google Scholar : PubMed/NCBI

83 

Jin Y, Qu S, Tesikova M, Wang L, Kristian A, Mælandsmo GM, Kong H, Zhang T, Jerónimo C, Teixeira MR, et al: Molecular circuit involving KLK4 integrates androgen and mTOR signaling in prostate cancer. Proc Natl Acad Sci USA. 110:E2572–E2581. 2013. View Article : Google Scholar : PubMed/NCBI

84 

Pan HY and Valapala M: Regulation of autophagy by the glycogen synthase Kinase-3 (GSK-3) signaling pathway. Int J Mol Sci. 23:17092022. View Article : Google Scholar : PubMed/NCBI

85 

Sun Y, Li Z and Song K: AR-mTOR-SRF axis regulates HMMR expression in human prostate cancer cells. Biomol Ther. 29:667–677. 2021. View Article : Google Scholar : PubMed/NCBI

86 

Valenti MT, Mottes M, Dalle Carbonare L and Feron O: Editorial: Bone metastases. Front Oncol. 11:7415152021. View Article : Google Scholar : PubMed/NCBI

87 

Tanaka K, Babic I, Nathanson D, Akhavan D, Guo D, Gini B, Dang J, Zhu S, Yang H, De Jesus J, et al: Oncogenic EGFR signaling activates an mTORC2-NF-κB pathway that promotes chemotherapy resistance. Cancer Discov. 1:524–538. 2011. View Article : Google Scholar : PubMed/NCBI

88 

Wang Q, Tang Y, Yu H, Yin Q, Li M, Shi L, Zhang W, Li D and Li L: CCL18 from tumor-cells promotes epithelial ovarian cancer metastasis via mTOR signaling pathway. Mol Carcinog. 55:1688–1699. 2016. View Article : Google Scholar : PubMed/NCBI

89 

Wei XX, Hsieh AC, Kim W, Friedlander T, Lin AM, Louttit M and Ryan CJ: A phase I study of abiraterone acetate combined with BEZ235, a dual PI3K/mTOR inhibitor, in metastatic castration resistant prostate cancer. Oncologist. 22:503–e43. 2017. View Article : Google Scholar : PubMed/NCBI

90 

Raynard C, Ma X, Huna A, Tessier N, Massemin A, Zhu K, Flaman JM, Moulin F, Goehrig D, Medard JJ, et al: NF-κB-dependent secretome of senescent cells can trigger neuroendocrine transdifferentiation of breast cancer cells. Aging Cell. 21:e136322022. View Article : Google Scholar : PubMed/NCBI

91 

Li N, Liu Q, Han Y, Pei S, Cheng B, Xu J, Miao X, Pan Q, Wang H, Guo J, et al: ARID1A loss induces polymorphonuclear myeloid-derived suppressor cell chemotaxis and promotes prostate cancer progression. Nat Commun. 13:72812022. View Article : Google Scholar : PubMed/NCBI

92 

Dushyanthen S, Cossigny DAF and Quan GMY: The osteoblastic and osteoclastic interactions in spinal metastases secondary to prostate cancer. Cancer Growth Metastasis. 6:61–80. 2013. View Article : Google Scholar : PubMed/NCBI

93 

Chen Q, Du X, Hu S and Huang Q: NF-κB-related metabolic gene signature predicts the prognosis and immunotherapy response in gastric cancer. Biomed Res Int. 2022:50925052022.PubMed/NCBI

94 

Dewdney B, Jenkins MR, Best SA, Freytag S, Prasad K, Holst J, Endersby R and Johns TG: From signalling pathways to targeted therapies: Unravelling glioblastoma's secrets and harnessing two decades of progress. Signal Transduct Target Ther. 8:4002023. View Article : Google Scholar : PubMed/NCBI

95 

Ayala G, Yan J, Li R, Ding Y, Thompson TC, Mims MP, Hayes TG, MacDonnell V, Lynch RG, Frolov A, et al: Bortezomib-mediated inhibition of steroid receptor coactivator-3 degradation leads to activated Akt. Clin Cancer Res. 14:7511–7518. 2008. View Article : Google Scholar : PubMed/NCBI

96 

Nunes JJ, Pandey SK, Yadav A, Goel S and Ateeq B: Targeting NF-kappa B signaling by artesunate restores sensitivity of castrate-resistant prostate cancer cells to antiandrogens. Neoplasia. 19:333–345. 2017. View Article : Google Scholar : PubMed/NCBI

97 

Chen H, Pang B, Zhou C, Han M, Gong J, Li Y and Jiang J: Prostate cancer-derived small extracellular vesicle proteins: The hope in diagnosis, prognosis, and therapeutics. J Nanobiotechnology. 21:4802023. View Article : Google Scholar : PubMed/NCBI

98 

Rickard BP, Overchuk M, Chappell VA, Kemal Ruhi M, Sinawang PD, Nguyen Hoang TT, Akin D, Demirci U, Franco W, Fenton SE, et al: Methods to evaluate changes in mitochondrial structure and function in cancer. Cancers (Basel). 15:25642023. View Article : Google Scholar : PubMed/NCBI

99 

Gong L, Chen B, Zhang J, Sun Y, Yuan J, Niu X, Hu G, Chen Y, Xie Z, Deng Z, et al: Human ESC-sEVs alleviate age-related bone loss by rejuvenating senescent bone marrow-derived mesenchymal stem cells. J Extracell Vesicles. 9:18009712020. View Article : Google Scholar : PubMed/NCBI

100 

Martinez-Vidal L, Murdica V, Venegoni C, Pederzoli F, Bandini M, Necchi A, Salonia A and Alfano M: Causal contributors to tissue stiffness and clinical relevance in urology. Commun Biol. 4:10112021. View Article : Google Scholar : PubMed/NCBI

101 

Ma Q, Liang M, Wu Y, Dou C, Xu J, Dong S and Luo F: Small extracellular vesicles deliver osteolytic effectors and mediate cancer-induced osteolysis in bone metastatic niche. J Extracell Vesicles. 10:e120682021. View Article : Google Scholar : PubMed/NCBI

102 

Mongelli A, Atlante S, Barbi V, Bachetti T, Martelli F, Farsetti A and Gaetano C: Treating senescence like cancer: Novel perspectives in senotherapy of chronic diseases. Int J Mol Sci. 21:79842020. View Article : Google Scholar : PubMed/NCBI

103 

Gazzillo A, Volponi C, Soldani C, Polidoro MA, Franceschini B, Lleo A, Bonavita E and Donadon M: Cellular senescence in liver cancer: How dying cells become ‘Zombie’ enemies. Biomedicines. 12:262023. View Article : Google Scholar : PubMed/NCBI

104 

Du D, Tang X, Li Y, Gao Y, Chen R, Chen Q, Wen J, Wu T, Zhang Y, Lu H, et al: Senotherapy protects against Cisplatin-induced ovarian injury by removing senescent cells and alleviating DNA damage. Oxid Med Cell Longev. 2022:91446442022. View Article : Google Scholar : PubMed/NCBI

105 

Gasek NS, Kuchel GA, Kirkland JL and Xu M: Strategies for targeting senescent cells in human disease. Nat Aging. 1:870–879. 2021. View Article : Google Scholar : PubMed/NCBI

106 

Liu Y, Zhang Q, Ni W, Ji G and Xu H: A strategy for the treatment of gastrointestinal cancer: Targeting tumor senescent cells. Front Mol Biosci. 10:11398402023. View Article : Google Scholar : PubMed/NCBI

107 

Ramírez R, Ceprian N, Figuer A, Valera G, Bodega G, Alique M and Carracedo J: Endothelial senescence and the chronic vascular diseases: Challenges and therapeutic opportunities in atherosclerosis. J Pers Med. 12:2152022. View Article : Google Scholar : PubMed/NCBI

108 

Fedorov VD, Themeli M and Sadelain M: PD-1- and CTLA-4-based inhibitory chimeric antigen receptors (iCARs) divert off-target immunotherapy responses. Sci Transl Med. 5:215ra1722013. View Article : Google Scholar : PubMed/NCBI

109 

Arai S, Varkaris A, Nouri M, Chen S, Xie L and Balk SP: MARCH5 mediates NOXA-dependent MCL1 degradation driven by kinase inhibitors and integrated stress response activation. eLife. 9:e549542020. View Article : Google Scholar : PubMed/NCBI

110 

Arai S, Jonas O, Whitman MA, Corey E, Balk SP and Chen S: Tyrosine kinase inhibitors increase MCL1 degradation and in combination with BCLXL/BCL2 inhibitors drive prostate cancer apoptosis. Clin Cancer Res. 24:5458–5470. 2018. View Article : Google Scholar : PubMed/NCBI

111 

Ferraldeschi R, Welti J, Powers MV, Yuan W, Smyth T, Seed G, Riisnaes R, Hedayat S, Wang H, Crespo M, et al: Second-generation HSP90 inhibitor Onalespib blocks mRNA splicing of androgen receptor variant 7 in prostate cancer cells. Cancer Res. 76:2731–2742. 2016. View Article : Google Scholar : PubMed/NCBI

112 

Slovin S, Hussain S, Saad F, Garcia J, Picus J, Ferraldeschi R, Crespo M, Flohr P, Riisnaes R, Lin C, et al: Pharmacodynamic and clinical results from a phase I/II study of the HSP90 Inhibitor Onalespib in combination with abiraterone acetate in prostate cancer. Clin Cancer Res. 25:4624–4633. 2019. View Article : Google Scholar : PubMed/NCBI

113 

Lu X, Yang F, Chen D, Zhao Q, Chen D, Ping H and Xing N: Quercetin reverses docetaxel resistance in prostate cancer via androgen receptor and PI3K/Akt signaling pathways. Int J Biol Sci. 16:1121–1134. 2020. View Article : Google Scholar : PubMed/NCBI

114 

Ward AB, Mir H, Kapur N, Gales DN, Carriere PP and Singh S: Quercetin inhibits prostate cancer by attenuating cell survival and inhibiting anti-apoptotic pathways. World J Surg Oncol. 16:1082018. View Article : Google Scholar : PubMed/NCBI

115 

Pratheeshkumar P, Budhraja A, Son YO, Wang X, Zhang Z, Ding S, Wang L, Hitron A, Lee JC, Xu M, et al: Quercetin inhibits angiogenesis mediated human prostate tumor growth by targeting VEGFR-2 regulated AKT/mTOR/P70S6K signaling pathways. PLoS One. 7:e475162012. View Article : Google Scholar : PubMed/NCBI

116 

Zhang DF, Yang ZC, Chen JQ, Jin XX, Qiu YD, Chen XJ, Shi HY, Liu ZG, Wang MS, Liang G and Zheng XH: Piperlongumine inhibits migration and proliferation of castration-resistant prostate cancer cells via triggering persistent DNA damage. BMC Complement Med Ther. 21:1952021. View Article : Google Scholar : PubMed/NCBI

117 

Makhov P, Golovine K, Teper E, Kutikov A, Mehrazin R, Corcoran A, Tulin A, Uzzo RG and Kolenko VM: Piperlongumine promotes autophagy via inhibition of Akt/mTOR signalling and mediates cancer cell death. Br J Cancer. 110:899–907. 2014. View Article : Google Scholar : PubMed/NCBI

118 

Golovine KV, Makhov PB, Teper E, Kutikov A, Canter D, Uzzo RG and Kolenko VM: Piperlongumine induces rapid depletion of the androgen receptor in human prostate cancer cells. Prostate. 73:23–30. 2013. View Article : Google Scholar : PubMed/NCBI

119 

Liu G, Jin Z and Lu X: Differential targeting of Gr-MDSCs, T cells and prostate cancer cells by dactolisib and dasatinib. Int J Mol Sci. 21:23372020. View Article : Google Scholar : PubMed/NCBI

120 

Araujo JC, Poblenz A, Corn P, Parikh NU, Starbuck MW, Thompson JT, Lee F, Logothetis CJ and Darnay BG: Dasatinib inhibits both osteoclast activation and prostate cancer PC-3-cell-induced osteoclast formation. Cancer Biol Ther. 8:2153–2159. 2009. View Article : Google Scholar : PubMed/NCBI

121 

Cuyàs E, Verdura S, Llorach-Pares L, Fernández-Arroyo S, Luciano-Mateo F, Cabré N, Stursa J, Werner L, Martin-Castillo B, Viollet B, et al: Metformin directly targets the H3K27me3 demethylase KDM6A/UTX. Aging Cell. 17:e127722018. View Article : Google Scholar : PubMed/NCBI

122 

Hua Y, Zheng Y, Yao Y, Jia R, Ge S and Zhuang A: Metformin and cancer hallmarks: Shedding new lights on therapeutic repurposing. J Transl Med. 21:4032023. View Article : Google Scholar : PubMed/NCBI

123 

Wang ZS, Huang HR, Zhang LY, Kim S, He Y, Li DL, Farischon C, Zhang K, Zheng X, Du ZY and Goodin S: Mechanistic study of inhibitory effects of metformin and atorvastatin in combination on prostate cancer cells in vitro and in vivo. Biol Pharm Bull. 40:1247–1254. 2017. View Article : Google Scholar : PubMed/NCBI

124 

Wang J, Lu Y, Wang J, Koch AE, Zhang J and Taichman RS: Retraction: CXCR6 Induces prostate cancer progression by the AKT/mammalian target of rapamycin signaling pathway. Cancer Res. 82:3406. 2022. View Article : Google Scholar : PubMed/NCBI

125 

Zhang J, Wu D, He Y, Li L, Liu S, Lu J, Gui H, Wang Y, Tao Y, Wang H, et al: Rapamycin inhibits AR signaling pathway in prostate cancer by interacting with the FK1 domain of FKBP51. Biochem Biophys Rep. 23:1007782020.PubMed/NCBI

126 

Shorning BY, Dass MS, Smalley MJ and Pearson HB: The PI3K-AKT-mTOR pathway and prostate cancer: At the crossroads of AR, MAPK, and WNT signaling. Int J Mol Sci. 21:45072020. View Article : Google Scholar : PubMed/NCBI

127 

Lo U, Chen Y, Cen J, Deng S, Luo J, Zhau H, Ho L, Lai CH, Mu P, Chung LWK and Hsieh JT: The driver role of JAK-STAT signalling in cancer stemness capabilities leading to new therapeutic strategies for therapy- and castration-resistant prostate cancer. Clin Transl Med. 12:e9782022. View Article : Google Scholar : PubMed/NCBI

128 

Sheth S, Jajoo S, Kaur T, Mukherjea D, Sheehan K, Rybak LP and Ramkumar V: Resveratrol reduces prostate cancer growth and metastasis by inhibiting the Akt/MicroRNA-21 pathway. PLoS One. 7:e516552012. View Article : Google Scholar : PubMed/NCBI

129 

Fenner A: Prostate cancer: Resveratrol inhibits the AR. Nat Rev Urol. 14:642. 2017. View Article : Google Scholar : PubMed/NCBI

130 

Hickson LJ, Langhi Prata LGP, Bobart SA, Evans TK, Giorgadze N, Hashmi SK, Herrmann SM, Jensen MD, Jia Q, Jordan KL, et al: Senolytics decrease senescent cells in humans: Preliminary report from a clinical trial of Dasatinib plus Quercetin in individuals with diabetic kidney disease. EBioMedicine. 47:446–456. 2019. View Article : Google Scholar : PubMed/NCBI

131 

Di Micco R, Krizhanovsky V, Baker D and d'Adda di Fagagna F: Cellular senescence in ageing: From mechanisms to therapeutic opportunities. Nat Rev Mol Cell Biol. 22:75–95. 2021. View Article : Google Scholar : PubMed/NCBI

132 

Kaur G, Sundar IK and Rahman I: p16-3MR: A novel model to study cellular senescence in cigarette smoke-induced lung injuries. Int J Mol Sci. 22:48342021. View Article : Google Scholar : PubMed/NCBI

133 

Baker DJ, Wijshake T, Tchkonia T, LeBrasseur NK, Childs BG, van de Sluis B, Kirkland JL and van Deursen JM: Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders. Nature. 479:232–236. 2011. View Article : Google Scholar : PubMed/NCBI

134 

Song P, Duan JL, Ding J, Liu JJ, Fang ZQ, Xu H, Li ZW, Du W, Xu M, Ling YW, et al: Cellular senescence primes liver fibrosis regression through Notch-EZH2. MedComm (2020). 4:e3462023.PubMed/NCBI

135 

Chen M, Wu G, Lu Y, Sun S, Yu Z, Pan X, Chen W, Xu H, Qiu H, He W, et al: A p21-ATD mouse model for monitoring and eliminating senescent cells and its application in liver regeneration post injury. Mol Ther. Apr 6–2024.(Epub ahead of print). View Article : Google Scholar

136 

Zhan D, Ma D, Wei S, Lal B, Fu Y, Eberhart C, Laterra J, Ying M, Li Y, Meeker A, et al: Monoallelic IDH1 R132H mutation mediates glioma cell response to anticancer therapies via induction of senescence. Mol Cancer Res. 19:1878–1888. 2021. View Article : Google Scholar : PubMed/NCBI

137 

Chen WC, Chang TC, Chou HH, Cheng MH, Hong JJ, Hsieh YS and Cheng CM: Peritoneal fluid analysis of advanced ovarian cancers after hyperthermic intraperitoneal chemotherapy. Int J Mol Sci. 24:97482023. View Article : Google Scholar : PubMed/NCBI

138 

D'Aguanno S and Del Bufalo D: Inhibition of Anti-apoptotic Bcl-2 proteins in preclinical and clinical studies: Current overview in cancer. Cells. 9:12872020. View Article : Google Scholar : PubMed/NCBI

139 

Harrison CN, Garcia JS, Somervaille TCP, Foran JM, Verstovsek S, Jamieson C, Mesa R, Ritchie EK, Tantravahi SK, Vachhani P, et al: Addition of Navitoclax to ongoing Ruxolitinib therapy for patients with myelofibrosis with progression or suboptimal response: Phase II safety and efficacy. J Clin Oncol. 40:1671–1680. 2022. View Article : Google Scholar : PubMed/NCBI

140 

He Y, Zhang X, Chang J, Kim HN, Zhang P, Wang Y, Khan S, Liu X, Zhang X, Lv D, et al: Using proteolysis-targeting chimera technology to reduce navitoclax platelet toxicity and improve its senolytic activity. Nat Commun. 11:19962020. View Article : Google Scholar : PubMed/NCBI

141 

Ferraldeschi R, Welti J, Powers MV, Yuan W, Smyth T, Seed G, Riisnaes R, Hedayat S, Wang H, Crespo M, et al: Second-generation HSP90 inhibitor Onalespib blocks mRNA splicing of androgen receptor variant 7 in prostate cancer cells. Cancer Res. 76:2731–2742. 2016. View Article : Google Scholar : PubMed/NCBI

142 

Colucci M, Zumerle S, Bressan S, Gianfanti F, Troiani M, Valdata A, D'Ambrosio M, Pasquini E, Varesi A, Cogo F, et al: Retinoic acid receptor activation reprograms senescence response and enhances anti-tumor activity of natural killer cells. Cancer Cell. 42:646–661.e9. 2024. View Article : Google Scholar : PubMed/NCBI

143 

Chi KN, Gleave ME, Klasa R, Murray N, Bryce C, Lopes de Menezes DE, D'Aloisio S and Tolcher AW: A phase I dose-finding study of combined treatment with an antisense Bcl-2 oligonucleotide (Genasense) and mitoxantrone in patients with metastatic hormone-refractory prostate cancer. Clin Cancer Res. 7:3920–3927. 2001.PubMed/NCBI

144 

Tolcher AW, Kuhn J, Schwartz G, Patnaik A, Hammond LA, Thompson I, Fingert H, Bushnell D, Malik S, Kreisberg J, et al: A Phase I pharmacokinetic and biological correlative study of oblimersen sodium (genasense, g3139), an antisense oligonucleotide to the bcl-2 mRNA, and of docetaxel in patients with hormone-refractory prostate cancer. Clin Cancer Res. 10:5048–5057. 2004. View Article : Google Scholar : PubMed/NCBI

145 

Stein MN, Goodin S, Gounder M, Gibbon D, Moss R, Portal D, Lindquist D, Zhao Y, Takebe N, Tan A, et al: A phase I study of AT-101, a BH3 mimetic, in combination with paclitaxel and carboplatin in solid tumors. Invest New Drugs. 38:855–865. 2020. View Article : Google Scholar : PubMed/NCBI

146 

Osada T, Crosby EJ, Kaneko K, Snyder JC, Ginzel JD, Acharya CR, Yang XY, Polascik TJ, Spasojevic I, Nelson RC, et al: HSP90-specific nIR Probe identifies aggressive prostate cancers: Translation from preclinical models to a human phase I study. Mol Cancer Ther. 21:217–226. 2022. View Article : Google Scholar : PubMed/NCBI

147 

Suh GA, Lodise TP, Tamma PD, Knisely JM, Alexander J, Aslam S, Barton KD, Bizzell E, Totten KMC, Campbell JL, et al: Considerations for the use of phage therapy in clinical practice. Antimicrob Agents Chemother. 66:e02071212022. View Article : Google Scholar : PubMed/NCBI

148 

Kolodkin-Gal D, Roitman L, Ovadya Y, Azazmeh N, Assouline B, Schlesinger Y, Kalifa R, Horwitz S, Khalatnik Y, Hochner-Ger A, et al: Senolytic elimination of Cox2-expressing senescent cells inhibits the growth of premalignant pancreatic lesions. Gut. 71:345–355. 2022. View Article : Google Scholar : PubMed/NCBI

149 

Spetsieris N, Boukovala M, Weldon JA, Tsikkinis A, Hoang A, Aparicio A, Tu SM, Araujo JC, Zurita AJ, Corn PG, et al: A Phase 2 trial of abiraterone followed by randomization to addition of dasatinib or sunitinib in men with metastatic castration-resistant prostate cancer. Clin Genitourin Cancer. 19:22–31.e5. 2021. View Article : Google Scholar : PubMed/NCBI

150 

Rossi M, Anerillas C, Idda ML, Munk R, Shin CH, Donega S, Tsitsipatis D, Herman AB, Martindale JL, Yang X, et al: Pleiotropic effects of BAFF on the senescence-associated secretome and growth arrest. Elife. 12:e842382023. View Article : Google Scholar : PubMed/NCBI

151 

Chaib S, Tchkonia T and Kirkland JL: Cellular senescence and senolytics: The path to the clinic. Nat Med. 28:1556–1568. 2022. View Article : Google Scholar : PubMed/NCBI

152 

Kirkland JL, Tchkonia T, Zhu Y, Niedernhofer LJ and Robbins PD: The clinical potential of senolytic drugs. J Am Geriatr Soc. 65:2297–2301. 2017. View Article : Google Scholar : PubMed/NCBI

153 

Ji S, Xiong M, Chen H, Liu Y, Zhou L, Hong Y, Wang M, Wang C, Fu X and Sun X: Cellular rejuvenation: Molecular mechanisms and potential therapeutic interventions for diseases. Signal Transduct Target Ther. 8:1162023. View Article : Google Scholar : PubMed/NCBI

154 

Kreienkamp R, Graziano S, Coll-Bonfill N, Bedia-Diaz G, Cybulla E, Vindigni A, Dorsett D, Kubben N, Batista LFZ and Gonzalo S: A cell-intrinsic interferon-like response links replication stress to cellular aging caused by progerin. Cell Rep. 22:2006–2015. 2018. View Article : Google Scholar : PubMed/NCBI

155 

Krtolica A, Parrinello S, Lockett S, Desprez PY and Campisi J: Senescent fibroblasts promote epithelial cell growth and tumorigenesis: A link between cancer and aging. Proc Natl Acad Sci USA. 98:12072–12077. 2001. View Article : Google Scholar : PubMed/NCBI

156 

Wang L, Jin H, Jochems F, Wang S, Lieftink C, Martinez IM, De Conti G, Edwards F, de Oliveira RL, Schepers A, et al: cFLIP suppression and DR5 activation sensitize senescent cancer cells to senolysis. Nat Cancer. 3:1284–1299. 2022. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Jin C, Liao S, Lu G, Geng BD, Ye Z, Xu J, Ge G and Yang D: Cellular senescence in metastatic prostate cancer: A therapeutic opportunity or challenge (Review). Mol Med Rep 30: 162, 2024.
APA
Jin, C., Liao, S., Lu, G., Geng, B.D., Ye, Z., Xu, J. ... Yang, D. (2024). Cellular senescence in metastatic prostate cancer: A therapeutic opportunity or challenge (Review). Molecular Medicine Reports, 30, 162. https://doi.org/10.3892/mmr.2024.13286
MLA
Jin, C., Liao, S., Lu, G., Geng, B. D., Ye, Z., Xu, J., Ge, G., Yang, D."Cellular senescence in metastatic prostate cancer: A therapeutic opportunity or challenge (Review)". Molecular Medicine Reports 30.3 (2024): 162.
Chicago
Jin, C., Liao, S., Lu, G., Geng, B. D., Ye, Z., Xu, J., Ge, G., Yang, D."Cellular senescence in metastatic prostate cancer: A therapeutic opportunity or challenge (Review)". Molecular Medicine Reports 30, no. 3 (2024): 162. https://doi.org/10.3892/mmr.2024.13286
Copy and paste a formatted citation
x
Spandidos Publications style
Jin C, Liao S, Lu G, Geng BD, Ye Z, Xu J, Ge G and Yang D: Cellular senescence in metastatic prostate cancer: A therapeutic opportunity or challenge (Review). Mol Med Rep 30: 162, 2024.
APA
Jin, C., Liao, S., Lu, G., Geng, B.D., Ye, Z., Xu, J. ... Yang, D. (2024). Cellular senescence in metastatic prostate cancer: A therapeutic opportunity or challenge (Review). Molecular Medicine Reports, 30, 162. https://doi.org/10.3892/mmr.2024.13286
MLA
Jin, C., Liao, S., Lu, G., Geng, B. D., Ye, Z., Xu, J., Ge, G., Yang, D."Cellular senescence in metastatic prostate cancer: A therapeutic opportunity or challenge (Review)". Molecular Medicine Reports 30.3 (2024): 162.
Chicago
Jin, C., Liao, S., Lu, G., Geng, B. D., Ye, Z., Xu, J., Ge, G., Yang, D."Cellular senescence in metastatic prostate cancer: A therapeutic opportunity or challenge (Review)". Molecular Medicine Reports 30, no. 3 (2024): 162. https://doi.org/10.3892/mmr.2024.13286
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team