|
1
|
Wong CK, Mak RY, Kwok TS, Tsang JS, Leung
MY, Funabashi M, Macedo LG, Dennett L and Wong AY: Prevalence,
incidence, and factors associated with non-specific chronic low
back pain in community-dwelling older adults aged 60 years and
older: A systematic review and meta-analysis. J Pain. 23:509–534.
2022. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Speed C: Low back pain. BMJ.
328:1119–1121. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
GBD 2017, . Disease and Injury Incidence
and Prevalence Collaborators: Global, regional, and national
incidence, prevalence, and years lived with disability for 354
diseases and injuries for 195 countries and territories, 1990–2017:
A systematic analysis for the global burden of disease study 2017.
Lancet. 392:1789–1858. 2018.PubMed/NCBI
|
|
4
|
Samartzis D, Karppinen J, Mok F, Fong DYT,
Luk KDK and Cheung KMC: A population-based study of juvenile disc
degeneration and its association with overweight and obesity, low
back pain, and diminished functional status. J Bone Joint Surg Am.
93:662–670. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Chen WK, Yu XH, Yang W, Wang C, He WS, Yan
YG, Zhang J and Wang WJ: lncRNAs: Novel players in intervertebral
disc degeneration and osteoarthritis. Cell Prolif. 50:e123132017.
View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Song C, Hu P, Peng R, Li F, Fang Z and Xu
Y: Bioenergetic dysfunction in the pathogenesis of intervertebral
disc degeneration. Pharmacol Res. 202:1071192024. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Ohnishi T, Sudo H, Tsujimoto T and Iwasaki
N: Age-related spontaneous lumbar intervertebral disc degeneration
in a mouse model. J Orthop Res. 36:224–232. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Rinaldi S, Moroni E, Rozza R and
Magistrato A: Frontiers and challenges of computing ncRNAs
biogenesis, function and modulation. J Chem Theory Comput.
20:993–1018. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Parasramka MA, Maji S, Matsuda A, Yan IK
and Patel T: Long non-coding RNAs as novel targets for therapy in
hepatocellular carcinoma. Pharmacol Ther. 161:67–78. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Jiang C, Chen Z, Wang X, Zhang Y, Guo X,
Xu Z, Yang H and Hao D: The potential mechanisms and application
prospects of non-coding RNAs in intervertebral disc degeneration.
Front Endocrinol (Lausanne). 13:10811852022. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Mehmandar-Oskuie A, Jahankhani K,
Rostamlou A, Mardafkan N, Karamali N, Razavi ZS and Mardi A:
Molecular mechanism of lncRNAs in pathogenesis and diagnosis of
auto-immune diseases, with a special focus on lncRNA-based
therapeutic approaches. Life Sci. 336:1223222024. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Lei HT, Wang JH, Yang HJ, Wu HJ, Nian FH,
Jin FM, Yang J, Tian XM and Wang HD: LncRNA-mediated cell
autophagy: An emerging field in bone destruction in rheumatoid
arthritis. Biomed Pharmacother. 168:1157162023. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Jafari-Raddani F, Davoodi-Moghaddam Z,
Yousefi AM, Ghaffari SH and Bashash D: An overview of long
noncoding RNAs: Biology, functions, therapeutics, analysis methods,
and bioinformatics tools. Cell Biochem Funct. 40:800–825. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Khan K, Irfan M, Sattar AA, Faiz MB,
Rahman AU, Athar H, Calina D, Sharifi-Rad J and Cho WC: LncRNA
SNHG6 role in clinicopathological parameters in cancers. Eur J Med
Res. 28:3632023. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Monteiro JP, Bennett M, Rodor J,
Caudrillier A, Ulitsky I and Baker AH: Endothelial function and
dysfunction in the cardiovascular system: The long non-coding road.
Cardiovasc Res. 115:1692–1704. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Dai L, Liang W, Shi Z, Li X, Zhou S, Hu W,
Yang Z and Wang X: Systematic characterization and biological
functions of non-coding RNAs in glioblastoma. Cell Prolif.
56:e133752023. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Jayasuriya R, Ganesan K, Xu B and Ramkumar
KM: Emerging role of long non-coding RNAs in endothelial
dysfunction and their molecular mechanisms. Biomed Pharmacother.
145:1124212022. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Zhang L, Xu X and Su X: Modifications of
noncoding RNAs in cancer and their therapeutic implications. Cell
Signal. 108:1107262023. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Zhang JH, Chen JH, Guo B, Fang Y, Xu ZY,
Zhan L and Cao YX: Recent insights into noncoding RNAs in primary
ovarian insufficiency: Focus on mechanisms and treatments. J Clin
Endocrinol Metab. 108:1898–1908. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Liu X, Wang X, Li J, Hu S, Deng Y, Yin H,
Bao X, Zhang QC, Wang G, Wang B, et al: Identification of mecciRNAs
and their roles in the mitochondrial entry of proteins. Sci China
Life Sci. 63:1429–1449. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Ponting CP, Oliver PL and Reik W:
Evolution and functions of long noncoding RNAs. Cell. 136:629–641.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Statello L, Guo CJ, Chen LL and Huarte M:
Gene regulation by long non-coding RNAs and its biological
functions. Nat Rev Mol Cell Biol. 22:96–118. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Areeb Z, Stuart SF, West AJ, Gomez J,
Nguyen HPT, Paradiso L, Zulkifli A, Jones J, Kaye AH, Morokoff AP
and Luwor RB: Reduced EGFR and increased miR-221 is associated with
increased resistance to temozolomide and radiotherapy in
glioblastoma. Sci Rep. 10:177682020. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Zhang K, Shi ZM, Chang YN, Hu ZM, Qi HX
and Hong W: The ways of action of long non-coding RNAs in cytoplasm
and nucleus. Gene. 547:1–9. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Lazorthes S, Vallot C, Briois S,
Aguirrebengoa M, Thuret JY, St Laurent G, Rougeulle C, Kapranov P,
Mann C, Trouche D and Nicolas E: A vlincRNA participates in
senescence maintenance by relieving H2AZ-mediated repression at the
INK4 locus. Nat Commun. 6:59712015. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Mattick JS: A new paradigm for
developmental biology. J Exp Biol. 210:1526–1547. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Fatica A and Bozzoni I: Long non-coding
RNAs: New players in cell differentiation and development. Nat Rev
Genet. 15:7–21. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Dueva R, Akopyan K, Pederiva C, Trevisan
D, Dhanjal S, Lindqvist A and Farnebo M: Neutralization of the
positive charges on histone tails by RNA promotes an open chromatin
structure. Cell Chem Biol. 26:1436–1449.e5. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Li Y, Syed J and Sugiyama H: RNA-DNA
triplex formation by long noncoding RNAs. Cell Chem Biol.
23:1325–1333. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Niehrs C and Luke B: Regulatory R-loops as
facilitators of gene expression and genome stability. Nat Rev Mol
Cell Biol. 21:167–178. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Zhou X, Lv Y, Xie H, Li Y, Liu C, Zheng M,
Wu R, Zhou S, Gu X, Li J and Mi D: RNA sequencing of exosomes
secreted by fibroblast and Schwann cells elucidates mechanisms
underlying peripheral nerve regeneration. Neural Regen Res.
19:1812–1821. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Wang L, Hu L, Wang X, Geng Z, Wan M, Hao
J, Liu H, Fan Y, Xu T and Li Z: Long non-coding RNA LncCplx2
regulates glucose homeostasis and pancreatic β cell function. Mol
Metab. 80:1018782024. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Hacisuleyman E, Goff LA, Trapnell C,
Williams A, Henao-Mejia J, Sun L, McClanahan P, Hendrickson DG,
Sauvageau M, Kelley DR, et al: Topological organization of
multichromosomal regions by the long intergenic noncoding RNA
Firre. Nat Struct Mol Biol. 21:198–206. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Naganuma T and Hirose T: Paraspeckle
formation during the biogenesis of long non-coding RNAs. RNA Biol.
10:456–461. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Kopp F: Molecular functions and biological
roles of long non-coding RNAs in human physiology and disease. J
Gene Med. 21:e31042019. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Núñez-Martínez HN and Recillas-Targa F:
Emerging functions of lncRNA loci beyond the transcript itself. Int
J Mol Sci. 23:62582022. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Wang PS, Liu Z, Sweef O, Xie J, Chen J,
Zhu H, Zeidler-Erdely PC, Yang C and Wang Z: Long noncoding RNA
ABHD11-AS1 interacts with SART3 and regulates CD44 RNA alternative
splicing to promote lung carcinogenesis. Environ Int.
185:1084942024. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Rashid F, Shah A and Shan G: Long
non-coding RNAs in the cytoplasm. Genomics Proteomics
Bioinformatics. 14:73–80. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Huang X, Zhou X, Hu Q, Sun B, Deng M, Qi X
and Lü M: Advances in esophageal cancer: A new perspective on
pathogenesis associated with long non-coding RNAs. Cancer Lett.
413:94–101. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Han I, Ropper AE, Konya D, Kabatas S,
Toktas Z, Aljuboori Z, Zeng X, Chi JH, Zafonte R and Teng YD:
Biological approaches to treating intervertebral disk degeneration:
Devising stem cell therapies. Cell Transplant. 24:2197–2208. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Zhang L, Hu S, Xiu C, Li M, Zheng Y, Zhang
R, Li B and Chen J: Intervertebral disc-intrinsic Hedgehog
signaling maintains disc cell phenotypes and prevents disc
degeneration through both cell autonomous and non-autonomous
mechanisms. Cell Mol Life Sci. 81:742024. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Boubriak OA, Watson N, Sivan SS, Stubbens
N and Urban JPG: Factors regulating viable cell density in the
intervertebral disc: Blood supply in relation to disc height. J
Anat. 222:341–348. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Woods BI, Vo N, Sowa G and Kang JD: Gene
therapy for intervertebral disk degeneration. Orthop Clin North Am.
42563–574. (ix)2011. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Pooni JS, Hukins DW, Harris PF, Hilton RC
and Davies KE: Comparison of the structure of human intervertebral
discs in the cervical, thoracic and lumbar regions of the spine.
Surg Radiol Anat. 8:175–182. 1986. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Shapiro IM, Vresilovic EJ and Risbud MV:
Is the spinal motion segment a diarthrodial polyaxial joint: What a
nice nucleus like you doing in a joint like this? Bone. 50:771–776.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Wang S, Sun J, Yang H, Zou W, Zheng B,
Chen Y, Guo Y and Shi J: Profiling and bioinformatics analysis of
differentially expressed circular RNAs in human intervertebral disc
degeneration. Acta Biochim Biophys Sin (Shanghai). 51:571–579.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Ohnishi T, Iwasaki N and Sudo H: Causes of
and molecular targets for the treatment of intervertebral disc
degeneration: A review. Cells. 11:3942022. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Battié MC and Videman T: Lumbar disc
degeneration: epidemiology and genetics. J Bone Joint Surg Am. 88
(Suppl 2):S3–S9. 2006. View Article : Google Scholar
|
|
49
|
Roberts S, Evans H, Trivedi J and Menage
J: Histology and pathology of the human intervertebral disc. J Bone
Joint Surg Am. 88 (Suppl 2):S10–S14. 2006. View Article : Google Scholar
|
|
50
|
Ye F, Lyu FJ, Wang H and Zheng Z: The
involvement of immune system in intervertebral disc herniation and
degeneration. JOR Spine. 5:e11962022. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Takahashi J, Shono Y, Hirabayashi H,
Kamimura M, Nakagawa H, Ebara S and Kato H: Usefulness of white
blood cell differential for early diagnosis of surgical wound
infection following spinal instrumentation surgery. Spine (Phila Pa
1976). 31:1020–1025. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Tsujimoto T, Sudo H, Todoh M, Yamada K,
Iwasaki K, Ohnishi T, Hirohama N, Nonoyama T, Ukeba D, Ura K, et
al: An acellular bioresorbable ultra-purified alginate gel promotes
intervertebral disc repair: A preclinical proof-of-concept study.
EBioMedicine. 37:521–534. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Kuo CC, Soliman MAR, Baig RA, Aguirre AO,
Ruggiero N, Donnelly BM, Siddiqi M, Khan A, Quiceno E, Mullin JP
and Pollina J: Vertebral bone quality score as a predictor of
adjacent segment disease after lumbar interbody fusion.
Neurosurgery. Feb 9–2024.(Epub ahead of print). View Article : Google Scholar
|
|
54
|
Wan ZY, Song F, Sun Z, Chen YF, Zhang WL,
Samartzis D, Ma CJ, Che L, Liu X, Ali MA, et al: Aberrantly
expressed long noncoding RNAs in human intervertebral disc
degeneration: A microarray related study. Arthritis Res Ther.
16:4652014. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Chen Y, Ni H, Zhao Y, Chen K, Li M, Li C,
Zhu X and Fu Q: Potential role of lncRNAs in contributing to
pathogenesis of intervertebral disc degeneration based on
microarray data. Med Sci Monit. 21:3449–3458. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Wu Y, Li S, Shen J, Wang Z and Liu H:
Nucleus pulposus related lncRNA and mRNA expression profiles in
intervertebral disc degeneration. Genomics. 115:1105702023.
View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Shi Y, Guo R, Zeng Y, Fang Q, Wang X, Liu
W, Huang G and Wu W: SNHG5/miR-299-5p/ATF2 axis as a biomarker in
immune microenvironment of intervertebral disc degeneration.
Mediators Inflamm. 2022:25582752022. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Zhang Y, Zhang J, Sun Z, Wang H, Ning R,
Xu L, Zhao Y, Yang K, Xi X and Tian J: MAPK8 and CAPN1 as potential
biomarkers of intervertebral disc degeneration overlapping immune
infiltration, autophagy, and ceRNA. Front Immunol. 14:11887742023.
View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Iwashina T, Mochida J, Sakai D, Yamamoto
Y, Miyazaki T, Ando K and Hotta T: Feasibility of using a human
nucleus pulposus cell line as a cell source in cell transplantation
therapy for intervertebral disc degeneration. Spine (Phila Pa
1976). 31:1177–1186. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Chen X, Zhu L, Wu G, Liang Z, Yang L and
Du Z: A comparison between nucleus pulposus-derived stem cell
transplantation and nucleus pulposus cell transplantation for the
treatment of intervertebral disc degeneration in a rabbit model.
Int J Surg. 28:77–82. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Li Z, Li X, Chen C, Li S, Shen J, Tse G,
Chan MTV and Wu WKK: Long non-coding RNAs in nucleus pulposus cell
function and intervertebral disc degeneration. Cell Prolif.
51:e124832018. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Jiang C, Liu Y, Zhao W, Yang Y, Ren Z,
Wang X, Hao D, Du H and Yin S: microRNA-365 attenuated
intervertebral disc degeneration through modulating nucleus
pulposus cell apoptosis and extracellular matrix degradation by
targeting EFNA3. J Cell Mol Med. 28:e180542024. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Lin Y, Jiao Y, Yuan Y, Zhou Z, Zheng Y,
Xiao J, Li C, Chen Z and Cao P: Propionibacterium acnes
induces intervertebral disc degeneration by promoting nucleus
pulposus cell apoptosis via the TLR2/JNK/mitochondrial-mediated
pathway. Emerg Microbes Infect. 7:12018. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Zhao K, An R, Xiang Q, Li G, Wang K, Song
Y, Liao Z, Li S, Hua W, Feng X, et al: Acid-sensing ion channels
regulate nucleus pulposus cell inflammation and pyroptosis via the
NLRP3 inflammasome in intervertebral disc degeneration. Cell
Prolif. 54:e129412021. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Du J, Xu M, Kong F, Zhu P, Mao Y, Liu Y,
Zhou H, Dong Z, Yu Z, Du T, et al: CB2R attenuates intervertebral
disc degeneration by delaying nucleus pulposus cell senescence
through AMPK/GSK3β pathway. Aging Dis. 13:552–567. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Jiang W, Zhao P and Zhang X: Apelin
promotes ECM synthesis by enhancing autophagy flux via TFEB in
human degenerative NP cells under oxidative stress. Biomed Res Int.
2020:48971702020.PubMed/NCBI
|
|
67
|
Gao D, Hao L and Zhao Z: Long non-coding
RNA PART1 promotes intervertebral disc degeneration through
regulating the miR-93/MMP2 pathway in nucleus pulposus cells. Int J
Mol Med. 46:289–299. 2020.PubMed/NCBI
|
|
68
|
Yu X, Liu Q, Wang Y, Bao Y, Jiang Y, Li M,
Li Z, Wang B, Yu L, Wang S, et al: Depleted long noncoding RNA GAS5
relieves intervertebral disc degeneration via microRNA-17-3p/Ang-2.
Oxid Med Cell Longev. 2022:17924122022. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Hao Y, Zhu G, Yu L, Ren Z, Zhou W, Zhang P
and Lian X: FOXO3-activated HOTTIP sequesters miR-615-3p away from
COL2A1 to mitigate intervertebral disc degeneration. Am J Pathol.
194:280–295. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Chen S, Zhuang Q, Li P, Zeng J, Peng Y,
Ding Z, Cao H, Zheng R and Wang W: The long non-coding RNA
KLF3-AS1/miR-10a-3p/ZBTB20 axis improves the degenerative changes
in human nucleus pulposus cells. Cell Tissue Res. 393:97–109. 2023.
View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Shang L, Ma H, Zhang X, Mao R, Ma C and
Ruan Z: Docosahexaenoic acid alleviates the excessive degradation
of extracellular matrix in the nucleus pulposus by reducing the
content of lncRNA NEAT1 to prevent the progression of
intervertebral disc degeneration. Clin Exp Pharmacol Physiol.
50:403–414. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Wang Z, Liu B, Ma X, Wang Y, Han W and
Xiang L: lncRNA ZFAS1 promotes intervertebral disc degeneration by
upregulating AAK1. Open Med (Wars). 17:1973–1986. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Zhu M, Yan X, Zhao Y, Xue H, Wang Z, Wu B,
Li X and Shen Y: lncRNA LINC00284 promotes nucleus pulposus cell
proliferation and ECM synthesis via regulation of the
miR-205-3p/Wnt/β-catenin axis. Mol Med Rep. 25:1792022. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Zhan S, Wang K, Xiang Q, Song Y, Li S,
Liang H, Luo R, Wang B, Liao Z, Zhang Y and Yang C: lncRNA HOTAIR
upregulates autophagy to promote apoptosis and senescence of
nucleus pulposus cells. J Cell Physiol. 235:2195–2208. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Zhan S, Wang K, Song Y, Li S, Yin H, Luo
R, Liao Z, Wu X, Zhang Y and Yang C: Long non-coding RNA HOTAIR
modulates intervertebral disc degenerative changes via
Wnt/β-catenin pathway. Arthritis Res Ther. 21:2012019. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Zhou D, Mei Y, Song C, Cheng K, Cai W, Guo
D, Gao S, Lv J, Liu T, Zhou Y, et al: Exploration of the mode of
death and potential death mechanisms of nucleus pulposus cells. Eur
J Clin Invest. e142262024.(Epub ahead of print). View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Gao ZX, Lin YC, Wu ZP, Zhang P, Cheng QH,
Ye LH, Wu FH, Chen YJ, Fu MH, Cheng CG and Gao YC: LncRNA SNHG6 can
regulate the proliferation and apoptosis of rat degenerate nucleus
pulposus cells via regulating the expression of miR-101-3p. Eur Rev
Med Pharmacol Sci. 24:8251–8262. 2020.PubMed/NCBI
|
|
78
|
Yu J and Li C: Role of lncRNA MAGI2-AS3 in
lipopolysaccharide-induced nucleus pulposus cells injury by
regulating miR-374b-5p/interleukin-10 axis. Immun Inflamm Dis.
11:e7722023. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Yang W, Huang XD, Zhang T, Zhou YB, Zou YC
and Zhang J: LncRNA MIR155HG functions as a ceRNA of miR-223-3p to
promote cell pyroptosis in human degenerative NP cells. Clin Exp
Immunol. 207:241–252. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Tao X, Xue F, Xu J and Wang W:
Platelet-rich plasma-derived extracellular vesicles inhibit
NF-κB/NLRP3 pathway-mediated pyroptosis in intervertebral disc
degeneration via the MALAT1/microRNA-217/SIRT1 axis. Cell Signal.
117:1111062024. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Zhang L, Zhou Y, Huang T, Cheng ASL, Yu J,
Kang W and To KF: The interplay of LncRNA-H19 and its binding
partners in physiological process and gastric carcinogenesis. Int J
Mol Sci. 18:4502017. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Sun Z, Tang X, Wang H, Sun H, Chu P, Sun L
and Tian J: LncRNA H19 aggravates intervertebral disc degeneration
by promoting the autophagy and apoptosis of nucleus pulposus cells
through the miR-139/CXCR4/NF-κB axis. Stem Cells Dev. 30:736–748.
2021. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Guo C, Liu Y, Zhao Z, Wu Y, Kong Q and
Wang Y: Regulating inflammation and apoptosis: A smart microgel
gene delivery system for repairing degenerative nucleus pulposus. J
Control Release. 365:1004–1018. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Jiang X and Chen D: LncRNA FAM83H-AS1
maintains intervertebral disc tissue homeostasis and attenuates
inflammation-related pain via promoting nucleus pulposus cell
growth through miR-22-3p inhibition. Ann Transl Med. 8:15182020.
View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Luo Y, He Y, Wang Y, Xu Y and Yang L:
LncRNA HCG18 promotes inflammation and apoptosis in intervertebral
disc degeneration via the miR-495-3p/FSTL1 axis. Mol Cell Biochem.
479:171–181. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Zhang C, Qiu Y and Yuan F: The long
non-coding RNA maternally expressed 3-micorRNA-15a-5p axis is
modulated by melatonin and prevents nucleus pulposus cell
inflammation and apoptosis. Basic Clin Pharmacol Toxicol.
133:603–619. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Li W, Xu Y and Chen W: Bone mesenchymal
stem cells deliver exogenous lncRNA CAHM via exosomes to regulate
macrophage polarization and ameliorate intervertebral disc
degeneration. Exp Cell Res. 421:1134082022. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Zhong H, Zhou Z, Guo L, Liu FS, Wang X, Li
J, Lv GH and Zou MX: SERPINA1 is a hub gene associated with
intervertebral disc degeneration grade and affects the nucleus
pulposus cell phenotype through the ADIRF-AS1/miR-214-3p axis.
Transl Res. 245:99–116. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Wang X, Li D, Wu H, Liu F, Liu F, Zhang Q
and Li J: LncRNA TRPC7-AS1 regulates nucleus pulposus cellular
senescence and ECM synthesis via competing with HPN for miR-4769-5p
binding. Mech Ageing Dev. 190:1112932020. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Li G, Ma L, He S, Luo R, Wang B, Zhang W,
Song Y, Liao Z, Ke W, Xiang Q, et al: WTAP-mediated m6A
modification of lncRNA NORAD promotes intervertebral disc
degeneration. Nat Commun. 13:14692022. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Mauro D, Thomas R, Guggino G, Lories R,
Brown MA and Ciccia F: Ankylosing spondylitis: An autoimmune or
autoinflammatory disease? Nat Rev Rheumatol. 17:387–404. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Kenar G, Yarkan-Tuğsal H, Çetin-Özmen P,
Solmaz D, Can G and Önen F: A lower frequency of inflammatory back
pain in male patients with ankylosing spondylitis compared with
female patients. Rheumatol Int. 44:477–482. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Braun J and Sieper J: Ankylosing
spondylitis. Lancet. 369:1379–1390. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Ward MM, Deodhar A, Akl EA, Lui A, Ermann
J, Gensler LS, Smith JA, Borenstein D, Hiratzka J, Weiss PF, et al:
American college of rheumatology/spondylitis association of
america/spondyloarthritis research and treatment network 2015
recommendations for the treatment of ankylosing spondylitis and
nonradiographic axial spondyloarthritis. Arthritis Rheumatol.
68:282–298. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Cen S, Cai M, Wang Y, Lu X, Chen Z, Chen
H, Fang Y, Wu C, Qiu S and Liu Z: Aberrant lncRNA-mRNA expression
profile and function networks during the adipogenesis of
mesenchymal stem cells from patients with ankylosing spondylitis.
Front Genet. 13:9918752022. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Huang D, Liu J, Wan L, Fang Y, Long Y,
Zhang Y and Bao B: Identification of lncRNAs associated with the
pathogenesis of ankylosing spondylitis. BMC Musculoskelet Disord.
22:2722021. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Wang JX, Jing FY, Xu YC, Zong HX, Chu YR,
Wang C, Chen KM, Tong WQ, Wang XL and Xu SQ: The potential
regulatory mechanism of lncRNA 122K13.12 and lncRNA 326C3.7 in
ankylosing spondylitis. Front Mol Biosci. 8:7454412021. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Fang Y, Liu J, Xin L, Jiang H, Wen J, Li
X, Wang F, He M and Han Q: Xinfeng capsule inhibits lncRNA
NONHSAT227927.1/TRAF2 to alleviate NF-κB-p65-induced
immuno-inflammation in ankylosing spondylitis. J Ethnopharmacol.
323:1176772024. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Liu C, Liang T, Zhang Z, Chen J, Xue J,
Zhan X and Ren L: MEG3 alleviates ankylosing spondylitis by
suppressing osteogenic differentiation of mesenchymal stem cells
through regulating microRNA-125a-5p-mediated TNFAIP3. Apoptosis.
28:498–513. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Zhang X, Ji S, Cai G, Pan Z, Han R, Yuan
Y, Xu S, Yang J, Hu X, Chen M, et al: H19 increases IL-17A/IL-23
releases via regulating VDR by interacting with miR675-5p/miR22-5p
in ankylosing spondylitis. Mol Ther Nucleic Acids. 19:393–404.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Baskozos G, Dawes JM, Austin JS,
Antunes-Martins A, McDermott L, Clark AJ, Trendafilova T, Lees JG,
McMahon SB, Mogil JS, et al: Comprehensive analysis of long
noncoding RNA expression in dorsal root ganglion reveals cell-type
specificity and dysregulation after nerve injury. Pain.
160:463–485. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Yang Y, Fan R, Li H, Chen H, Gong H and
Guo G: Polysaccharides as a promising platform for the treatment of
spinal cord injury: A review. Carbohydr Polym. 327:1216722024.
View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Qi L, Jiang W, He W, Li X, Wu J, Chen S,
Liao Z, Yu S, Liu J, Sun Y, et al: Transcriptome profile analysis
in spinal cord injury rats with transplantation of menstrual
blood-derived stem cells. Front Mol Neurosci. 17:13354042024.
View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Wang Z, Wang Y, Yang T, Li J and Yang X:
Study of the reparative effects of menstrual-derived stem cells on
premature ovarian failure in mice. Stem Cell Res Ther. 8:112017.
View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Chen L, Qu J, Mei Q, Chen X, Fang Y, Chen
L, Li Y and Xiang C: Small extracellular vesicles from menstrual
blood-derived mesenchymal stem cells (MenSCs) as a novel
therapeutic impetus in regenerative medicine. Stem Cell Res Ther.
12:4332021. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Liu W, Tao JC, Zhu SZ, Dai CL, Wang YX, Yu
B, Yao C and Sun YY: Expression and regulatory network of long
noncoding RNA in rats after spinal cord hemisection injury. Neural
Regen Res. 17:2300–2304. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Li JA, Shi MP, Cong L, Gu MY, Chen YH,
Wang SY, Li ZH, Zan CF and Wei WF: Circulating exosomal lncRNA
contributes to the pathogenesis of spinal cord injury in rats.
Neural Regen Res. 18:889–894. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Hu Y, Sun YF, Yuan H, Liu J, Chen L, Liu
DH, Xu Y, Zhou XF, Ding L, Zhang ZT, et al: Vof16-miR-185-5p-GAP43
network improves the outcomes following spinal cord injury via
enhancing self-repair and promoting axonal growth. CNS Neurosci
Ther. 30:e145352024. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Yan Q, Xun Y, Lei D and Zhai H: Tanshinone
IIA protects motor neuron-like NSC-34 cells against
lipopolysaccharide-induced cell injury by the regulation of the
lncRNA TCTN2/miR-125a-5/DUSP1 axis. Regen Ther. 24:417–425. 2023.
View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Li K, Liu Z, Wu P, Chen S, Wang M, Liu W,
Zhang L, Guo S, Liu Y, Liu P, et al: Micro electrical fields
induced MSC-sEVs attenuate neuronal cell apoptosis by activating
autophagy via lncRNA MALAT1/miR-22-3p/SIRT1/AMPK axis in spinal
cord injury. J Nanobiotechnology. 21:4512023. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Ju C, Ma Y, Zuo X, Wang X, Song Z, Zhang
Z, Zhu Z, Li X, Liang Z, Ding T, et al: Photobiomodulation promotes
spinal cord injury repair by inhibiting macrophage polarization
through lncRNA TUG1-miR-1192/TLR3 axis. Cell Mol Biol Lett.
28:52023. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Pastori C, Kapranov P, Penas C, Peschansky
V, Volmar CH, Sarkaria JN, Bregy A, Komotar R, St Laurent G, Ayad
NG and Wahlestedt C: The bromodomain protein BRD4 controls HOTAIR,
a long noncoding RNA essential for glioblastoma proliferation. Proc
Natl Acad Sci USA. 112:8326–8331. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Li L, Gao Y, Yu B, Zhang J, Ma G and Jin
X: Role of LncRNA H19 in tumor progression and treatment. Mol Cell
Probes. 75:1019612024. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Cao S, Ma Y, Yang H, Luo G, Cheng H, Jin X
and Sun T: Long noncoding RNA HCG18 promotes extracellular matrix
degradation of nucleus pulposus cells in intervertebral disc
degeneration by regulating the miR-4306/EPAS1 axis. World
Neurosurg. 172:e52–e61. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Chen WK, Zhang HJ, Zou MX, Wang C, Yan YG,
Zhan XL, Li XL and Wang WJ: LncRNA HOTAIR influences cell
proliferation via miR-130b/PTEN/AKT axis in IDD. Cell Cycle.
21:323–339. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Chen W, Wang F, Wang J, Chen F and Chen T:
The molecular mechanism of long non-coding RNA MALAT1-mediated
regulation of chondrocyte pyroptosis in ankylosing spondylitis. Mol
Cells. 45:365–375. 2022. View Article : Google Scholar : PubMed/NCBI
|