Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
September-2024 Volume 30 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
September-2024 Volume 30 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Abnormal dental follicle cells: A crucial determinant in tooth eruption disorders (Review)

  • Authors:
    • Jiahao Chen
    • Ying Ying
    • Huimin Li
    • Zhuomin Sha
    • Jiaqi Lin
    • Yongjia Wu
    • Yange Wu
    • Yun Zhang
    • Xuepeng Chen
    • Weifang Zhang
  • View Affiliations / Copyright

    Affiliations: Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, P.R. China, Department of Child Health, Yongkang Women and Children's Health Hospital, Yongkang, Zhejiang 321300, P.R. China
    Copyright: © Chen et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 168
    |
    Published online on: July 15, 2024
       https://doi.org/10.3892/mmr.2024.13292
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

The dental follicle (DF) plays an indispensable role in tooth eruption by regulating bone remodeling through their influence on osteoblast and osteoclast activity. The process of tooth eruption involves a series of intricate regulatory mechanisms and signaling pathways. Disruption of the parathyroid hormone‑related protein (PTHrP) in the PTHrP‑PTHrP receptor signaling pathway inhibits osteoclast differentiation by DF cells (DFCs), thus resulting in obstructed tooth eruption. Furthermore, parathyroid hormone receptor‑1 mutations are linked to primary tooth eruption failure. Additionally, the Wnt/β‑catenin, TGF‑β, bone morphogenetic protein and Hedgehog signaling pathways have crucial roles in DFC involvement in tooth eruption. DFC signal loss or alteration inhibits osteoclast differentiation, affects osteoblast and cementoblast differentiation, and suppresses DFC proliferation, thus resulting in failed tooth eruptions. Abnormal tooth eruption is also associated with a range of systemic syndromes and genetic diseases, predominantly resulting from pathogenic gene mutations. Among these conditions, the following disorders arise due to genetic mutations that disrupt DFCs and impede proper tooth eruption: Cleidocranial dysplasia associated with Runt‑related gene 2 gene mutations; osteosclerosis caused by CLCN7 gene mutations; mucopolysaccharidosis type VI resulting from arylsulfatase B gene mutations; enamel renal syndrome due to FAM20A gene mutations; and dentin dysplasia caused by mutations in the VPS4B gene. In addition, regional odontodysplasia and multiple calcific hyperplastic DFs are involved in tooth eruption failure; however, they are not related to gene mutations. The specific mechanism for this effect requires further investigation. To the best of our knowledge, previous reviews have not comprehensively summarized the syndromes associated with DF abnormalities manifesting as abnormal tooth eruption. Therefore, the present review aims to consolidate the current knowledge on DFC signaling pathways implicated in abnormal tooth eruption, and their association with disorders of tooth eruption in genetic diseases and syndromes, thereby providing a valuable reference for future related research.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

View References

1 

Chai Y, Jiang X, Ito Y, Bringas P Jr, Han J, Rowitch DH, Soriano P, McMahon AP and Sucov HM: Fate of the mammalian cranial neural crest during tooth and mandibular morphogenesis. Development. 127:1671–1679. 2000. View Article : Google Scholar : PubMed/NCBI

2 

Chen G, Sun Q, Xie L, Jiang Z, Feng L, Yu M, Guo W and Tian W: Comparison of the odontogenic differentiation potential of dental follicle, dental papilla, and cranial neural crest cells. J Endod. 41:1091–1099. 2015. View Article : Google Scholar : PubMed/NCBI

3 

Bastos VC, Gomez RS and Gomes CC: Revisiting the human dental follicle: From tooth development to its association with unerupted or impacted teeth and pathological changes. Dev Dyn. 251:408–423. 2022. View Article : Google Scholar : PubMed/NCBI

4 

Wise GE and Yao S: Regional differences of expression of bone morphogenetic protein-2 and RANKL in the rat dental follicle. Eur J Oral Sci. 114:512–516. 2006. View Article : Google Scholar : PubMed/NCBI

5 

Zhou T, Pan J, Wu P, Huang R, Du W, Zhou Y, Wan M, Fan Y, Xu X, Zhou X, et al: Dental follicle cells: roles in development and beyond. Stem Cells Int. 2019:91596052019. View Article : Google Scholar : PubMed/NCBI

6 

Morsczeck C, Götz W, Schierholz J, Zeilhofer F, Kühn U, Möhl C, Sippel C and Hoffmann KH: Isolation of precursor cells (PCs) from human dental follicle of wisdom teeth. Matrix Biol. 24:155–165. 2005. View Article : Google Scholar : PubMed/NCBI

7 

Bi R, Lyu P, Song Y, Li P, Song D, Cui C and Fan Y: Function of dental follicle progenitor/stem cells and their potential in regenerative medicine: From mechanisms to applications. Biomolecules. 11:9972021. View Article : Google Scholar : PubMed/NCBI

8 

Yao S, Pan F, Prpic V and Wise GE: Differentiation of stem cells in the dental follicle. J Dent Res. 87:767–771. 2008. View Article : Google Scholar : PubMed/NCBI

9 

Liu J, Yu F, Sun Y, Jiang B, Zhang W, Yang J, Xu GT, Liang A and Liu S: Concise reviews: Characteristics and potential applications of human dental tissue-derived mesenchymal stem cells. Stem Cells. 33:627–638. 2015. View Article : Google Scholar : PubMed/NCBI

10 

Morsczeck C, Völlner F, Saugspier M, Brandl C, Reichert TE, Driemel O and Schmalz G: Comparison of human dental follicle cells (DFCs) and stem cells from human exfoliated deciduous teeth (SHED) after neural differentiation in vitro. Clin Oral Investig. 14:433–440. 2010. View Article : Google Scholar : PubMed/NCBI

11 

Richman JM: Shedding new light on the mysteries of tooth eruption. Proc Natl Acad Sci USA. 116:353–355. 2019. View Article : Google Scholar : PubMed/NCBI

12 

Zeng L, He H, Sun M, Gong X, Zhou M, Hong Y, Wu Y, Chen X and Chen Q: Runx2 and Nell-1 in dental follicle progenitor cells regulate bone remodeling and tooth eruption. Stem Cell Res Ther. 13:4862022. View Article : Google Scholar : PubMed/NCBI

13 

Yu Y, Cui C, Guan SY, Xu RS, Zheng LW, Zhou XD and Fan Y: Function of orofacial stem cells in tooth eruption: An evolving perspective. Chin J Dent Res. 24:143–152. 2021.PubMed/NCBI

14 

Suri L, Gagari E and Vastardis H: Delayed tooth eruption: Pathogenesis, diagnosis, and treatment. A literature review. Am J Orthod Dentofacial Orthop. 126:432–445. 2004. View Article : Google Scholar : PubMed/NCBI

15 

Marks SC Jr and Cahill DR: Regional control by the dental follicle of alterations in alveolar bone metabolism during tooth eruption. J Oral Pathol. 16:164–169. 1987. View Article : Google Scholar : PubMed/NCBI

16 

Cahill DR and Marks SC Jr: Tooth eruption: Evidence for the central role of the dental follicle. J Oral Pathol. 9:189–200. 1980. View Article : Google Scholar : PubMed/NCBI

17 

Roulias P, Kalantzis N, Doukaki D, Pachiou A, Karamesinis K, Damanakis G, Gizani S and Tsolakis AI: Teeth eruption disorders: A critical review. Children (Basel). 9:7712022.PubMed/NCBI

18 

Rasmussen P and Kotsaki A: Inherited retarded eruption in the permanent dentition. J Clin Pediatr Dent. 21:205–211. 1997.PubMed/NCBI

19 

Raghoebar GM, Boering G, Vissink A and Stegenga B: Eruption disturbances of permanent molars: A review. J Oral Pathol Med. 20:159–166. 1991. View Article : Google Scholar : PubMed/NCBI

20 

Raghoebar GM, Boering G and Vissink A: Clinical, radiographic and histological characteristics of secondary retention of permanent molars. J Dent. 19:164–170. 1991. View Article : Google Scholar : PubMed/NCBI

21 

Jain S, Raza M, Sharma P and Kumar P: Unraveling impacted maxillary incisors: The why, when, and how. Int J Clin Pediatr Dent. 14:149–157. 2021. View Article : Google Scholar : PubMed/NCBI

22 

Morsczeck C, De Pellegrin M, Reck A and Reichert TE: Evaluation of current studies to elucidate processes in dental follicle cells driving osteogenic differentiation. Biomedicines. 11:27872023. View Article : Google Scholar : PubMed/NCBI

23 

Oosterkamp BC, Ockeloen CW, Carels CE and Kuijpers-Jagtman AM: Tooth eruption disturbances and syndromes. Ned Tijdschr Tandheelkd. 121:233–238. 2014.(In Dutch). View Article : Google Scholar : PubMed/NCBI

24 

Wise GE: Cellular and molecular basis of tooth eruption. Orthod Craniofac Res. 12:67–73. 2009. View Article : Google Scholar : PubMed/NCBI

25 

Wise GE, Frazier-Bowers S and D'Souza RN: Cellular, molecular, and genetic determinants of tooth eruption. Crit Rev Oral Biol Med. 13:323–334. 2002. View Article : Google Scholar : PubMed/NCBI

26 

Li XX, Wang MT, Wu ZF, Sun Q, Ono N, Nagata M, Zang XL and Ono W: Etiological mechanisms and genetic/biological modulation related to PTH1R in primary failure of tooth eruption. Calcif Tissue Int. Jun 4–2024.(Epub ahead of print). View Article : Google Scholar

27 

Guo X and Duan X: Genotype-phenotype analysis of selective failure of tooth eruption-A systematic review. Clin Genet. 104:287–297. 2023. View Article : Google Scholar : PubMed/NCBI

28 

Hanisch M, Hanisch L, Kleinheinz J and Jung S: Primary failure of eruption (PFE): A systematic review. Head Face Med. 14:52018. View Article : Google Scholar : PubMed/NCBI

29 

Yamaguchi T, Hosomichi K, Shirota T, Miyamoto Y, Ono W and Ono N: Primary failure of tooth eruption: Etiology and management. Jpn Dent Sci Rev. 58:258–267. 2022. View Article : Google Scholar : PubMed/NCBI

30 

Librizzi M, Naselli F, Abruscato G, Luparello C and Caradonna F: Parathyroid hormone related protein (PTHrP)-associated molecular signatures in tissue differentiation and non-tumoral diseases. Biology (Basel). 12:9502023.PubMed/NCBI

31 

Wysolmerski JJ, Broadus AE, Zhou J, Fuchs E, Milstone LM and Philbrick WM: Overexpression of parathyroid hormone-related protein in the skin of transgenic mice interferes with hair follicle development. Proc Natl Acad Sci USA. 91:1133–1137. 1994. View Article : Google Scholar : PubMed/NCBI

32 

Wysolmerski JJ, McCaughern-Carucci JF, Daifotis AG, Broadus AE and Philbrick WM: Overexpression of parathyroid hormone-related protein or parathyroid hormone in transgenic mice impairs branching morphogenesis during mammary gland development. Development. 121:3539–3547. 1995. View Article : Google Scholar : PubMed/NCBI

33 

Vasavada RC, Cavaliere C, D'Ercole AJ, Dann P, Burtis WJ, Madlener AL, Zawalich K, Zawalich W, Philbrick W and Stewart AF: Overexpression of parathyroid hormone-related protein in the pancreatic islets of transgenic mice causes islet hyperplasia, hyperinsulinemia, and hypoglycemia. J Biol Chem. 271:1200–1208. 1996. View Article : Google Scholar : PubMed/NCBI

34 

Foley J, Longely BJ, Wysolmerski JJ, Dreyer BE, Broadus AE and Philbrick WM: PTHrP regulates epidermal differentiation in adult mice. J Invest Dermatol. 111:1122–1128. 1998. View Article : Google Scholar : PubMed/NCBI

35 

Nagata M, Ono N and Ono W: Mesenchymal progenitor regulation of tooth eruption: A view from PTHrP. J Dent Res. 99:133–142. 2020. View Article : Google Scholar : PubMed/NCBI

36 

Zhang J, Liao L, Li Y, Xu Y, Guo W, Tian W and Zou S: Parathyroid hormone-related peptide (1–34) promotes tooth eruption and inhibits osteogenesis of dental follicle cells during tooth development. J Cell Physiol. 234:11900–11911. 2019. View Article : Google Scholar : PubMed/NCBI

37 

Obara N, Suzuki Y and Takeda M: Gene expression of beta-catenin is up-regulated in inner dental epithelium and enamel knots during molar tooth morphogenesis in the mouse. Cell Tissue Res. 325:197–201. 2006. View Article : Google Scholar : PubMed/NCBI

38 

MacDonald BT, Tamai K and He X: Wnt/beta-catenin signaling: Components, mechanisms, and diseases. Dev Cell. 17:9–26. 2009. View Article : Google Scholar : PubMed/NCBI

39 

Wodarz A and Nusse R: Mechanisms of Wnt signaling in development. Annu Rev Cell Dev Biol. 14:59–88. 1998. View Article : Google Scholar : PubMed/NCBI

40 

Ouyang H, McCauley LK, Berry JE, Saygin NE, Tokiyasu Y and Somerman MJ: Parathyroid hormone-related protein regulates extracellular matrix gene expression in cementoblasts and inhibits cementoblast-mediated mineralization in vitro. J Bone Miner Res. 15:2140–2153. 2000. View Article : Google Scholar : PubMed/NCBI

41 

Philbrick WM, Dreyer BE, Nakchbandi IA and Karaplis AC: Parathyroid hormone-related protein is required for tooth eruption. Proc Natl Acad Sci USA. 95:11846–11851. 1998. View Article : Google Scholar : PubMed/NCBI

42 

Heinrich J, Bsoul S, Barnes J, Woodruff K and Abboud S: CSF-1, RANKL and OPG regulate osteoclastogenesis during murine tooth eruption. Arch Oral Biol. 50:897–908. 2005. View Article : Google Scholar : PubMed/NCBI

43 

Ibáñez L, Nácher-Juan J, Terencio MC, Ferrándiz ML and Alcaraz MJ: Osteostatin inhibits M-CSF+RANKL-induced human osteoclast differentiation by modulating NFATc1. Int J Mol Sci. 23:85512022. View Article : Google Scholar : PubMed/NCBI

44 

Shiyan H, Nanquan R, Shuhao X and Xiaobing L: Research progress on the cellular and molecular mechanisms of tooth eruption. Hua Xi Kou Qiang Yi Xue Za Zhi. 34:317–321. 2016.(In Chinese). PubMed/NCBI

45 

Udagawa N, Koide M, Nakamura M, Nakamichi Y, Yamashita T, Uehara S, Kobayashi Y, Furuya Y, Yasuda H, Fukuda C and Tsuda E: Osteoclast differentiation by RANKL and OPG signaling pathways. J Bone Miner Metab. 39:19–26. 2021. View Article : Google Scholar : PubMed/NCBI

46 

Huang H, Wang J, Zhang Y, Zhu G, Li YP, Ping J and Chen W: Bone resorption deficiency affects tooth root development in RANKL mutant mice due to attenuated IGF-1 signaling in radicular odontoblasts. Bone. 114:161–171. 2018. View Article : Google Scholar : PubMed/NCBI

47 

Cui W, Cuartas E, Ke J, Zhang Q, Einarsson HB, Sedgwick JD, Li J and Vignery A: CD200 and its receptor, CD200R, modulate bone mass via the differentiation of osteoclasts. Proc Natl Acad Sci USA. 104:14436–14441. 2007. View Article : Google Scholar : PubMed/NCBI

48 

Ono W, Sakagami N, Nishimori S, Ono N and Kronenberg HM: Parathyroid hormone receptor signalling in osterix-expressing mesenchymal progenitors is essential for tooth root formation. Nat Commun. 7:112772016. View Article : Google Scholar : PubMed/NCBI

49 

Dean T, Vilardaga JP, Potts JT Jr and Gardella TJ: Altered selectivity of parathyroid hormone (PTH) and PTH-related protein (PTHrP) for distinct conformations of the PTH/PTHrP receptor. Mol Endocrinol. 22:156–166. 2008. View Article : Google Scholar : PubMed/NCBI

50 

Martin TJ, Sims NA and Seeman E: Physiological and pharmacological roles of PTH and PTHrP in bone using their shared receptor, PTH1R. Endocr Rev. 42:383–406. 2021. View Article : Google Scholar : PubMed/NCBI

51 

Aziz S, Hermann NV, Dunø M, Risom L, Daugaard-Jensen J and Kreiborg S: Primary failure of eruption of teeth in two siblings with a novel mutation in the PTH1R gene. Eur Arch Paediatr Dent. 20:295–300. 2019. View Article : Google Scholar : PubMed/NCBI

52 

Kanno CM, de Oliveira JA, Garcia JF, Roth H and Weber BH: Twenty-year follow-up of a familial case of PTH1R-associated primary failure of tooth eruption. Am J Orthod Dentofacial Orthop. 151:598–606. 2017. View Article : Google Scholar : PubMed/NCBI

53 

Frazier-Bowers SA, Simmons D, Wright JT, Proffit WR and Ackerman JL: Primary failure of eruption and PTH1R: The importance of a genetic diagnosis for orthodontic treatment planning. Am J Orthod Dentofacial Orthop. 137:160–161. e1–e7. 2010. View Article : Google Scholar : PubMed/NCBI

54 

Stutz C, Wagner D, Gros CI, Sayeh A, Gegout H, Kuchler-Bopp S and Strub M: Primary failure of eruption and tooth resorption. Orthod Fr. 93:283–288. 2022.(In French). PubMed/NCBI

55 

Decker E, Stellzig-Eisenhauer A, Fiebig BS, Rau C, Kress W, Saar K, Rüschendorf F, Hubner N, Grimm T and Weber BH: PTHR1 loss-of-function mutations in familial, nonsyndromic primary failure of tooth eruption. Am J Hum Genet. 83:781–786. 2008. View Article : Google Scholar : PubMed/NCBI

56 

Wise GE and King GJ: Mechanisms of tooth eruption and orthodontic tooth movement. J Dent Res. 87:414–434. 2008. View Article : Google Scholar : PubMed/NCBI

57 

Wise GE, Yao S and Henk WG: Bone formation as a potential motive force of tooth eruption in the rat molar. Clin Anat. 20:632–639. 2007. View Article : Google Scholar : PubMed/NCBI

58 

Li J, Parada C and Chai Y: Cellular and molecular mechanisms of tooth root development. Development. 144:374–384. 2017. View Article : Google Scholar : PubMed/NCBI

59 

Takahashi A, Nagata M, Gupta A, Matsushita Y, Yamaguchi T, Mizuhashi K, Maki K, Ruellas AC, Cevidanes LS, Kronenberg HM, et al: Autocrine regulation of mesenchymal progenitor cell fates orchestrates tooth eruption. Proc Natl Acad Sci USA. 116:575–580. 2019. View Article : Google Scholar : PubMed/NCBI

60 

Tokavanich N, Gupta A, Nagata M, Takahashi A, Matsushita Y, Yatabe M, Ruellas A, Cevidanes L, Maki K, Yamaguchi T, et al: A three-dimensional analysis of primary failure of eruption in humans and mice. Oral Dis. 26:391–400. 2020. View Article : Google Scholar : PubMed/NCBI

61 

Wang XP: Tooth eruption without roots. J Dent Res. 92:212–214. 2013. View Article : Google Scholar : PubMed/NCBI

62 

Vuong LT and Mlodzik M: Different strategies by distinct Wnt-signaling pathways in activating a nuclear transcriptional response. Curr Top Dev Biol. 149:59–89. 2022. View Article : Google Scholar : PubMed/NCBI

63 

Tokavanich N, Wein MN, English JD, Ono N and Ono W: The role of Wnt signaling in postnatal tooth root development. Front Dent Med. 2:7691342021. View Article : Google Scholar : PubMed/NCBI

64 

Liu F, Chu EY, Watt B, Zhang Y, Gallant NM, Andl T, Yang SH, Lu MM, Piccolo S, Schmidt-Ullrich R, et al: Wnt/beta-catenin signaling directs multiple stages of tooth morphogenesis. Dev Biol. 313:210–224. 2008. View Article : Google Scholar : PubMed/NCBI

65 

Zhang R, Yang G, Wu X, Xie J, Yang X and Li T: Disruption of Wnt/β-catenin signaling in odontoblasts and cementoblasts arrests tooth root development in postnatal mouse teeth. Int J Biol Sci. 9:228–236. 2013. View Article : Google Scholar : PubMed/NCBI

66 

Weivoda MM, Ruan M, Hachfeld CM, Pederson L, Howe A, Davey RA, Zajac JD, Kobayashi Y, Williams BO, Westendorf JJ, et al: Wnt signaling inhibits osteoclast differentiation by activating canonical and noncanonical cAMP/PKA pathways. J Bone Miner Res. 31:65–75. 2016. View Article : Google Scholar : PubMed/NCBI

67 

Wei W, Zeve D, Suh JM, Wang X, Du Y, Zerwekh JE, Dechow PC, Graff JM and Wan Y: Biphasic and dosage-dependent regulation of osteoclastogenesis by β-catenin. Mol Cell Biol. 31:4706–4719. 2011. View Article : Google Scholar : PubMed/NCBI

68 

Kim TH, Bae CH, Jang EH, Yoon CY, Bae Y, Ko SO, Taketo MM and Cho ES: Col1a1-cre mediated activation of β-catenin leads to aberrant dento-alveolar complex formation. Anat Cell Biol. 45:193–202. 2012. View Article : Google Scholar : PubMed/NCBI

69 

Glass DA II, Bialek P, Ahn JD, Starbuck M, Patel MS, Clevers H, Taketo MM, Long F, McMahon AP, Lang RA and Karsenty G: Canonical Wnt signaling in differentiated osteoblasts controls osteoclast differentiation. Dev Cell. 8:751–764. 2005. View Article : Google Scholar : PubMed/NCBI

70 

Nie B, Zhang SY, Guan SM, Zhou SQ and Fang X: Role of Wnt/β-catenin pathway in the arterial medial calcification and its effect on the OPG/RANKL system. Curr Med Sci. 39:28–36. 2019. View Article : Google Scholar : PubMed/NCBI

71 

Kim TH, Lee JY, Baek JA, Lee JC, Yang X, Taketo MM, Jiang R and Cho ES: Constitutive stabilization of ß-catenin in the dental mesenchyme leads to excessive dentin and cementum formation. Biochem Biophys Res Commun. 412:549–555. 2011. View Article : Google Scholar : PubMed/NCBI

72 

Wu Y, Yuan X, Perez KC, Hyman S, Wang L, Pellegrini G, Salmon B, Bellido T and Helms JA: Aberrantly elevated Wnt signaling is responsible for cementum overgrowth and dental ankylosis. Bone. 122:176–183. 2019. View Article : Google Scholar : PubMed/NCBI

73 

Bennett CN, Longo KA, Wright WS, Suva LJ, Lane TF, Hankenson KD and MacDougald OA: Regulation of osteoblastogenesis and bone mass by Wnt10b. Proc Natl Acad Sci USA. 102:3324–3329. 2005. View Article : Google Scholar : PubMed/NCBI

74 

Bennett CN, Ouyang H, Ma YL, Zeng Q, Gerin I, Sousa KM, Lane TF, Krishnan V, Hankenson KD and MacDougald OA: Wnt10b increases postnatal bone formation by enhancing osteoblast differentiation. J Bone Miner Res. 22:1924–1932. 2007. View Article : Google Scholar : PubMed/NCBI

75 

Thesleff I and Nieminen P: Tooth morphogenesis and cell differentiation. Curr Opin Cell Biol. 8:844–850. 1996. View Article : Google Scholar : PubMed/NCBI

76 

Sui BD, Zheng CX, Zhao WM, Xuan K, Li B and Jin Y: Mesenchymal condensation in tooth development and regeneration: A focus on translational aspects of organogenesis. Physiol Rev. 103:1899–1964. 2023. View Article : Google Scholar : PubMed/NCBI

77 

Wang Y, Cox MK, Coricor G, MacDougall M and Serra R: Inactivation of Tgfbr2 in Osterix-Cre expressing dental mesenchyme disrupts molar root formation. Dev Biol. 382:27–37. 2013. View Article : Google Scholar : PubMed/NCBI

78 

Massagué J: TGF-beta signal transduction. Annu Rev Biochem. 67:753–791. 1998. View Article : Google Scholar : PubMed/NCBI

79 

Ko SO, Chung IH, Xu X, Oka S, Zhao H, Cho ES, Deng C and Chai Y: Smad4 is required to regulate the fate of cranial neural crest cells. Dev Biol. 312:435–447. 2007. View Article : Google Scholar : PubMed/NCBI

80 

Gao Y, Yang G, Weng T, Du J, Wang X, Zhou J, Wang S and Yang X: Disruption of Smad4 in odontoblasts causes multiple keratocystic odontogenic tumors and tooth malformation in mice. Mol Cell Biol. 29:5941–5951. 2009. View Article : Google Scholar : PubMed/NCBI

81 

Beederman M, Lamplot JD, Nan G, Wang J, Liu X, Yin L, Li R, Shui W, Zhang H, Kim SH, et al: BMP signaling in mesenchymal stem cell differentiation and bone formation. J Biomed Sci Eng. 6:32–52. 2013. View Article : Google Scholar : PubMed/NCBI

82 

Fabregat I, Herrera B and Sánchez A: Editorial special issue TGF-beta/BMP signaling pathway. Cells. 9:23632020. View Article : Google Scholar : PubMed/NCBI

83 

Rakian A, Yang WC, Gluhak-Heinrich J, Cui Y, Harris MA, Villarreal D, Feng JQ, Macdougall M and Harris SE: Bone morphogenetic protein-2 gene controls tooth root development in coordination with formation of the periodontium. Int J Oral Sci. 5:75–84. 2013. View Article : Google Scholar : PubMed/NCBI

84 

Wang J, Muir AM, Ren Y, Massoudi D, Greenspan DS and Feng JQ: Essential roles of bone morphogenetic protein-1 and mammalian tolloid-like 1 in postnatal root dentin formation. J Endod. 43:109–115. 2017. View Article : Google Scholar : PubMed/NCBI

85 

Ge G and Greenspan DS: Developmental roles of the BMP1/TLD metalloproteinases. Birth Defects Res C Embryo Today. 78:47–68. 2006. View Article : Google Scholar : PubMed/NCBI

86 

Malik Z, Roth DM, Eaton F, Theodor JM and Graf D: Mesenchymal Bmp7 controls onset of tooth mineralization: A novel way to regulate molar cusp shape. Front Physiol. 11:6982020. View Article : Google Scholar : PubMed/NCBI

87 

Semba I, Nonaka K, Takahashi I, Takahashi K, Dashner R, Shum L, Nuckolls GH and Slavkin HC: Positionally-dependent chondrogenesis induced by BMP4 is co-regulated by Sox9 and Msx2. Dev Dyn. 217:401–414. 2000. View Article : Google Scholar : PubMed/NCBI

88 

Cai C, Wang J, Huo N, Wen L, Xue P and Huang Y: Msx2 plays an important role in BMP6-induced osteogenic differentiation of two mesenchymal cell lines: C3H10T1/2 and C2C12. Regen Ther. 14:245–251. 2020. View Article : Google Scholar : PubMed/NCBI

89 

Aïoub M, Lézot F, Molla M, Castaneda B, Robert B, Goubin G, Néfussi JR and Berdal A: Msx2 -/- transgenic mice develop compound amelogenesis imperfecta, dentinogenesis imperfecta and periodental osteopetrosis. Bone. 41:851–859. 2007. View Article : Google Scholar : PubMed/NCBI

90 

Hosoya A, Shalehin N, Takebe H, Shimo T and Irie K: Sonic hedgehog signaling and tooth development. Int J Mol Sci. 21:15872020. View Article : Google Scholar : PubMed/NCBI

91 

Nakatomi M, Morita I, Eto K and Ota MS: Sonic hedgehog signaling is important in tooth root development. J Dent Res. 85:427–431. 2006. View Article : Google Scholar : PubMed/NCBI

92 

Jain P and Rathee M: Anatomy, Head and Neck, Tooth Eruption. StatPearls [Internet]. StatPearls Publishing; Treasure Island, FL: 2024, https://www.ncbi.nlm.nih.gov/books/NBK549878/

93 

Kasugai S, Suzuki S, Shibata S, Yasui S, Amano H and Ogura H: Measurements of the isometric contractile forces generated by dog periodontal ligament fibroblasts in vitro. Arch Oral Biol. 35:597–601. 1990. View Article : Google Scholar : PubMed/NCBI

94 

Kalliala E and Taskinen PJ: Cleidocranial dysostosis. Report of six typical cases and one atypical case. Oral Surg Oral Med Oral Pathol. 15:808–822. 1962. View Article : Google Scholar : PubMed/NCBI

95 

Shih-Wei Cheng E, Tsuji M, Suzuki S and Moriyama K: An overview of the intraoral features and craniofacial morphology of growing and adult Japanese cleidocranial dysplasia subjects. Eur J Orthod. 44:711–722. 2022. View Article : Google Scholar : PubMed/NCBI

96 

Jaruga A, Hordyjewska E, Kandzierski G and Tylzanowski P: Cleidocranial dysplasia and RUNX2-clinical phenotype-genotype correlation. Clin Genet. 90:393–402. 2016. View Article : Google Scholar : PubMed/NCBI

97 

Komori T: Regulation of proliferation, differentiation and functions of osteoblasts by Runx2. Int J Mol Sci. 20:16942019. View Article : Google Scholar : PubMed/NCBI

98 

Harada H, Tagashira S, Fujiwara M, Ogawa S, Katsumata T, Yamaguchi A, Komori T and Nakatsuka M: Cbfa1 isoforms exert functional differences in osteoblast differentiation. J Biol Chem. 274:6972–6978. 1999. View Article : Google Scholar : PubMed/NCBI

99 

Komori T, Yagi H, Nomura S, Yamaguchi A, Sasaki K, Deguchi K, Shimizu Y, Bronson RT, Gao YH, Inada M, et al: Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell. 89:755–764. 1997. View Article : Google Scholar : PubMed/NCBI

100 

Otto F, Thornell AP, Crompton T, Denzel A, Gilmour KC, Rosewell IR, Stamp GW, Beddington RS, Mundlos S, Olsen BR, et al: Cbfa1, a candidate gene for cleidocranial dysplasia syndrome, is essential for osteoblast differentiation and bone development. Cell. 89:765–771. 1997. View Article : Google Scholar : PubMed/NCBI

101 

Yoda S, Suda N, Kitahara Y, Komori T and Ohyama K: Delayed tooth eruption and suppressed osteoclast number in the eruption pathway of heterozygous Runx2/Cbfa1 knockout mice. Arch Oral Biol. 49:435–442. 2004. View Article : Google Scholar : PubMed/NCBI

102 

D'Souza RN, Aberg T, Gaikwad J, Cavender A, Owen M, Karsenty G and Thesleff I: Cbfa1 is required for epithelial-mesenchymal interactions regulating tooth development in mice. Development. 126:2911–2920. 1999. View Article : Google Scholar : PubMed/NCBI

103 

Bronckers AL, Engelse MA, Cavender A, Gaikwad J and D'Souza RN: Cell-specific patterns of Cbfa1 mRNA and protein expression in postnatal murine dental tissues. Mech Dev. 101:255–258. 2001. View Article : Google Scholar : PubMed/NCBI

104 

Liu Y, Sun X, Zhang X, Wang X, Zhang C and Zheng S: RUNX2 mutation impairs osteogenic differentiation of dental follicle cells. Arch Oral Biol. 97:156–164. 2019. View Article : Google Scholar : PubMed/NCBI

105 

Nadyrshina DD and Khusainova RI: Clinical, genetic aspects and molecular pathogenesis of osteopetrosis. Vavilovskii Zhurnal Genet Selektsii. 27:383–392. 2023.PubMed/NCBI

106 

Aker M, Rouvinski A, Hashavia S, Ta-Shma A, Shaag A, Zenvirt S, Israel S, Weintraub M, Taraboulos A, Bar-Shavit Z and Elpeleg O: An SNX10 mutation causes malignant osteopetrosis of infancy. J Med Genet. 49:221–226. 2012. View Article : Google Scholar : PubMed/NCBI

107 

Keng LT and Liang SK: Albers-Schönberg disease. Korean J Intern Med. 34:1167–1168. 2019. View Article : Google Scholar : PubMed/NCBI

108 

Luzzi V, Consoli G, Daryanani V, Santoro G, Sfasciotti GL and Polimeni A: Malignant infantile osteopetrosis: Dental effects in paediatric patients. Case reports. Eur J Paediatr Dent. 7:39–44. 2006.PubMed/NCBI

109 

Sobacchi C, Schulz A, Coxon FP, Villa A and Helfrich MH: Osteopetrosis: Genetics, treatment and new insights into osteoclast function. Nat Rev Endocrinol. 9:522–536. 2013. View Article : Google Scholar : PubMed/NCBI

110 

Polgreen LE, Imel EA and Econs MJ: Autosomal dominant osteopetrosis. Bone. 170:1167232023. View Article : Google Scholar : PubMed/NCBI

111 

Wang H, Pan M, Ni J, Zhang Y, Zhang Y, Gao S, Liu J, Wang Z, Zhang R, He H, et al: ClC-7 deficiency impairs tooth development and eruption. Sci Rep. 6:199712016. View Article : Google Scholar : PubMed/NCBI

112 

Xue Y, Wang W, Mao T and Duan X: Report of two Chinese patients suffering from CLCN7-related osteopetrosis and root dysplasia. J Craniomaxillofac Surg. 40:416–420. 2012. View Article : Google Scholar : PubMed/NCBI

113 

Wise GE, Lumpkin SJ, Huang H and Zhang Q: Osteoprotegerin and osteoclast differentiation factor in tooth eruption. J Dent Res. 79:1937–1942. 2000. View Article : Google Scholar : PubMed/NCBI

114 

Suzuki T, Suda N and Ohyama K: Osteoclastogenesis during mouse tooth germ development is mediated by receptor activator of NFKappa-B ligand (RANKL). J Bone Miner Metab. 22:185–191. 2004. View Article : Google Scholar : PubMed/NCBI

115 

Yasuda H: Discovery of the RANKL/RANK/OPG system. J Bone Miner Metab. 39:2–11. 2021. View Article : Google Scholar : PubMed/NCBI

116 

Morsczeck C, Moehl C, Götz W, Heredia A, Schäffer TE, Eckstein N, Sippel C and Hoffmann KH: In vitro differentiation of human dental follicle cells with dexamethasone and insulin. Cell Biol Int. 29:567–575. 2005. View Article : Google Scholar : PubMed/NCBI

117 

Nagpal R, Goyal RB, Priyadarshini K, Kashyap S, Sharma M, Sinha R and Sharma N: Mucopolysaccharidosis: A broad review. Indian J Ophthalmol. 70:2249–2261. 2022. View Article : Google Scholar : PubMed/NCBI

118 

Smith KS, Hallett KB, Hall RK, Wardrop RW and Firth N: Mucopolysaccharidosis: MPS VI and associated delayed tooth eruption. Int J Oral Maxillofac Surg. 24:176–180. 1995. View Article : Google Scholar : PubMed/NCBI

119 

Andersson HC: 50 Years ago in the journal of pediatrics: Hurler's disease, Morquio's disease and related mucopolysaccharidoses. J Pediatr. 167:3372015. View Article : Google Scholar : PubMed/NCBI

120 

Costa-Motta FM, Bender F, Acosta A, Abé-Sandes K, Machado T, Bomfim T, Boa Sorte T, da Silva D, Bittles A, Giugliani R and Leistner-Segal S: A community-based study of mucopolysaccharidosis type VI in Brazil: The influence of founder effect, endogamy and consanguinity. Hum Hered. 77:189–196. 2014. View Article : Google Scholar : PubMed/NCBI

121 

Vairo F, Federhen A, Baldo G, Riegel M, Burin M, Leistner-Segal S and Giugliani R: Diagnostic and treatment strategies in mucopolysaccharidosis VI. Appl Clin Genet. 8:245–255. 2015.PubMed/NCBI

122 

Tomanin R, Karageorgos L, Zanetti A, Al-Sayed M, Bailey M, Miller N, Sakuraba H and Hopwood JJ: Mucopolysaccharidosis type VI (MPS VI) and molecular analysis: Review and classification of published variants in the ARSB gene. Hum Mutat. 39:1788–1802. 2018. View Article : Google Scholar : PubMed/NCBI

123 

Alpöz AR, Coker M, Celen E, Ersin NK, Gökçen D, van Diggelenc OP and Huijmansc JG: The oral manifestations of Maroteaux-Lamy syndrome (mucopolysaccharidosis VI): A case report. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 101:632–637. 2006. View Article : Google Scholar : PubMed/NCBI

124 

Simancas Escorcia V, Guillou C, Abbad L, Derrien L, Rodrigues Rezende Costa C, Cannaya V, Benassarou M, Chatziantoniou C, Berdal A, Acevedo AC, et al: Pathogenesis of enamel-renal syndrome associated gingival fibromatosis: A proteomic approach. Front Endocrinol (Lausanne). 12:7525682021. View Article : Google Scholar : PubMed/NCBI

125 

Roomaney IA, Kabbashi S and Chetty M: Enamel renal syndrome: Protocol for a scoping review. JMIR Res Protoc. 10:e297022021. View Article : Google Scholar : PubMed/NCBI

126 

Crawford PJ, Aldred M and Bloch-Zupan A: Amelogenesis imperfecta. Orphanet J Rare Dis. 2:172007. View Article : Google Scholar : PubMed/NCBI

127 

Farias MLM, Ornela GO, de Andrade RS, Martelli DRB, Dias VO and Júnior HM: Enamel renal syndrome: A systematic review. Indian J Nephrol. 31:1–8. 2021. View Article : Google Scholar : PubMed/NCBI

128 

Khalifa R, Kammoun R, Mansour L, Ben Alaya T and Ghoul S: Enamel renal syndrome: A case report with calcifications in pulp, gingivae, dental follicle and kidneys. Spec Care Dentist. 44:722–728. 2024. View Article : Google Scholar : PubMed/NCBI

129 

de la Dure-Molla M, Quentric M, Yamaguti PM, Acevedo AC, Mighell AJ, Vikkula M, Huckert M, Berdal A and Bloch-Zupan A: Pathognomonic oral profile of enamel renal syndrome (ERS) caused by recessive FAM20A mutations. Orphanet J Rare Dis. 9:842014. View Article : Google Scholar : PubMed/NCBI

130 

Wang SK, Aref P, Hu Y, Milkovich RN, Simmer JP, El-Khateeb M, Daggag H, Baqain ZH and Hu JC: FAM20A mutations can cause enamel-renal syndrome (ERS). PLoS Genet. 9:e10033022013. View Article : Google Scholar : PubMed/NCBI

131 

Wang SK, Reid BM, Dugan SL, Roggenbuck JA, Read L, Aref P, Taheri AP, Yeganeh MZ, Simmer JP and Hu JC: FAM20A mutations associated with enamel renal syndrome. J Dent Res. 93:42–48. 2014. View Article : Google Scholar : PubMed/NCBI

132 

Nitayavardhana I, Theerapanon T, Srichomthong C, Piwluang S, Wichadakul D, Porntaveetus T and Shotelersuk V: Four novel mutations of FAM20A in amelogenesis imperfecta type IG and review of literature for its genotype and phenotype spectra. Mol Genet Genomics. 295:923–931. 2020. View Article : Google Scholar : PubMed/NCBI

133 

Normand de la Tranchade I, Bonarek H, Marteau JM, Boileau MJ and Nancy J: Amelogenesis imperfecta and nephrocalcinosis: A new case of this rare syndrome. J Clin Pediatr Dent. 27:171–175. 2003. View Article : Google Scholar : PubMed/NCBI

134 

Alhilou A, Beddis HP, Mighell AJ and Durey K: Dentin dysplasia: Diagnostic challenges. BMJ Case Rep. 2018:bcr20172239422018. View Article : Google Scholar : PubMed/NCBI

135 

Shields ED, Bixler D and el-Kafrawy AM: A proposed classification for heritable human dentine defects with a description of a new entity. Arch Oral Biol. 18:543–553. 1973. View Article : Google Scholar : PubMed/NCBI

136 

Akhil Jose EJ, Palathingal P, Baby D and Thachil JM: Dentin dysplasia type I: A rare case report. J Oral Maxillofac Pathol. 23:3092019. View Article : Google Scholar : PubMed/NCBI

137 

Barron MJ, McDonnell ST, Mackie I and Dixon MJ: Hereditary dentine disorders: Dentinogenesis imperfecta and dentine dysplasia. Orphanet J Rare Dis. 3:312008. View Article : Google Scholar : PubMed/NCBI

138 

Chen D, Li X, Lu F, Wang Y, Xiong F and Li Q: Dentin dysplasia type I-a dental disease with genetic heterogeneity. Oral Dis. 25:439–446. 2019. View Article : Google Scholar : PubMed/NCBI

139 

Kalk WW, Batenburg RH and Vissink A: Dentin dysplasia type I: Five cases within one family. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 86:175–178. 1998. View Article : Google Scholar : PubMed/NCBI

140 

Song YL and Bian Z: Recognition on dentin dysplasia type II. Zhonghua Kou Qiang Yi Xue Za Zhi. 58:766–771. 2023.(In Chinese). PubMed/NCBI

141 

Yang Q, Chen D, Xiong F, Chen D, Liu C, Liu Y, Yu Q, Xiong J, Liu J, Li K, et al: A splicing mutation in VPS4B causes dentin dysplasia I. J Med Genet. 53:624–633. 2016. View Article : Google Scholar : PubMed/NCBI

142 

Bloch-Zupan A, Jamet X, Etard C, Laugel V, Muller J, Geoffroy V, Strauss JP, Pelletier V, Marion V, Poch O, et al: Homozygosity mapping and candidate prioritization identify mutations, missed by whole-exome sequencing, in SMOC2, causing major dental developmental defects. Am J Hum Genet. 89:773–781. 2011. View Article : Google Scholar : PubMed/NCBI

143 

Xiong F, Ji Z, Liu Y, Zhang Y, Hu L, Yang Q, Qiu Q, Zhao L, Chen D, Tian Z, et al: Mutation in SSUH2 causes autosomal-dominant dentin dysplasia type I. Hum Mutat. 38:95–104. 2017. View Article : Google Scholar : PubMed/NCBI

144 

Handa K, Saito M, Yamauchi M, Kiyono T, Sato S, Teranaka T and Sampath Narayanan A: Cementum matrix formation in vivo by cultured dental follicle cells. Bone. 31:606–611. 2002. View Article : Google Scholar : PubMed/NCBI

145 

Li Q, Lu F, Chen T, Zhang K, Lu Y, Li X, Wang Y, Liu L, Tian Q, Xiong F and Chen D: VPS4B mutation impairs the osteogenic differentiation of dental follicle cells derived from a patient with dentin dysplasia type I. Int J Oral Sci. 12:222020. View Article : Google Scholar : PubMed/NCBI

146 

Zegarelli EV, Kutscher AH, Applebaum E and Archard HO: Odontodysplasia. Oral Surg Oral Med Oral Pathol. 16:187–193. 1963. View Article : Google Scholar : PubMed/NCBI

147 

Crawford PJ and Aldred MJ: Regional odontodysplasia: A bibliography. J Oral Pathol Med. 18:251–263. 1989. View Article : Google Scholar : PubMed/NCBI

148 

Nijakowski K, Woś P and Surdacka A: Regional odontodysplasia: A systematic review of case reports. Int J Environ Res Public Health. 19:16832022. View Article : Google Scholar : PubMed/NCBI

149 

Alotaibi O, Alotaibi G and Alfawaz N: Regional odontodysplasia: An analysis of 161 cases from 1953 to 2017. Saudi Dent J. 31:306–310. 2019. View Article : Google Scholar : PubMed/NCBI

150 

Marques AC, Castro WH and do Carmo MA: Regional odontodysplasia: An unusual case with a conservative approach. Br Dent J. 186:522–524. 1999. View Article : Google Scholar : PubMed/NCBI

151 

Rushton MA: Odontodysplasia: ‘Ghost teeth’. Br Dent J. 119:109–113. 1965.PubMed/NCBI

152 

Carlos R, Contreras-Vidaurre E, Almeida OP, Silva KR, Abrahão PG, Miranda AM and Pires FR: Regional odontodysplasia: morphological, ultrastructural, and immunohistochemical features of the affected teeth, connective tissue, and odontogenic remnants. J Dent Child (Chic). 75:144–150. 2008.PubMed/NCBI

153 

Kerebel B, Kerebel LM, Heron D and Le Cabellec MT: Regional odontodysplasia: New histopathological data. J Biol Buccale. 17:121–128. 1989.PubMed/NCBI

154 

Kerebel LM and Kerebel B: Soft-tissue calcifications of the dental follicle in regional odontodysplasia: A structural and ultrastructural study. Oral Surg Oral Med Oral Pathol. 56:396–404. 1983. View Article : Google Scholar : PubMed/NCBI

155 

Barbería E, Sanz Coarasa A, Hernández A and Cardoso-Silva C: Regional odontodysplasia. A literature review and three case reports. Eur J Paediatr Dent. 13:161–166. 2012.PubMed/NCBI

156 

Mathew A, Dauravu LM, Reddy SN, Kumar KR and Venkataramana V: Ghost teeth: Regional odontodysplasia of maxillary first molar associated with eruption disorders in a 10-year-old girl. J Pharm Bioallied Sci. 7 (Suppl 2):S800–S803. 2015. View Article : Google Scholar : PubMed/NCBI

157 

Sapp JP and Gardner DG: Regional odontodysplasia: An ultrastructural and histochemical study of the soft-tissue calcifications. Oral Surg Oral Med Oral Pathol. 36:383–392. 1973. View Article : Google Scholar : PubMed/NCBI

158 

Gomez RS, Silva EC, Silva-Filho EC and Castro WH: Multiple calcifying hyperplastic dental follicles. J Oral Pathol Med. 27:333–334. 1998. View Article : Google Scholar : PubMed/NCBI

159 

Gardner DG and Radden B: Multiple calcifying hyperplastic dental follicles. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 79:603–606. 1995. View Article : Google Scholar : PubMed/NCBI

160 

Jamshidi S, Zargaran M and Mohtasham N: Multiple calcifying hyperplastic dental follicle (MCHDF): A case report. J Dent Res Dent Clin Dent Prospects. 7:174–176. 2013.PubMed/NCBI

161 

Rodrigues LG, da Silva VB, Carmelo JC, Khouri MS, Mendes PA and Manzi FR: An imaging perspective to multiple calcifying hyperplastic dental follicles-a report of three cases. Ann Maxillofac Surg. 12:227–230. 2022. View Article : Google Scholar : PubMed/NCBI

162 

Ulutürk H, Yücel E, Akinci HO, Calisan EB, Yildirim B and Gizli A: Multiple calcifying hyperplastic dental follicles. J Stomatol Oral Maxillofac Surg. 120:77–79. 2019. View Article : Google Scholar : PubMed/NCBI

163 

Davari D, Arzhang E and Soltani P: Multiple calcifying hyperplastic dental follicles: A case report. J Oral Maxillofac Surg. 77:757–761. 2019. View Article : Google Scholar : PubMed/NCBI

164 

Fukuta Y, Totsuka M, Takeda Y and Yamamoto H: Pathological study of the hyperplastic dental follicle. J Nihon Univ Sch Dent. 33:166–173. 1991. View Article : Google Scholar : PubMed/NCBI

165 

Cho YA, Yoon HJ, Hong SP, Lee JI and Hong SD: Multiple calcifying hyperplastic dental follicles: Comparison with hyperplastic dental follicles. J Oral Pathol Med. 40:243–249. 2011. View Article : Google Scholar : PubMed/NCBI

166 

Hemeryck L, Hermans F, Chappell J, Kobayashi H, Lambrechts D, Lambrichts I, Bronckaers A and Vankelecom H: Organoids from human tooth showing epithelial stemness phenotype and differentiation potential. Cell Mol Life Sci. 79:1532022. View Article : Google Scholar : PubMed/NCBI

167 

Hemeryck L, Lambrichts I, Bronckaers A and Vankelecom H: Establishing organoids from human tooth as a powerful tool toward mechanistic research and regenerative therapy. J Vis Exp. 182:e636712022.PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Chen J, Ying Y, Li H, Sha Z, Lin J, Wu Y, Wu Y, Zhang Y, Chen X, Zhang W, Zhang W, et al: Abnormal dental follicle cells: A crucial determinant in tooth eruption disorders (Review). Mol Med Rep 30: 168, 2024.
APA
Chen, J., Ying, Y., Li, H., Sha, Z., Lin, J., Wu, Y. ... Zhang, W. (2024). Abnormal dental follicle cells: A crucial determinant in tooth eruption disorders (Review). Molecular Medicine Reports, 30, 168. https://doi.org/10.3892/mmr.2024.13292
MLA
Chen, J., Ying, Y., Li, H., Sha, Z., Lin, J., Wu, Y., Wu, Y., Zhang, Y., Chen, X., Zhang, W."Abnormal dental follicle cells: A crucial determinant in tooth eruption disorders (Review)". Molecular Medicine Reports 30.3 (2024): 168.
Chicago
Chen, J., Ying, Y., Li, H., Sha, Z., Lin, J., Wu, Y., Wu, Y., Zhang, Y., Chen, X., Zhang, W."Abnormal dental follicle cells: A crucial determinant in tooth eruption disorders (Review)". Molecular Medicine Reports 30, no. 3 (2024): 168. https://doi.org/10.3892/mmr.2024.13292
Copy and paste a formatted citation
x
Spandidos Publications style
Chen J, Ying Y, Li H, Sha Z, Lin J, Wu Y, Wu Y, Zhang Y, Chen X, Zhang W, Zhang W, et al: Abnormal dental follicle cells: A crucial determinant in tooth eruption disorders (Review). Mol Med Rep 30: 168, 2024.
APA
Chen, J., Ying, Y., Li, H., Sha, Z., Lin, J., Wu, Y. ... Zhang, W. (2024). Abnormal dental follicle cells: A crucial determinant in tooth eruption disorders (Review). Molecular Medicine Reports, 30, 168. https://doi.org/10.3892/mmr.2024.13292
MLA
Chen, J., Ying, Y., Li, H., Sha, Z., Lin, J., Wu, Y., Wu, Y., Zhang, Y., Chen, X., Zhang, W."Abnormal dental follicle cells: A crucial determinant in tooth eruption disorders (Review)". Molecular Medicine Reports 30.3 (2024): 168.
Chicago
Chen, J., Ying, Y., Li, H., Sha, Z., Lin, J., Wu, Y., Wu, Y., Zhang, Y., Chen, X., Zhang, W."Abnormal dental follicle cells: A crucial determinant in tooth eruption disorders (Review)". Molecular Medicine Reports 30, no. 3 (2024): 168. https://doi.org/10.3892/mmr.2024.13292
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team