|
1
|
Al-Mallah MH, Sakr S and Al-Qunaibet A:
Cardiorespiratory fitness and cardiovascular disease prevention: An
update. Curr Atheroscler Rep. 20:12018. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Mensah GA, Fuster V and Roth GA: A
Heart-Healthy and Stroke-Free world: Using data to inform global
action. J Am Coll Cardiol. 82:2343–2349. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Dhande IS and Doris PA: Genomics and
inflammation in cardiovascular disease. Compr Physiol.
11:2433–2454. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Weber BN, Giles JT and Liao KP: Shared
inflammatory pathways of rheumatoid arthritis and atherosclerotic
cardiovascular disease. Nat Rev Rheumatol. 19:417–428. 2023.
View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Forteza MJ, Berg M, Edsfeldt A, Sun J,
Baumgartner R, Kareinen I, Casagrande FB, Hedin U, Zhang S,
Vuckovic I, et al: Pyruvate dehydrogenase kinase regulates vascular
inflammation in atherosclerosis and increases cardiovascular risk.
Cardiovasc Res. 119:1524–1536. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Chen R, Zhang H, Tang B, Luo Y, Yang Y,
Zhong X, Chen S, Xu X, Huang S and Liu C: Macrophages in
cardiovascular diseases: Molecular mechanisms and therapeutic
targets. Signal Transduct Target Ther. 9:1302024. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Wagenhauser MU, Mulorz J, Krott KJ,
Bosbach A, Feige T, Rhee YH, Chatterjee M, Petzold N, Böddeker C,
Ibing W, et al: Crosstalk of platelets with macrophages and
fibroblasts aggravates inflammation, aortic wall stiffening, and
osteopontin release in abdominal aortic aneurysm. Cardiovasc Res.
120:417–432. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Kinoshita D, Suzuki K, Yuki H, Niida T,
Fujimoto D, Minami Y, Dey D, Lee H, McNulty I, Ako J, et al:
Sex-Specific association between perivascular inflammation and
plaque vulnerability. Circ Cardiovasc Imaging. 17:e0161782024.
View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Ham HJ, Lee YS, Koo JK, Yun J, Son DJ, Han
SB and Hong JT: Inhibition of Amyloid-β (Aβ)-Induced cognitive
impairment and neuroinflammation in CHI3L1 knockout mice through
downregulation of ERK-PTX3 pathway. Int J Mol Sci. 25:55502024.
View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Kui L, Kim AD, Onyuru J, Hoffman HM and
Feldstein AE: BRP39 regulates neutrophil recruitment in NLRP3
Inflammasome-Induced liver inflammation. Cell Mol Gastroenterol
Hepatol. 17:481–497. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Ferrigno I, Verzellesi L, Ottone M,
Bonacini M, Rossi A, Besutti G, Bonelli E, Colla R, Facciolongo N,
Teopompi E, et al: CCL18, CHI3L1, ANG2, IL-6 systemic levels are
associated with the extent of lung damage and radiomic features in
SARS-CoV-2 infection. Inflamm Res. 73:515–530. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Song M, Zhang G, Shi H, Zhu E, Deng L and
Shen H: Serum YKL-40 in coronary heart disease: Linkage with
inflammatory cytokines, artery stenosis, and optimal cut-off value
for estimating major adverse cardiovascular events. Front
Cardiovasc Med. 10:12423392023. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Reilly CS, Borges AH, Baker JV, Safo SE,
Sharma S, Polizzotto MN, Pankow JS, Hu X, Sherman BT, Babiker AG,
et al: Investigation of causal effects of protein biomarkers on
cardiovascular disease in persons with HIV. J Infect Dis.
227:951–960. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Czestkowski W, Krzeminski L, Piotrowicz
MC, Mazur M, Pluta E, Andryianau G, Koralewski R, Matyszewski K,
Olejniczak S, Kowalski M, et al: Structure-Based discovery of
High-Affinity small molecule ligands and development of tool probes
to study the role of Chitinase-3-Like protein 1. J Med Chem.
67:3959–3985. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Junker N, Johansen JS, Hansen LT, Lund EL
and Kristjansen PE: Regulation of YKL-40 expression during
genotoxic or microenvironmental stress in human glioblastoma cells.
Cancer Sci. 96:183–190. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Zhao T, Su Z, Li Y, Zhang X and You Q:
Chitinase-3 like-protein-1 function and its role in diseases.
Signal Transduct Target Ther. 5:2012020. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Fusetti F, Pijning T, Kalk KH, Bos E and
Dijkstra BW: Crystal structure and carbohydrate-binding properties
of the human cartilage glycoprotein-39. J Biol Chem.
278:37753–37760. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Zhao H, Huang M and Jiang L: Potential
roles and future perspectives of Chitinase 3-like 1 in macrophage
polarization and the development of diseases. Int J Mol Sci.
24:161492023. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Coffman FD: Chitinase 3-Like-1 (CHI3L1): A
putative disease marker at the interface of proteomics and
glycomics. Crit Rev Clin Lab Sci. 45:531–562. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Suzuki K, Okawa K, Ohkura M, Kanaizumi T,
Kobayashi T, Takahashi K, Takei H, Otsuka M, Tabata E, Bauer PO and
Oyama F: Evolutionary insights into sequence modifications
governing chitin recognition and chitinase inactivity in YKL-40
(HC-gp39, CHI3L1). J Biol Chem. 300:1073652024. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Yu JE, Yeo IJ, Han SB, Yun J, Kim B, Yong
YJ, Lim YS, Kim TH, Son DJ and Hong JT: Significance of
chitinase-3-like protein 1 in the pathogenesis of inflammatory
diseases and cancer. Exp Mol Med. 56:1–18. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Laucyte-Cibulskiene A, Ward LJ, Ebert T,
Tosti G, Tucci C, Hernandez L, Kautzky-Willer A, Herrero MT, Norris
CM, Pilote L, et al: Role of GDF-15, YKL-40 and MMP 9 in patients
with end-stage kidney disease: Focus on sex-specific associations
with vascular outcomes and all-cause mortality. Biol Sex Differ.
12:502021. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Kwak EJ, Hong JY, Kim MN, Kim SY, Kim SH,
Park CO, Kim KW, Lee CG, Elias JA, Jee HM and Sohn MH: Chitinase
3-like 1 drives allergic skin inflammation via Th2 immunity and M2
macrophage activation. Clin Exp Allergy. 49:1464–1474. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Libreros S, Garcia-Areas R, Shibata Y,
Carrio R, Torroella-Kouri M and Iragavarapu-Charyulu V: Induction
of proinflammatory mediators by CHI3L1 is reduced by chitin
treatment: Decreased tumor metastasis in a breast cancer model. Int
J Cancer. 131:377–386. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Lee CG, Da Silva CA, Dela Cruz CS,
Ahangari F, Ma B, Kang MJ, He CH, Takyar S and Elias JA: Role of
chitin and chitinase/chitinase-like proteins in inflammation,
tissue remodeling, and injury. Annu Rev Physiol. 73:479–501. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Ling H and Recklies AD: The chitinase
3-like protein human cartilage glycoprotein 39 inhibits cellular
responses to the inflammatory cytokines interleukin-1 and tumour
necrosis factor-alpha. Biochem J. 380:651–659. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Recklies AD, Ling H, White C and Bernier
SM: Inflammatory cytokines induce production of CHI3L1 by articular
chondrocytes. J Biol Chem. 280:41213–41221. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Connolly K, Lehoux M, O'Rourke R, Assetta
B, Erdemir GA, Elias JA, Lee CG and Huang YA: Potential role of
chitinase-3-like protein 1 (CHI3L1/YKL-40) in neurodegeneration and
Alzheimer's disease. Alzheimers Dement. 19:9–24. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Cicognola C, Mattsson-Carlgren N, van
Westen D, Zetterberg H, Blennow K, Palmqvist S, Ahmadi K,
Strandberg O, Stomrud E, Janelidze S and Hansson O: Associations of
CSF PDGFRβ with aging, Blood-Brain barrier damage,
neuroinflammation, and Alzheimer disease pathologic changes.
Neurology. 101:e30–e39. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Yusuf S, Hawken S, Ounpuu S, Bautista L,
Franzosi MG, Commerford P, Lang CC, Rumboldt Z, Onen CL, Lisheng L,
et al: Obesity and the risk of myocardial infarction in 27,000
participants from 52 countries: A case-control study. Lancet.
366:1640–1649. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Laing SP, Swerdlow AJ, Slater SD, Burden
AC, Morris A, Waugh NR, Gatling W, Bingley PJ and Patterson CC:
Mortality from heart disease in a cohort of 23,000 patients with
insulin-treated diabetes. Diabetologia. 46:760–765. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Kwon Y, Kim JH, Ha EK, Jee HM, Baek HS,
Han MY and Jeong SJ: Serum YKL-40 levels are associated with the
atherogenic index of plasma in children. Mediators Inflamm.
2020:87139082020. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Kyrgios I, Galli-Tsinopoulou A, Stylianou
C, Papakonstantinou E, Arvanitidou M and Haidich AB: Elevated
circulating levels of the serum acute-phase protein YKL-40
(chitinase 3-like protein 1) are a marker of obesity and insulin
resistance in prepubertal children. Metabolism. 61:562–568. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Catalan V, Gomez-Ambrosi J, Rodriguez A,
Ramírez B, Rotellar F, Valentí V, Silva C, Gil MJ, Salvador J and
Frühbeck G: Increased circulating and visceral adipose tissue
expression levels of YKL-40 in obesity-associated type 2 diabetes
are related to inflammation: Impact of conventional weight loss and
gastric bypass. J Clin Endocrinol Metab. 96:200–209. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Nielsen AR, Erikstrup C, Johansen JS,
Fischer CP, Plomgaard P, Krogh-Madsen R, Taudorf S, Lindegaard B
and Pedersen BK: Plasma YKL-40: A BMI-independent marker of type 2
diabetes. Diabetes. 57:3078–3082. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Kim HM, Lee BW, Song YM, Kim WJ, Chang HJ,
Choi DH, Yu HT, Kang E, Cha BS and Lee HC: Potential association
between coronary artery disease and the inflammatory biomarker
YKL-40 in asymptomatic patients with type 2 diabetes mellitus.
Cardiovasc Diabetol. 11:842012. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Fisman EZ and Tenenbaum A: Adiponectin: A
manifold therapeutic target for metabolic syndrome, diabetes, and
coronary disease? Cardiovasc Diabetol. 13:1032014. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Aguilera E, Serra-Planas E, Granada ML,
Pellitero S, Reverter JL, Alonso N, Soldevila B, Mauricio D and
Puig-Domingo M: Relationship of YKL-40 and adiponectin and
subclinical atherosclerosis in asymptomatic patients with type 1
diabetes mellitus from a European Mediterranean population.
Cardiovasc Diabetol. 14:1212015. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Deng Y, Li G, Chang D and Su X: YKL-40 as
a novel biomarker in cardio-metabolic disorders and inflammatory
diseases. Clin Chim Acta. 511:40–46. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Perumalsamy S, Huri HZ, Abdullah BM,
Mazlan O, Wan Ahmad WA and Vethakkan S: Genetic markers of insulin
resistance and atherosclerosis in type 2 diabetes mellitus patients
with coronary artery disease. Metabolites. 13:4272023. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Sanchez-Madrid F and Sessa WC: Spotlight
on mechanisms of vascular inflammation. Cardiovasc Res. 86:171–173.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Haaversen AB, Brekke LK, Bakland G,
Rodevand E, Myklebust G and Diamantopoulos AP: Norwegian society of
rheumatology recommendations on diagnosis and treatment of patients
with giant cell arteritis. Front Med (Lausanne). 9:10826042022.
View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Graver JC, Jiemy WF, Altulea DHA, van
Sleen Y, Xu S, van der Geest KSM, Verstappen GMPJ, Heeringa P,
Abdulahad WH, Brouwer E, et al: Cytokine producing B-cells and
their capability to polarize macrophages in giant cell arteritis. J
Autoimmun. 140:1031112023. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
van Sleen Y, Jiemy WF, Pringle S, van der
Geest KSM, Abdulahad WH, Sandovici M, Brouwer E, Heeringa P and
Boots AMH: A distinct macrophage subset mediating tissue
destruction and neovascularization in giant cell arteritis:
Implication of the YKL-40/Interleukin-13 receptor α 2 axis.
Arthritis Rheumatol. 73:2327–2337. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Haque K and Bhargava P: Abdominal aortic
aneurysm. Am Fam Physician. 106:165–172. 2022.PubMed/NCBI
|
|
46
|
Maegdefessel L, Spin JM, Raaz U, Eken SM,
Toh R, Azuma J, Adam M, Nakagami F, Heymann HM, Chernogubova E, et
al: miR-24 limits aortic vascular inflammation and murine abdominal
aneurysm development. Nat Commun. 5:52142014. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Kong P, Cui ZY, Huang XF, Zhang DD, Guo RJ
and Han M: Inflammation and atherosclerosis: Signaling pathways and
therapeutic intervention. Signal Transduct Target Ther. 7:1312022.
View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Liang G, Wang S, Shao J, Jin YJ, Xu L, Yan
Y, Günther S, Wang L and Offermanns S: Tenascin-X Mediates
Flow-Induced suppression of EndMT and atherosclerosis. Circ Res.
130:1647–1659. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Michelsen AE, Rathcke CN, Skjelland M,
Holm S, Ranheim T, Krohg-Sørensen K, Klingvall MF, Brosstad F, Oie
E, Vestergaard H, et al: Increased YKL-40 expression in patients
with carotid atherosclerosis. Atherosclerosis. 211:589–595. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Sciborski K, Kuliczkowski W, Karolko B,
Bednarczyk D, Protasiewicz M, Mysiak A and Negrusz-Kawecka M:
Plasma YKL-40 levels correlate with the severity of coronary
atherosclerosis assessed with the SYNTAX score. Pol Arch Intern
Med. 128:644–648. 2018.PubMed/NCBI
|
|
51
|
Xu Q, Sun L, Wang Y, Wang R, Jia Y, Guo D,
Shi M, Yang P, Zhang Y and Zhu Z: Causal effects of YKL-40 on
ischemic stroke and its subtypes: A 2-Sample mendelian
randomization study. J Am Heart Assoc. 12:e0290002023. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Kjaergaard AD, Bojesen SE, Johansen JS and
Nordestgaard BG: Elevated plasma YKL-40 levels and ischemic stroke
in the general population. Ann Neurol. 68:672–680. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Ma WH, Wang XL, Du YM, Wang YB, Zhang Y,
Wei DE, Guo LL and Bu PL: Association between human cartilage
glycoprotein 39 (YKL-40) and arterial stiffness in essential
hypertension. BMC Cardiovasc Disord. 12:352012. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Schroder J, Jakobsen JC, Winkel P, Hilden
J, Jensen GB, Sajadieh A, Larsson A, Ärnlöv J, Harutyunyan M,
Johansen JS, et al: Prognosis and reclassification by YKL-40 in
stable coronary artery disease. J Am Heart Assoc. 9:e0146342020.
View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Wu S, Hsu LA, Cheng ST, Teng MS, Yeh CH,
Sun YC, Huang HL and Ko YL: Circulating YKL-40 level, but not
CHI3L1 gene variants, is associated with atherosclerosis-related
quantitative traits and the risk of peripheral artery disease. Int
J Mol Sci. 15:22421–22437. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Wallentin L, Eriksson N, Olszowka M,
Grammer TB, Hagström E, Held C, Kleber ME, Koenig W, März W,
Stewart RAH, et al: Plasma proteins associated with cardiovascular
death in patients with chronic coronary heart disease: A
retrospective study. PLoS Med. 18:e10035132021. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Xu T, Zhong C, Wang A, Guo Z, Bu X, Zhou
Y, Tian Y, HuangFu X, Zhu Z and Zhang Y: YKL-40 is a novel
biomarker for predicting hypertension incidence among
prehypertensive subjects: A population-based nested case-control
study in China. Clin Chim Acta. 472:146–150. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Çetin M, Erdoğan T, Kırış T, Özer S,
Çinier G, Emlek N, Durak H and Şatıroğlu Ö: Elevated serum YKL40
level is a predictor of MACE during the long-term follow up in
hypertensive patients. Clin Exp Hypertens. 42:271–274. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Arain F, Abraityte A, Bogdanova M, Solberg
OG, Michelsen AE, Lekva T, Aakhus S, Holm S, Halvorsen B, Finsen
AV, et al: YKL-40 (Chitinase-3-Like protein 1) serum levels in
aortic stenosis. Circ Heart Fail. 13:e0066432020. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Hobaus C, Tscharre M, Herz CT, Pesau G,
Wrba T, Koppensteiner R and Schernthaner GH: YKL-40 levels increase
with declining ankle-brachial index and are associated with
long-term cardiovascular mortality in peripheral arterial disease
patients. Atherosclerosis. 274:152–156. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Chen XL, Li Q, Huang WS, Lin YS, Xue J,
Wang B, Jin KL and Shao B: Serum YKL-40, a prognostic marker in
patients with large-artery atherosclerotic stroke. Acta Neurol
Scand. 136:97–102. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Wang Q, Shen H, Min J, Gao Y, Liu K, Xi W,
Yang J, Yin L, Xu J, Xiao J and Wang Z: YKL-40 is highly expressed
in the epicardial adipose tissue of patients with atrial
fibrillation and associated with atrial fibrosis. J Transl Med.
16:2292018. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Michelakakis N, Neroutsos GJ, Perpinia AS,
Farmakis D, Voukouti EG, Karavidas AJ, Parissis J, Georgiakaki MT
and Pyrgakis VN: Chitinase-3-like protein-1 (YKL-40) before and
after therapy in supraventricular arrhythmias. J Cardiovasc Med
(Hagerstown). 18:650–654. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Krečak I, Gverić-Krečak V, Lapić I,
Rončević P, Gulin J, Fumić K, Krečak F, Holik H and Duraković N:
Circulating YKL-40 in Philadelphia-negative myeloproliferative
neoplasms. Acta Clin Belg. 76:32–39. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Xing Y, Guo J, Gai L, Liu B and Luo D:
Serum YKL-40 is associated with the severity of coronary artery
disease and hypertension. Asian J Surg. 43:1121–1122. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Song CL, Bin L, Diao HY, Wang JH, Shi YF,
Lu Y, Wang G, Guo ZY, Li YX, Liu JG, et al: Diagnostic value of
serum YKL-40 level for coronary artery disease: A Meta-Analysis. J
Clin Lab Anal. 30:23–31. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Zheng JL, Lu L, Hu J, Zhang RY, Zhang Q,
Chen QJ and Shen WF: Increased serum YKL-40 and C-reactive protein
levels are associated with angiographic lesion progression in
patients with coronary artery disease. Atherosclerosis.
210:590–595. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Sun X, Nakajima E, Norbrun C, Sorkhdini P,
Yang AX, Yang D, Ventetuolo CE, Braza J, Vang A, Aliotta J, et al:
Chitinase 3 like 1 contributes to the development of pulmonary
vascular remodeling in pulmonary hypertension. JCI Insight.
7:e1595782022. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Jung YY, Kim KC, Park MH, Seo Y, Park H,
Park MH, Chang J, Hwang DY, Han SB, Kim S, et al: Atherosclerosis
is exacerbated by chitinase-3-like-1 in amyloid precursor protein
transgenic mice. Theranostics. 8:749–766. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Rehli M, Niller HH, Ammon C, Langmann S,
Schwarzfischer L, Andreesen R and Krause SW: Transcriptional
regulation of CHI3L1, a marker gene for late stages of macrophage
differentiation. J Biol Chem. 278:44058–44067. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Thomas C, Mandilaras G, Rabenhorst D,
Oberhoffer FS, Fischer M, Haas NA and Fernandez Rodriguez S: Vagal
asystoles in a boy with Prader-Willi syndrome. Pediatrics.
152:e20220582162023. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Hope S, Naerland T, Olav Kolset S, Ueland
T, Andreassen OA and Nordstrom M: Systemic immune profile in
Prader-Willi syndrome: Elevated matrix metalloproteinase and
myeloperoxidase and reduced macrophage inhibitory factor. Orphanet
J Rare Dis. 18:1852023. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Libby P, Buring JE, Badimon L, Hansson GK,
Deanfield J, Bittencourt MS, Tokgözoğlu L and Lewis EF:
Atherosclerosis. Nat Rev Dis Primers. 5:562019. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Boot RG, van Achterberg TA, van Aken BE,
Renkema GH, Jacobs MJ, Aerts JM and de Vries CJ: Strong induction
of members of the chitinase family of proteins in atherosclerosis:
Chitotriosidase and human cartilage gp-39 expressed in lesion
macrophages. Arterioscler Thromb Vasc Biol. 19:687–694. 1999.
View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Gong Z, Xing S, Zheng F and Xing Q:
Increased expression of chitinase 3-like 1 in aorta of patients
with atherosclerosis and suppression of atherosclerosis in
apolipoprotein E-knockout mice by chitinase 3-like 1 gene
silencing. Mediators Inflamm. 2014:9054632014. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Huan W, Yandong L, Chao W, Sili Z, Jun B,
Mingfang L, Yu C and Lefeng Q: YKL-40 aggravates early-stage
atherosclerosis by inhibiting macrophage apoptosis in an
Aven-dependent Way. Front Cell Dev Biol. 9:7527732021. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
de Lemos JA, Morrow DA, Sabatine MS,
Murphy SA, Gibson CM, Antman EM, McCabe CH, Cannon CP and Braunwald
E: Association between plasma levels of monocyte chemoattractant
protein-1 and long-term clinical outcomes in patients with acute
coronary syndromes. Circulation. 107:690–695. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Ahangari F, Sood A, Ma B, Takyar S,
Schuyler M, Qualls C, Dela Cruz CS, Chupp GL, Lee CG and Elias JA:
Chitinase 3-like-1 regulates both visceral fat accumulation and
asthma-like Th2 inflammation. Am J Respir Crit Care Med.
191:746–757. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Hempen M, Kopp HP, Elhenicky M, Höbaus C,
Brix JM, Koppensteiner R, Schernthaner G and Schernthaner GH:
YKL-40 is elevated in morbidly obese patients and declines after
weight loss. Obes Surg. 19:1557–1563. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Kopp HP, Kopp CW, Festa A, Krzyzanowska K,
Kriwanek S, Minar E, Roka R and Schernthaner G: Impact of weight
loss on inflammatory proteins and their association with the
insulin resistance syndrome in morbidly obese patients.
Arterioscler Thromb Vasc Biol. 23:1042–1047. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Malinda KM, Ponce L, Kleinman HK,
Shackelton LM and Millis AJ: Gp38k, a protein synthesized by
vascular smooth muscle cells, stimulates directional migration of
human umbilical vein endothelial cells. Exp Cell Res. 250:168–173.
1999. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Jung TW, Park HS, Choi GH, Kim D, Jeong JH
and Lee T: Chitinase-3-like protein 1 ameliorates atherosclerotic
responses via PPARdelta-mediated suppression of inflammation and ER
stress. J Cell Biochem. 119:6795–6805. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Zhang H, Zhou W, Cao C, Zhang W, Liu G and
Zhang J: Amelioration of atherosclerosis in apolipoprotein
E-deficient mice by combined RNA interference of
lipoprotein-associated phospholipase A2 and YKL-40. PLoS One.
13:e02027972018. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Ngernyuang N, Yan W, Schwartz LM, Oh D,
Liu YB, Chen H and Shao R: A heparin binding motif rich in arginine
and lysine is the functional domain of YKL-40. Neoplasia.
20:182–192. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Shao R, Hamel K, Petersen L, Cao QJ,
Arenas RB, Bigelow C, Bentley B and Yan W: YKL-40, a secreted
glycoprotein, promotes tumor angiogenesis. Oncogene. 28:4456–4468.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Francescone R, Ngernyuang N, Yan W,
Bentley B and Shao R: Tumor-derived mural-like cells coordinate
with endothelial cells: Role of YKL-40 in mural cell-mediated
angiogenesis. Oncogene. 33:2110–2122. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Faibish M, Francescone R, Bentley B, Yan W
and Shao R: A YKL-40-neutralizing antibody blocks tumor
angiogenesis and progression: A potential therapeutic agent in
cancers. Mol Cancer Ther. 10:742–751. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Henderson NC, Rieder F and Wynn TA:
Fibrosis: From mechanisms to medicines. Nature. 587:555–566. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Recklies AD, White C and Ling H: The
chitinase 3-like protein human cartilage glycoprotein 39 (HC-gp39)
stimulates proliferation of human connective-tissue cells and
activates both extracellular signal-regulated kinase- and protein
kinase B-mediated signalling pathways. Biochem J. 365:119–126.
2002. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Theocharidis G, Thomas BE, Sarkar D, Mumme
HL, Pilcher WJR, Dwivedi B, Sandoval-Schaefer T, Sîrbulescu RF,
Kafanas A, Mezghani I, et al: Single cell transcriptomic landscape
of diabetic foot ulcers. Nat Commun. 13:1812022. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Sun Y, Shan X, Guo J, Liu X and Ma D:
CHI3L1 promotes myocardial fibrosis via regulating lncRNA
TUG1/miR-495-3p/ETS1 axis. Apoptosis. 28:1436–1451. 2023.
View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Shackelton LM, Mann DM and Millis AJ:
Identification of a 38-kDa heparin-binding glycoprotein (gp38k) in
differentiating vascular smooth muscle cells as a member of a group
of proteins associated with tissue remodeling. J Biol Chem.
270:13076–13083. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Bara I, Ozier A, Girodet PO, Carvalho G,
Cattiaux J, Begueret H, Thumerel M, Ousova O, Kolbeck R, Coyle AJ,
et al: Role of YKL-40 in bronchial smooth muscle remodeling in
asthma. Am J Respir Crit Care Med. 185:715–722. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Tang H, Sun Y, Shi Z, Huang H, Fang Z,
Chen J, Xiu Q and Li B: YKL-40 induces IL-8 expression from
bronchial epithelium via MAPK (JNK and ERK) and NF-κB pathways,
causing bronchial smooth muscle proliferation and migration. J
Immunol. 190:438–446. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Lambert J and Jorgensen HF: Vascular
smooth muscle cell phenotypic switching and plaque stability: A
role for CHI3L1. Cardiovasc Res. 117:2691–2693. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Tsantilas P, Lao S, Wu Z, Eberhard A,
Winski G, Vaerst M, Nanda V, Wang Y, Kojima Y, Ye J, et al:
Chitinase 3 like 1 is a regulator of smooth muscle cell physiology
and atherosclerotic lesion stability. Cardiovasc Res.
117:2767–2780. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Mulorz J, Spin JM, Mulorz P, Wagenhäuser
MU, Deng A, Mattern K, Rhee YH, Toyama K, Adam M, Schelzig H, et
al: E-cigarette exposure augments murine abdominal aortic aneurysm
development: Role of Chil1. Cardiovasc Res. 119:867–878. 2023.
View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Henry A, Gordillo-Maranon M, Finan C,
Schmidt AF, Ferreira JP, Karra R, Sundström J, Lind L, Ärnlöv J,
Zannad F, et al: Therapeutic targets for heart failure identified
using proteomics and mendelian randomization. Circulation.
145:1205–1217. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Sadeghi M, Dehnavi S, Asadirad A, Xu S,
Majeed M, Jamialahmadi T, Johnston TP and Sahebkar A: Curcumin and
chemokines: Mechanism of action and therapeutic potential in
inflammatory diseases. Inflammopharmacology. 31:1069–1093. 2023.
View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Kawada M, Seno H, Kanda K, Nakanishi Y,
Akitake R, Komekado H, Kawada K, Sakai Y, Mizoguchi E and Chiba T:
Chitinase 3-like 1 promotes macrophage recruitment and angiogenesis
in colorectal cancer. Oncogene. 31:3111–3123. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Libreros S, Garcia-Areas R, Keating P,
Carrio R and Iragavarapu-Charyulu VL: Exploring the role of CHI3L1
in ‘pre-metastatic’ lungs of mammary tumor-bearing mice. Front
Physiol. 4:3922013. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Janelidze S, Mattsson N, Stomrud E,
Lindberg O, Palmqvist S, Zetterberg H, Blennow K and Hansson O: CSF
biomarkers of neuroinflammation and cerebrovascular dysfunction in
early Alzheimer disease. Neurology. 91:e867–e877. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Kocabas R: Effect of Vitamin D on YKL-40:
Rat hypercholesterolemia model. Korean Circ J. 53:92–102. 2023.
View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Francescone RA, Scully S, Faibish M,
Taylor SL, Oh D, Moral L, Yan W, Bentley B and Shao R: Role of
YKL-40 in the angiogenesis, radioresistance, and progression of
glioblastoma. J Biol Chem. 286:15332–15343. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Kognole AA and Payne CM: Inhibition of
mammalian glycoprotein YKL-40: identification of the physiological
ligand. J Biol Chem. 292:2624–2636. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Henein MY, Vancheri S, Longo G and
Vancheri F: The role of inflammation in cardiovascular disease. Int
J Mol Sci. 23:129062022. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Chen Y, Zhang S, Wang Q and Zhang X:
Tumor-recruited M2 macrophages promote gastric and breast cancer
metastasis via M2 macrophage-secreted CHI3L1 protein. J Hematol
Oncol. 10:362017. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Lee CG, Hartl D, Lee GR, Koller B,
Matsuura H, Da Silva CA, Sohn MH, Cohn L, Homer RJ, Kozhich AA, et
al: Role of breast regression protein 39 (BRP-39)/chitinase
3-like-1 in Th2 and IL-13-induced tissue responses and apoptosis. J
Exp Med. 206:1149–1166. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Olejarz W, Lacheta D and
Kubiak-Tomaszewska G: Matrix metalloproteinases as biomarkers of
atherosclerotic plaque instability. Int J Mol Sci. 21:39462020.
View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Liu SF, Nambiar Veetil N, Li Q, Kucherenko
MM, Knosalla C and Kuebler WM: Pulmonary hypertension: Linking
inflammation and pulmonary arterial stiffening. Front Immunol.
13:9592092022. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Jiao Y, Qin Y, Zhang Z, Zhang H, Liu H and
Li C: Early identification of carotid vulnerable plaque in
asymptomatic patients. BMC Cardiovasc Disord. 20:4292020.
View Article : Google Scholar : PubMed/NCBI
|