1
|
Konarski W, Poboży T, Śliwczyński A,
Kotela I, Krakowiak J, Hordowicz M and Kotela A: Avascular necrosis
of femoral head-overview and current state of the art. Int J
Environ Res Public Health. 19:73482022. View Article : Google Scholar : PubMed/NCBI
|
2
|
Rajpura A, Wright AC and Board TN: Medical
management of osteonecrosis of the hip: A review. Hip Int.
21:385–392. 2011. View Article : Google Scholar : PubMed/NCBI
|
3
|
Sai Krishna MLV, Kar S, Kumar R, Singh H,
Mittal R and Digge VK: The role of conservative management in the
avascular necrosis of the femoral head: A review of systematic
reviews. Indian J Orthop. 57:410–420. 2023.PubMed/NCBI
|
4
|
Li Z, Wang W, Xu H, Ning Y, Fang W, Liao
W, Zou J, Yang Y and Shao N: Effects of altered CXCL12/CXCR4 axis
on BMP2/Smad/Runx2/Osterix axis and osteogenic gene expressions
during osteogenic differentiation of MSCs. Am J Transl Res.
9:1680–1693. 2017.PubMed/NCBI
|
5
|
Shapiro F, Connolly S, Zurakowski D,
Menezes N, Olear E, Jimenez M, Flynn E and Jaramillo D: Femoral
head deformation and repair following induction of ischemic
necrosis: A histologic and magnetic resonance imaging study in the
piglet. J Bone Joint Surg Am. 91:2903–2914. 2009. View Article : Google Scholar : PubMed/NCBI
|
6
|
Xu N, Liu H, Qu F, Fan J, Mao K, Yin Y,
Liu J, Geng Z and Wang Y: Hypoxia inhibits the differentiation of
mesenchymal stem cells into osteoblasts by activation of Notch
signaling. Exp Mol Pathol. 94:33–39. 2013. View Article : Google Scholar : PubMed/NCBI
|
7
|
Benjamin S, Sheyn D, Ben-David S, Oh A,
Kallai I, Li N, Gazit D and Gazit Z: Oxygenated environment
enhances both stem cell survival and osteogenic differentiation.
Tissue Eng Part A. 19:748–758. 2013. View Article : Google Scholar : PubMed/NCBI
|
8
|
Liu K, Ge H, Liu C, Jiang Y, Yu Y and Zhou
Z: Notch-RBPJ pathway for the differentiation of bone marrow
mesenchymal stem cells in femoral head necrosis. Int J Mol Sci.
24:62952023. View Article : Google Scholar : PubMed/NCBI
|
9
|
Wei B, Sun C, Wan H, Shou Q, Han B, Sheng
M, Li L and Kai G: Bioactive components and molecular mechanisms of
Salvia miltiorrhiza Bunge in promoting blood circulation to
remove blood stasis. J Ethnopharmacol. 317:1166972023. View Article : Google Scholar : PubMed/NCBI
|
10
|
Sun K, Xue Y, Zhang X, Li X, Zhao J, Xu X,
Zhang X and Yang F: Tanshinone I alleviates steroid-induced
osteonecrosis of femoral heads and promotes angiogenesis: In vivo
and in vitro studies. J Orthop Surg Res. 18:4742023. View Article : Google Scholar : PubMed/NCBI
|
11
|
Wu Y, Zhang C, Wu J, Han Y and Wu C:
Angiogenesis and bone regeneration by mesenchymal stem cell
transplantation with danshen in a rabbit model of avascular
necrotic femoral head. Exp Ther Med. 18:163–171. 2019.PubMed/NCBI
|
12
|
Gao S, Liu Z, Li H, Little PJ, Liu P and
Xu S: Cardiovascular actions and therapeutic potential of
tanshinone IIA. Atherosclerosis. 220:3–10. 2012. View Article : Google Scholar : PubMed/NCBI
|
13
|
Xie J, Wang H, Song T, Wang Z, Li F, Ma J,
Chen J, Nan Y, Yi H and Wang W: Tanshinone IIA and astragaloside IV
promote the migration of mesenchymal stem cells by up-regulation of
CXCR4. Protoplasma. 250:521–530. 2013. View Article : Google Scholar : PubMed/NCBI
|
14
|
Yuan P, Qin HY, Wei JY, Chen G and Li X:
Proteomics reveals the potential mechanism of Tanshinone IIA in
promoting the ex vivo expansion of human bone marrow mesenchymal
stem cells. Regen Ther. 21:560–573. 2022. View Article : Google Scholar : PubMed/NCBI
|
15
|
Liu X, Niu Y, Xie W, Wei D and Du Q:
Tanshinone IIA promotes osteogenic differentiation of human
periodontal ligament stem cells via ERK1/2-dependent Runx2
induction. Am J Transl Res. 11:340–350. 2019.PubMed/NCBI
|
16
|
Kim HJ and Kim SH: Tanshinone IIA enhances
BMP-2-stimulated commitment of C2C12 cells into osteoblasts via p38
activation. Amino Acids. 39:1217–1226. 2010. View Article : Google Scholar : PubMed/NCBI
|
17
|
Abbuehl JP, Tatarova Z, Held W and
Huelsken J: Long-term engraftment of primary bone marrow stromal
cells repairs niche damage and improves hematopoietic stem cell
transplantation. Cell Stem Cell. 21:241–255.e6. 2017. View Article : Google Scholar : PubMed/NCBI
|
18
|
Davaapil H, McNamara M, Granata A, Macrae
RGC, Hirano M, Fitzek M, Aragon-Martin JA, Child A, Smith DM and
Sinha S: A phenotypic screen of Marfan syndrome iPSC-derived
vascular smooth muscle cells uncovers GSK3β as a new target. Stem
Cell Rep. 18:555–569. 2023. View Article : Google Scholar : PubMed/NCBI
|
19
|
Chiang J and Martinez-Agosto JA: Effects
of mTOR inhibitors on components of the salvador-warts-hippo
pathway. Cells. 1:886–904. 2012. View Article : Google Scholar : PubMed/NCBI
|
20
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(−Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Reggio A, Rosina M, Palma A, Cerquone
Perpetuini A, Petrilli LL, Gargioli C, Fuoco C, Micarelli E,
Giuliani G, Cerretani M, et al: Adipogenesis of skeletal muscle
fibro/adipogenic progenitors is affected by the
WNT5a/GSK3/β-catenin axis. Cell Death Differ. 27:2921–2941. 2020.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Li B and Dewey CN: RSEM: Accurate
transcript quantification from RNA-Seq data with or without a
reference genome. BMC Bioinformatics. 12:3232011. View Article : Google Scholar : PubMed/NCBI
|
23
|
Wang L, Feng Z, Wang X, Wang X and Zhang
X: DEGseq: An R package for identifying differentially expressed
genes from RNA-seq data. Bioinformatics. 26:136–138. 2010.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Xie C, Mao X, Huang J, Ding Y, Wu J, Dong
S, Kong L, Gao G, Li CY and Wei L: KOBAS 2.0: A web server for
annotation and identification of enriched pathways and diseases.
Nucleic Acids Res. 39((Web Server Issue)): W316–W322. 2011.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Guo W, Flanagan J, Jasuja R, Kirkland J,
Jiang L and Bhasin S: The effects of myostatin on adipogenic
differentiation of human bone marrow-derived mesenchymal stem cells
are mediated through cross-communication between Smad3 and
Wnt/beta-catenin signaling pathways. J Biol Chem. 283:9136–9145.
2008. View Article : Google Scholar : PubMed/NCBI
|
26
|
Tsurutani Y, Fujimoto M, Takemoto M,
Irisuna H, Koshizaka M, Onishi S, Ishikawa T, Mezawa M, He P, Honjo
S, et al: The roles of transforming growth factor-β and Smad3
signaling in adipocyte differentiation and obesity. Biochem Biophys
Res Commun. 407:68–73. 2011. View Article : Google Scholar : PubMed/NCBI
|
27
|
Kim YJ, Hwang SJ, Bae YC and Jung JS:
MiR-21 regulates adipogenic differentiation through the modulation
of TGF-beta signaling in mesenchymal stem cells derived from human
adipose tissue. Stem Cells. 27:3093–3102. 2009. View Article : Google Scholar : PubMed/NCBI
|
28
|
Cao H, Shi K, Long J, Liu Y, Li L, Ye T,
Huang C, Lai Y, Bai X, Qin L and Wang X: PDGF-BB prevents
destructive repair and promotes reparative osteogenesis of
steroid-associated osteonecrosis of the femoral head in rabbits.
Bone. 167:1166452023. View Article : Google Scholar : PubMed/NCBI
|
29
|
Kang H, Yang S and Lee J:
Tauroursodeoxycholic acid enhances osteogenic differentiation
through EGFR/p-Akt/CREB1 pathway in mesenchymal stem cells. Cells.
12:14632023. View Article : Google Scholar : PubMed/NCBI
|
30
|
Gao B, Deng R, Chai Y, Chen H, Hu B, Wang
X, Zhu S, Cao Y, Ni S, Wan M, et al: Macrophage-lineage TRAP+ cells
recruit periosteum-derived cells for periosteal osteogenesis and
regeneration. J Clin Invest. 129:2578–2594. 2019. View Article : Google Scholar : PubMed/NCBI
|
31
|
Baker N, Sohn J and Tuan RS: Promotion of
human mesenchymal stem cell osteogenesis by PI3-kinase/Akt
signaling, and the influence of caveolin-1/cholesterol homeostasis.
Stem Cell Res Ther. 6:2382015. View Article : Google Scholar : PubMed/NCBI
|
32
|
Han J, Chai Y, Zhang XY, Chen F, Xu ZW,
Feng Z, Yan Q, Wen SB and Wu YK: Gujiansan ameliorates avascular
necrosis of the femoral head by regulating autophagy via the
HIF-1α/BNIP3 pathway. Evid Based Complement Alternat Med.
2021:66830072021. View Article : Google Scholar : PubMed/NCBI
|
33
|
Huang Z, Fu F, Ye H, Gao H, Tan B, Wang R,
Lin N, Qin L and Chen W: Chinese herbal Huo-Gu formula for the
treatment of steroid-associated osteonecrosis of femoral head: A
14-year follow-up of convalescent SARS patients. J Orthop Translat.
23:122–131. 2020. View Article : Google Scholar : PubMed/NCBI
|
34
|
Li ZR, Cheng LM, Wang KZ, Yang NP, Yang
SH, He W, Wang YS, Wang ZM, Yang P, Liu XZ, et al: Herbal Fufang
Xian Ling Gu Bao prevents corticosteroid-induced osteonecrosis of
the femoral head-A first multicentre, randomised, double-blind,
placebo-controlled clinical trial. J Orthop Translat. 12:36–44.
2017. View Article : Google Scholar : PubMed/NCBI
|
35
|
Li J, He C, Tong W, Zou Y, Li D, Zhang C
and Xu W: Tanshinone IIA blocks dexamethasone-induced apoptosis in
osteoblasts through inhibiting Nox4-derived ROS production. Int J
Clin Exp Pathol. 8:13695–13706. 2015.PubMed/NCBI
|
36
|
Du K and Montminy M: CREB is a regulatory
target for the protein kinase Akt/PKB. J Biol Chem.
273:32377–32379. 1998. View Article : Google Scholar : PubMed/NCBI
|
37
|
Tzavlaki K and Moustakas A: TGF-β
signaling. Biomolecules. 10:4872020. View Article : Google Scholar : PubMed/NCBI
|