|
1
|
Gergianaki I, Fanouriakis A, Repa A,
Tzanakakis M, Adamichou C, Pompieri A, Spirou G, Bertsias A,
Kabouraki E, Tzanakis I, et al: Epidemiology and burden of systemic
lupus erythematosus in a Southern European population: Data from
the community-based lupus registry of Crete, Greece. Ann Rheum Dis.
76:1992–2000. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Fanouriakis A, Tziolos N, Bertsias G and
Boumpas DT: Update οn the diagnosis and management of systemic
lupus erythematosus. Ann Rheum Dis. 80:14–25. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Fang Q, Li T, Chen P, Wu Y, Wang T, Mo L,
Ou J and Nandakumar KS: Comparative Analysis on Abnormal methylome
of differentially expressed genes and disease pathways in the
immune cells of RA and SLE. Front Immunol. 12:6680072021.
View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Bentham J, Morris DL, Graham DSC, Pinder
CL, Tombleson P, Behrens TW, Martín J, Fairfax BP, Knight JC, Chen
L, et al: Genetic association analyses implicate aberrant
regulation of innate and adaptive immunity genes in the
pathogenesis of systemic lupus erythematosus. Nat Genet.
47:1457–1464. 2015. View
Article : Google Scholar : PubMed/NCBI
|
|
5
|
Fava A and Petri M: Systemic lupus
erythematosus: Diagnosis and clinical management. J Autoimmun.
96:1–13. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Fanouriakis A, Kostopoulou M, Alunno A,
Aringer M, Bajema I, Boletis JN, Cervera R, Doria A, Gordon C,
Govoni M, et al: 2019 update of the EULAR recommendations for the
management of systemic lupus erythematosus. Ann Rheum Dis.
78:736–745. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Ordi-Ros J, Sáez-Comet L, Pérez-Conesa M,
Vidal X, Mitjavila F, Castro Salomó A, Cuquet Pedragosa J,
Ortiz-Santamaria V, Mauri Plana M and Cortés-Hernández J:
Enteric-coated mycophenolate sodium versus azathioprine in patients
with active systemic lupus erythematosus: A randomised clinical
trial. Ann Rheum Dis. 76:1575–1582. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Navarra SV, Guzmán RM, Gallacher AE, Hall
S, Levy RA, Jimenez RE, Li EK, Thomas M, Kim HY, León MG, et al:
Efficacy and safety of belimumab in patients with active systemic
lupus erythematosus: A randomised, placebo-controlled, phase 3
trial. Lancet. 377:721–731. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Balasubramanian A, Wade SW, Adler RA, Lin
CJF, Maricic M, O'Malley CD, Saag K and Curtis JR: Glucocorticoid
exposure and fracture risk in patients with new-onset rheumatoid
arthritis. Osteoporos Int. 27:3239–3249. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Singh BK and Singh S: Systemic lupus
erythematosus and infections. Reumatismo. 72:154–169. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Shi H, Gudjonsson JE and Kahlenberg JM:
Treatment of cutaneous lupus erythematosus: Current approaches and
future strategies. Curr Opin Rheumatol. 32:208–214. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Cardile V, Chillemi R, Lombardo L, Sciuto
S, Spatafora C and Tringali C: Antiproliferative activity of
methylated analogues of E- and Z-resveratrol. Z Naturforsch C J
Biosci. 62:189–195. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Weiskirchen S and Weiskirchen R:
Resveratrol: How much wine do you have to drink to stay healthy?
Adv Nutr. 7:706–718. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Raj P, Thandapilly SJ, Wigle J, Zieroth S
and Netticadan T: A comprehensive analysis of the efficacy of
resveratrol in atherosclerotic cardiovascular disease, myocardial
infarction and heart failure. Molecules. 26:66002021. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Švajger U and Jeras M: Anti-inflammatory
effects of resveratrol and its potential use in therapy of
immune-mediated diseases. Int Rev Immunol. 31:202–222. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Yang Y, Paik JH, Cho D, Cho JA and Kim CW:
Resveratrol induces the suppression of tumor-derived CD4+CD25+
regulatory T cells. Int Immunopharmacol. 8:542–547. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Malaguarnera L: Influence of resveratrol
on the immune response. Nutrients. 11:9462019. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Jhou JP, Chen SJ, Huang HY, Lin WW, Huang
DY and Tzeng SJ: Upregulation of FcγRIIB by resveratrol via NF-κB
activation reduces B-cell numbers and ameliorates lupus. Exp Mol
Med. 49:e3812017. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Oliveira ALB, Monteiro VVS,
Navegantes-Lima KC, Reis JF, Gomes RS, Rodrigues DVS, Gaspar SLF
and Monteiro MC: Resveratrol role in autoimmune disease-a
mini-review. Nutrients. 9:13062017. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Fu Y, Yan M, Xie C, Hu J, Zeng X and Hu Q:
Polydatin relieves paraquat-induced human MRC-5 fibroblast injury
through inhibiting the activation of the NLRP3 inflammasome. Ann
Transl Med. 8:7652020. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Yahfoufi N, Alsadi N, Jambi M and Matar C:
The immunomodulatory and anti-inflammatory role of polyphenols.
Nutrients. 10:16182018. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Han GM, Chen SL, Shen N, Ye S, Bao CD and
Gu YY: Analysis of gene expression profiles in human systemic lupus
erythematosus using oligonucleotide microarray. Genes Immun.
4:177–186. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Ishii T, Onda H, Tanigawa A, Ohshima S,
Fujiwara H, Mima T, Katada Y, Deguchi H, Suemura M, Miyake T, et
al: Isolation and expression profiling of genes upregulated in the
peripheral blood cells of systemic lupus erythematosus patients.
DNA Res. 12:429–439. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Pan L, Lu MP, Wang JH, Xu M and Yang SR:
Immunological pathogenesis and treatment of systemic lupus
erythematosus. World J Pediatr. 16:19–30. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Smith CK and Kaplan MJ: The role of
neutrophils in the pathogenesis of systemic lupus erythematosus.
Curr Opin Rheumatol. 27:448–453. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Berthelot JM, Le Goff B, Neel A, Maugars Y
and Hamidou M: NETosis: At the crossroads of rheumatoid arthritis,
lupus, and vasculitis. Joint Bone Spine. 84:255–262. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Fresneda Alarcon M, McLaren Z and Wright
HL: Neutrophils in the pathogenesis of rheumatoid arthritis and
systemic lupus erythematosus: Same Foe Different M.O. Front
immunol. 12:6496932021. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Park YW, Kee SJ, Cho YN, Lee EH, Lee HY,
Kim EM, Shin MH, Park JJ, Kim TJ, Lee SS, et al: Impaired
differentiation and cytotoxicity of natural killer cells in
systemic lupus erythematosus. Arthritis Rheum. 60:1753–1763. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Riccieri V, Spadaro A, Parisi G, Taccari
E, Moretti T, Bernardini G, Favaroni M and Strom R: Down-regulation
of natural killer cells and of gamma/delta T cells in systemic
lupus erythematosus. Does it correlate to autoimmunity and to
laboratory indices of disease activity? Lupus. 9:333–337.
2000.PubMed/NCBI
|
|
30
|
Huang Z, Fu B, Zheng SG, Li X, Sun R, Tian
Z and Wei H: Involvement of CD226+ NK cells in immunopathogenesis
of systemic lupus erythematosus. J Immunol. 186:3421–3431. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Eloranta ML, Lövgren T, Finke D, Mathsson
L, Rönnelid J, Kastner B, Alm GV and Rönnblom L: Regulation of the
interferon-alpha production induced by RNA-containing immune
complexes in plasmacytoid dendritic cells. Arthritis Rheum.
60:2418–2427. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Hervier B, Beziat V, Haroche J, Mathian A,
Lebon P, Ghillani-Dalbin P, Musset L, Debré P, Amoura Z and
Vieillard V: Phenotype and function of natural killer cells in
systemic lupus erythematosus: Excess interferon-γ production in
patients with active disease. Arthritis Rheum. 63:1698–1706. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Hodge DL, Berthet C, Coppola V,
Kastenmüller W, Buschman MD, Schaughency PM, Shirota H, Scarzello
AJ, Subleski JJ, Anver MR, et al: IFN-gamma AU-rich element removal
promotes chronic IFN-gamma expression and autoimmunity in mice. J
Autoimmun. 53:33–45. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Liu M, Liu J, Hao S, Wu P, Zhang X, Xiao
Y, Jiang G and Huang X: Higher activation of the interferon-gamma
signaling pathway in systemic lupus erythematosus patients with a
high type I IFN score: Relation to disease activity. Clin
Rheumatol. 37:2675–2684. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Nandakumar KS and Nündel K: Editorial:
Systemic lupus erythematosus-predisposition factors, pathogenesis,
diagnosis, treatment and disease models. Front Immunol.
13:11181802022. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Horwitz DA, Gray JD, Behrendsen SC, Kubin
M, Rengaraju M, Ohtsuka K and Trinchieri G: Decreased production of
interleukin-12 and other Th1-type cytokines in patients with
recent-onset systemic lupus erythematosus. Arthritis Rheum.
41:838–844. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Lee HY, Hong YK, Yun HJ, Kim YM, Kim JR
and Yoo WH: Altered frequency and migration capacity of CD4+CD25+
regulatory T cells in systemic lupus erythematosus. Rheumatology
(Oxford). 47:789–794. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Ma J, Yu J, Tao X, Cai L, Wang J and Zheng
SG: The imbalance between regulatory and IL-17-secreting CD4+ T
cells in lupus patients. Clin Rheumatol. 29:1251–1258. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Qiu Y, Zhou X, Liu Y, Tan S and Li Y: The
role of sirtuin-1 in immune response and systemic lupus
erythematosus. Front Immunol. 12:6323832021. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Chen X, Zhang XL, Zhang GH and Gao YF:
Artesunate promotes Th1 differentiation from CD4+ T cells to
enhance cell apoptosis in ovarian cancer via miR-142. Braz J Med
Biol Res. 52:e79922019. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Dorgham K, Amoura Z, Parizot C, Arnaud L,
Frances C, Pionneau C, Devilliers H, Pinto S, Zoorob R, Miyara M,
et al: Ultraviolet light converts propranolol, a nonselective
β-blocker and potential lupus-inducing drug, into a proinflammatory
AhR ligand. Eur J Immunol. 45:3174–3187. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Guo NH, Fu X, Zi FM, Song Y, Wang S and
Cheng J: The potential therapeutic benefit of resveratrol on
Th17/Treg imbalance in immune thrombocytopenic purpura. Int
Immunopharmacol. 73:181–192. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Delmas D, Limagne E, Ghiringhelli F and
Aires V: Immune Th17 lymphocytes play a critical role in the
multiple beneficial properties of resveratrol. Food Chem Toxicol.
137:1110912020. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Fillatreau S, Sweenie CH, McGeachy MJ,
Gray D and Anderton SM: B cells regulate autoimmunity by provision
of IL-10. Nat Immunol. 3:944–950. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Choi JY, Ho JHE, Pasoto SG, Bunin V, Kim
ST, Carrasco S, Borba EF, Gonçalves CR, Costa PR, Kallas EG, et al:
Circulating follicular helper-like T cells in systemic lupus
erythematosus: Association with disease activity. Arthritis
Rheumatol. 67:988–999. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
He J, Tsai LM, Leong YA, Hu X, Ma CS,
Chevalier N, Sun X, Vandenberg K, Rockman S, Ding Y, et al:
Circulating precursor CCR7(lo)PD-1(hi) CXCR5+
CD4+ T cells indicate Tfh cell activity and promote
antibody responses upon antigen reexposure. Immunity. 39:770–781.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Groom JR, Fletcher CA, Walters SN, Grey
ST, Watt SV, Sweet MJ, Smyth MJ, Mackay CR and Mackay F: BAFF and
MyD88 signals promote a lupuslike disease independent of T cells. J
Exp Med. 204:1959–1971. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Sequeira J, Boily G, Bazinet S, Saliba S,
He X, Jardine K, Kennedy C, Staines W, Rousseaux C, Mueller R and
McBurney MW: sirt1-null mice develop an autoimmune-like condition.
Exp Cell Res. 314:3069–3074. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Wang Q, Yan C, Xin M, Han L, Zhang Y and
Sun M: Sirtuin 1 (Sirt1) overexpression in BaF3 cells contributes
to cell proliferation promotion, apoptosis resistance and
pro-inflammatory cytokine production. Med Sci Monit. 23:1477–1482.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Delmas D and Lin HY: Role of membrane
dynamics processes and exogenous molecules in cellular resveratrol
uptake: Consequences in bioavailability and activities. Mol Nutr
Food Res. 55:1142–1153. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Ho Y, Li ZL, Shih YJ, Chen YR, Wang K,
Whang-Peng J, Lin HY and Davis PJ: Integrin αvβ3 in the mediating
effects of dihydrotestosterone and resveratrol on breast cancer
cell proliferation. Int J Mol Sci. 21:29062020. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Bonizzi G and Karin M: The two NF-kappaB
activation pathways and their role in innate and adaptive immunity.
Trends Immunol. 25:280–288. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Schwager J, Richard N, Widmer F and
Raederstorff D: Resveratrol distinctively modulates the
inflammatory profiles of immune and endothelial cells. BMC
Complement Altern Med. 17:3092017. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Svajger U, Obermajer N and Jeras M:
Dendritic cells treated with resveratrol during differentiation
from monocytes gain substantial tolerogenic properties upon
activation. Immunology. 129:525–535. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Sener G, Tuğtepe H, Yüksel M, Cetinel S,
Gedik N and Yeğen BC: Resveratrol improves
ischemia/reperfusion-induced oxidative renal injury in rats. Arch
Med Res. 37:822–829. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Wang W, Sun L, Zhang P, Song J and Liu W:
An anti-inflammatory cell-free collagen/resveratrol scaffold for
repairing osteochondral defects in rabbits. Acta Biomater.
10:4983–4995. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Orsu P, Murthy BVSN and Akula A:
Cerebroprotective potential of resveratrol through anti-oxidant and
anti-inflammatory mechanisms in rats. J Neural Transm (Vienna).
120:1217–1223. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Bo S, Ciccone G, Castiglione A, Gambino R,
De Michieli F, Villois P, Durazzo M, Cavallo-Perin P and Cassader
M: Anti-inflammatory and antioxidant effects of resveratrol in
healthy smokers a randomized, double-blind, placebo-controlled,
cross-over trial. Curr Med Chem. 20:1323–1331. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Balkrishna A, Sinha S, Kumar A, Arya V,
Gautam AK, Valis M, Kuca K, Kumar D and Amarowicz R:
Sepsis-mediated renal dysfunction: Pathophysiology, biomarkers and
role of phytoconstituents in its management. Biomed Pharmacother.
165:1151832023. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Liu FC, Tsai HI and Yu HP:
Organ-protective effects of red wine extract, resveratrol, in
oxidative stress-mediated reperfusion injury. Oxid Med Cell Longev.
2015:5686342015. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
de Souza Andrade MM, Leal VNC, Fernandes
IG, Gozzi-Silva SC, Beserra DR, Oliveira EA, Teixeira FME, Yendo
TM, Sousa MDGT, Teodoro WR, et al: Resveratrol downmodulates
neutrophil extracellular trap (NET) generation by neutrophils in
patients with severe COVID-19. Antioxidants (Basel). 11:16902022.
View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Rieder SA, Nagarkatti P and Nagarkatti M:
Multiple anti-inflammatory pathways triggered by resveratrol lead
to amelioration of staphylococcal enterotoxin B-induced lung
injury. Br J Pharmacol. 167:1244–1258. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Li Q, Huyan T, Ye LJ, Li J, Shi JL and
Huang QS: Concentration-dependent biphasic effects of resveratrol
on human natural killer cells in vitro. J Agric Food Chem.
62:10928–10935. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Wang ZL, Luo XF, Li MT, Xu D, Zhou S, Chen
HZ, Gao N, Chen Z, Zhang LL and Zeng XF: Resveratrol possesses
protective effects in a pristane-induced lupus mouse model. PLoS
One. 9:e1147922014. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Yao Y, Zhu J, Qin S, Zhou Z, Zeng Q, Long
R, Mao Z, Dong X, Zhao R, Zhang R, et al: Resveratrol induces
autophagy impeding BAFF-stimulated B-cell proliferation and
survival by inhibiting the Akt/mTOR pathway. Biochem Pharmacol.
202:1151392022. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Wållberg M and Cooke A: Immune mechanisms
in type 1 diabetes. Trends Immunol. 34:583–591. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Battaglia M: Neutrophils and type 1
autoimmune diabetes. Curr Opin Hematol. 21:8–15. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Kaur G, Padiya R, Adela R, Putcha UK,
Reddy GS, Reddy BR, Kumar KP, Chakravarty S and Banerjee SK: Garlic
and resveratrol attenuate diabetic complications, loss of β-cells,
pancreatic and hepatic oxidative stress in streptozotocin-induced
diabetic rats. Front Pharmacol. 7:3602016. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Lee SM, Yang H, Tartar DM, Gao B, Luo X,
Ye SQ, Zaghouani H and Fang D: Prevention and treatment of diabetes
with resveratrol in a non-obese mouse model of type 1 diabetes.
Diabetologia. 54:1136–1146. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Yonamine CY, Pinheiro-Machado E, Michalani
ML, Freitas HS, Okamoto MM, Corrêa-Giannella ML and Machado UF:
Resveratrol improves glycemic control in insulin-treated diabetic
rats: Participation of the hepatic territory. Nutr Metab (Lond).
13:442016. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Boirivant M and Cossu A: Inflammatory
bowel disease. Oral Dis. 18:1–15. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Singh UP, Singh NP, Busbee B, Guan H,
Singh B, Price RL, Taub DD, Mishra MK, Nagarkatti M and Nagarkatti
PS: Alternative medicines as emerging therapies for inflammatory
bowel diseases. Int Rev Immunol. 31:66–84. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Tian T, Wang Z and Zhang J:
Pathomechanisms of oxidative stress in inflammatory bowel disease
and potential antioxidant therapies. Oxid Med Cell Longev.
2017:45351942017. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Sánchez-Fidalgo S, Cárdeno A, Villegas I,
Talero E and de la Lastra CA: Dietary supplementation of
resveratrol attenuates chronic colonic inflammation in mice. Eur J
Pharmacol. 633:78–84. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Samsami-Kor M, Daryani NE, Asl PR and
Hekmatdoost A: Anti-inflammatory effects of resveratrol in patients
with ulcerative colitis: A randomized, double-blind,
placebo-controlled pilot study. Arch Med Res. 46:280–285. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Hänsel A, Günther C, Ingwersen J, Starke
J, Schmitz M, Bachmann M, Meurer M, Rieber EP and Schäkel K: Human
slan (6-sulfo LacNAc) dendritic cells are inflammatory dermal
dendritic cells in psoriasis and drive strong TH17/TH1 T-cell
responses. J Allergy Clin Immunol. 127:787–794.e1-e9. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Lowes MA, Suárez-Fariñas M and Krueger JG:
Immunology of psoriasis. Annu Rev Immunol. 32:227–255. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Lynde CW, Poulin Y, Vender R, Bourcier M
and Khalil S: Interleukin 17A: Toward a new understanding of
psoriasis pathogenesis. J Am Acad Dermatol. 71:141–150. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Kjær TN, Thorsen K, Jessen N, Stenderup K
and Pedersen SB: Resveratrol ameliorates imiquimod-induced
psoriasis-like skin inflammation in mice. PLoS One.
10:e01265992015. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Navegantes KC, de Souza Gomes R, Pereira
PAT, Czaikoski PG, Azevedo CHM and Monteiro MC: Immune modulation
of some autoimmune diseases: The critical role of macrophages and
neutrophils in the innate and adaptive immunity. J Transl Med.
15:362017. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Tanaka T, Hishitani Y and Ogata A:
Monoclonal antibodies in rheumatoid arthritis: comparative
effectiveness of tocilizumab with tumor necrosis factor inhibitors.
Biologics. 8:141–153. 2014.PubMed/NCBI
|
|
82
|
Brzustewicz E and Bryl E: The role of
cytokines in the pathogenesis of rheumatoid arthritis-Practical and
potential application of cytokines as biomarkers and targets of
personalized therapy. Cytokine. 76:527–536. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Engler A, Tange C, Frank-Bertoncelj M, Gay
RE, Gay S and Ospelt C: Regulation and function of SIRT1 in
rheumatoid arthritis synovial fibroblasts. J Mol Med (Berl).
94:173–182. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Ma C, Wang Y, Dong L, Li M and Cai W:
Anti-inflammatory effect of resveratrol through the suppression of
NF-κB and JAK/STAT signaling pathways. Acta Biochim Biophys Sin
(Shanghai). 47:207–213. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Lee SJ, Thien Quach CH, Jung KH, Paik JY,
Lee JH, Park JW and Lee KH: Oxidized low-density lipoprotein
stimulates macrophage 18F-FDG uptake via hypoxia-inducible
factor-1α activation through Nox2-dependent reactive oxygen species
generation. J Nucl Med. 55:1699–1705. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Tsai MH, Hsu LF, Lee CW, Chiang YC, Lee
MH, How JM, Wu CM, Huang CL and Lee IT: Resveratrol inhibits urban
particulate matter-induced COX-2/PGE2 release in human
fibroblast-like synoviocytes via the inhibition of activation of
NADPH oxidase/ROS/NF-κB. Int J Biochem Cell Biol. 88:113–123. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Xuzhu G, Komai-Koma M, Leung BP, Howe HS,
McSharry C, McInnes IB and Xu D: Resveratrol modulates murine
collagen-induced arthritis by inhibiting Th17 and B-cell function.
Ann Rheum Dis. 71:129–135. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Wahba MGF, Messiha BAS and Abo-Saif AA:
Protective effects of fenofibrate and resveratrol in an aggressive
model of rheumatoid arthritis in rats. Pharm Biol. 54:1705–1715.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Avendaño-Vázquez SE, Dhir A, Bembich S,
Buratti E, Proudfoot N and Baralle FE: Autoregulation of TDP-43
mRNA levels involves interplay between transcription, splicing, and
alternative polyA site selection. Genes Dev. 26:1679–1684. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Malaspina A, Puentes F and Amor S: Disease
origin and progression in amyotrophic lateral sclerosis: An
immunology perspective. Int Immunol. 27:117–129. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Higashida K, Kim SH, Jung SR, Asaka M,
Holloszy JO and Han DH: Effects of resveratrol and SIRT1 on PGC-1α
activity and mitochondrial biogenesis: A reevaluation. PLoS Biol.
11:e10016032013. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Zhao W, Varghese M, Yemul S, Pan Y, Cheng
A, Marano P, Hassan S, Vempati P, Chen F, Qian X and Pasinetti GM:
Peroxisome proliferator activator receptor gamma coactivator-1alpha
(PGC-1α) improves motor performance and survival in a mouse model
of amyotrophic lateral sclerosis. Mol Neurodegener. 6:512011.
View Article : Google Scholar : PubMed/NCBI
|
|
93
|
McFarlane IG: Pathogenesis of autoimmune
hepatitis. Biomed Pharmacother. 53:255–263. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Ichiki Y, Aoki CA, Bowlus CL, Shimoda S,
Ishibashi H and Gershwin ME: T cell immunity in autoimmune
hepatitis. Autoimmun Rev. 4:315–321. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Gianchecchi E and Fierabracci A: Insights
on the effects of resveratrol and some of its derivatives in cancer
and autoimmunity: A molecule with a dual activity. Antioxidants
(Basel). 9:912020. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Huang TH, Chen CC, Liu HM, Lee TY and
Shieh SH: Resveratrol pretreatment attenuates concanavalin
a-induced hepatitis through reverse of aberration in the immune
response and regenerative capacity in aged mice. Sci Rep.
7:27052017. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Biswas S, Bieber K and Manz RA: IL-10
revisited in systemic lupus erythematosus. Front Immunol.
13:9709062022. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Facciotti F, Larghi P, Bosotti R, Vasco C,
Gagliani N, Cordiglieri C, Mazzara S, Ranzani V, Rottoli E, Curti
S, et al: Evidence for a pathogenic role of extrafollicular,
IL-10-producing CCR6+B helper T cells in systemic lupus
erythematosus. Proc Natl Acad Sci USA. 117:7305–7316. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Caielli S, Veiga DT, Balasubramanian P,
Athale S, Domic B, Murat E, Banchereau R, Xu Z, Chandra M, Chung
CH, et al: A CD4+ T cell population expanded in lupus
blood provides B cell help through interleukin-10 and succinate.
Nat Med. 25:75–81. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Klonowska-Szymczyk A, Kulczycka-Siennicka
L, Robak T, Smolewski P, Cebula-Obrzut B and Robak E: The impact of
agonists and antagonists of TLR3 and TLR9 on concentrations of
IL-6, IL10 and sIL-2R in culture supernatants of peripheral blood
mononuclear cells derived from patients with systemic lupus
erythematosus. Postepy Hig Med Dosw (Online). 71:867–875. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Voloshyna I, Teboul I, Littlefield MJ,
Siegart NM, Turi GK, Fazzari MJ, Carsons SE, DeLeon J and Reiss AB:
Resveratrol counters systemic lupus erythematosus-associated
atherogenicity by normalizing cholesterol efflux. Exp Biol Med
(Maywood). 241:1611–1619. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Satoh M and Reeves WH: Induction of
lupus-associated autoantibodies in BALB/c mice by intraperitoneal
injection of pristane. J Exp Med. 180:2341–2346. 1994. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Tian J, Huang T, Chen J, Wang J, Chang S,
Xu H, Zhou X, Yang J, Xue Y, Zhang T, et al: SIRT1 slows the
progression of lupus nephritis by regulating the NLRP3 inflammasome
through ROS/TRPM2/Ca2+ channel. Clin Exp Med.
23:3465–3478. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Pannu N and Bhatnagar A: Combinatorial
therapeutic effect of resveratrol and piperine on murine model of
systemic lupus erythematosus. Inflammopharmacology. 28:401–424.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Pannu N and Bhatnagar A: Prophylactic
effect of resveratrol and piperine on pristane-induced murine model
of lupus-like disease. Inflammopharmacology. 28:719–735. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Feng X, Li H, Rumbin AA, Wang X, La Cava
A, Brechtelsbauer K, Castellani LW, Witztum JL, Lusis AJ and Tsao
BP: ApoE-/-Fas-/-C57BL/6 mice: A novel murine model simultaneously
exhibits lupus nephritis, atherosclerosis, and osteopenia. J Lipid
Res. 48:794–805. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Kasselman LJ, Renna HA, Voloshyna I,
Pinkhasov A, Gomolin IH, Teboul I, De Leon J, Carsons SE and Reiss
AB: Cognitive changes mediated by adenosine receptor blockade in a
resveratrol-treated atherosclerosis-prone lupus mouse model. J
Tradit Complement Med. 12:447–454. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Li C, Wang Z, Lei H and Zhang D: Recent
progress in nanotechnology-based drug carriers for resveratrol
delivery. Drug Deliv. 30:21742062023. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Walle T, Hsieh F, DeLegge MH, Oatis JE Jr
and Walle UK: High absorption but very low bioavailability of oral
resveratrol in humans. Drug Metab Dispos. 32:1377–1382. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Sergides C, Chirilă M, Silvestro L, Pitta
D and Pittas A: Bioavailability and safety study of resveratrol 500
mg tablets in healthy male and female volunteers. Exp Ther Med.
11:164–170. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Summerlin N, Soo E, Thakur S, Qu Z,
Jambhrunkar S and Popat A: Resveratrol nanoformulations: Challenges
and opportunities. Int J Pharm. 479:282–290. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Zupančič Š, Lavrič Z and Kristl J:
Stability and solubility of trans-resveratrol are strongly
influenced by pH and temperature. Eur J Pharm Biopharm. 93:196–204.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Novelle MG, Wahl D, Diéguez C, Bernier M
and de Cabo R: Resveratrol supplementation: Where are we now and
where should we go? Ageing Res Rev. 21:1–15. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Shaito A, Posadino AM, Younes N, Hasan H,
Halabi S, Alhababi D, Al-Mohannadi A, Abdel-Rahman WM, Eid AH,
Nasrallah GK and Pintus G: Potential adverse effects of
resveratrol: A literature review. Int J Mol Sci. 21:20842020.
View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Hebbar V, Shen G, Hu R, Kim BR, Chen C,
Korytko PJ, Crowell JA, Levine BS and Kong AN: Toxicogenomics of
resveratrol in rat liver. Life Sci. 76:2299–2314. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Crowell JA, Korytko PJ, Morrissey RL,
Booth TD and Levine BS: Resveratrol-associated renal toxicity.
Toxicol Sci. 82:614–619. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Liu S, Zhao M, Zhou Y, Wang C, Yuan Y, Li
L, Bresette W, Chen Y, Cheng J, Lu Y and Liu J: Resveratrol exerts
dose-dependent anti-fibrotic or pro-fibrotic effects in kidneys: A
potential risk to individuals with impaired kidney function.
Phytomedicine. 57:223–235. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Moon RT, Kohn AD, De Ferrari GV and Kaykas
A: WNT and beta-catenin signalling: Diseases and therapies. Nat Rev
Genet. 5:691–701. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Howells LM, Berry DP, Elliott PJ, Jacobson
EW, Hoffmann E, Hegarty B, Brown K, Steward WP and Gescher AJ:
Phase I randomized, double-blind pilot study of micronized
resveratrol (SRT501) in patients with hepatic metastases-safety,
pharmacokinetics, and pharmacodynamics. Cancer Prev Res (Phila).
4:1419–1425. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Poulsen MM, Vestergaard PF, Clasen BF,
Radko Y, Christensen LP, Stødkilde-Jørgensen H, Møller N, Jessen N,
Pedersen SB and Jørgensen JO: High-dose resveratrol supplementation
in obese men: An investigator-initiated, randomized,
placebo-controlled clinical trial of substrate metabolism, insulin
sensitivity, and body composition. Diabetes. 62:1186–1195. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Mankowski RT, You L, Buford TW,
Leeuwenburgh C, Manini TM, Schneider S, Qiu P and Anton SD: Higher
dose of resveratrol elevated cardiovascular disease risk biomarker
levels in overweight older adults-A pilot study. Exp Gerontol.
131:1108212020. View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Ramírez-Garza SL, Laveriano-Santos EP,
Marhuenda-Muñoz M, Storniolo CE, Tresserra-Rimbau A,
Vallverdú-Queralt A and Lamuela-Raventós RM: Health effects of
resveratrol: Results from human intervention trials. Nutrients.
10:18922018. View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Zhang T, He Q, Liu Y, Chen Z and Hu H:
Efficacy and safety of resveratrol supplements on blood lipid and
blood glucose control in patients with type 2 diabetes: A
systematic review and meta-analysis of randomized controlled
trials. Evid Based Complement Alternat Med.
2021:56441712021.PubMed/NCBI
|
|
124
|
Goh KP, Lee HY, Lau DP, Supaat W, Chan YH
and Koh AFY: Effects of resveratrol in patients with type 2
diabetes mellitus on skeletal muscle SIRT1 expression and energy
expenditure. Int J Sport Nutr Exerc Metab. 24:2–13. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
125
|
Sattarinezhad A, Roozbeh J, Shirazi
Yeganeh B, Omrani GR and Shams M: Resveratrol reduces albuminuria
in diabetic nephropathy: A randomized double-blind
placebo-controlled clinical trial. Diabetes Metab. 45:53–59. 2019.
View Article : Google Scholar : PubMed/NCBI
|