Imatinib‑ and ponatinib‑mediated cardiotoxicity in zebrafish embryos and H9c2 cardiomyoblasts
- Authors:
- Zain Z. Zakaria
- Muna Suleiman
- Fatiha M. Benslimane
- Mashael Al‑Badr
- Siveen Sivaraman
- Hesham M. Korashy
- Fareed Ahmad
- Shahab Uddin
- Fatima Mraiche
- Huseyin C. Yalcin
-
Affiliations: Vice President of Health and Medical Sciences Office, QU Health, Qatar University, Doha 2713, Qatar, Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha 2713, Qatar, Biomedical Research Center, Qatar University, Doha 2713, Qatar, Department of Biology, College of Art and Science, Qatar University, Doha 2713, Qatar, Translational Research Institute, Hamad Medical Corporation, Doha 3050, Qatar, Translational Research Institute and Dermatology Institute, Hamad Medical Corporation, Doha 3050, Qatar - Published online on: August 20, 2024 https://doi.org/10.3892/mmr.2024.13311
- Article Number: 187
-
Copyright: © Zakaria et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Heron MP and Anderson RN: National Center for Health Statistics: Changes in the leading cause of death: recent patterns in heart disease and cancer mortality. US Department of Health and Human Services, Centers for Disease Control and Prevention. National Center for Health Statistics; Hyattsville, MD: 2016 | |
Hochhaus A and Kantarjian H: The development of dasatinib as a treatment for chronic myeloid leukemia (CML): From initial studies to application in newly diagnosed patients. J Cancer Res Clin Oncol. 139:1971–1984. 2013. View Article : Google Scholar : PubMed/NCBI | |
López-Otín C and Hunter T: The regulatory crosstalk between kinases and proteases in cancer. Nat Rev Cancer. 10:278–292. 2010. View Article : Google Scholar : PubMed/NCBI | |
Ségaliny AI, Tellez-Gabriel M, Heymann MF and Heymann D: Receptor tyrosine kinases: Characterisation, mechanism of action and therapeutic interests for bone cancers. J Bone Oncol. 4:1–12. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zhang N and Li Y: Receptor tyrosine kinases: Biological functions and anticancer targeted therapy. MedComm (2020). 4:e4462023.PubMed/NCBI | |
Chen Y, McAndrews KM and Kalluri R: Clinical and therapeutic relevance of cancer-associated fibroblasts. Nat Rev Clin Oncol. 18:792–804. 2021. View Article : Google Scholar : PubMed/NCBI | |
K Bhanumathy K, Balagopal A, Vizeacoumar FS, Vizeacoumar FJ, Freywald A and Giambra V: Protein tyrosine kinases: Their roles and their targeting in leukemia. Cancers (Basel). 13:1842021. View Article : Google Scholar : PubMed/NCBI | |
Paul MK and Mukhopadhyay AK: Tyrosine kinase-role and significance in cancer. Int J Med Sci. 1:101–115. 2004. View Article : Google Scholar : PubMed/NCBI | |
Petrelli A and Giordano S: From single- to multi-target drugs in cancer therapy: When aspecificity becomes an advantage. Curr Med Chem. 15:422–432. 2008. View Article : Google Scholar : PubMed/NCBI | |
Jabbour E and Kantarjian H: Chronic myeloid leukemia: 2018 Update on diagnosis, therapy and monitoring. Am J Hematol. 93:442–459. 2018. View Article : Google Scholar : PubMed/NCBI | |
Bukowski RM: Third generation tyrosine kinase inhibitors and their development in advanced renal cell carcinoma. Front Oncol. 2:132012. View Article : Google Scholar : PubMed/NCBI | |
Stasi I and Cappuzzo F: Second generation tyrosine kinase inhibitors for the treatment of metastatic non-small-cell lung cancer. Transl Respir Med. 2:22014. View Article : Google Scholar : PubMed/NCBI | |
Yewale C, Baradia D, Vhora I, Patil S and Misra A: Epidermal growth factor receptor targeting in cancer: A review of trends and strategies. Biomaterials. 34:8690–8707. 2013. View Article : Google Scholar : PubMed/NCBI | |
Segaliny A, Tellez-Gabriel M, Heymann MF and Heymann D: Receptor tyrosine kinases: Characterisation, mechanism of action and therapeutic interests for bone cancers. J Bone Oncol. 4:1–12. 2015. View Article : Google Scholar : PubMed/NCBI | |
Yang Y, Li S, Wang Y, Zhao Y and Li Q: Protein tyrosine kinase inhibitor resistance in malignant tumors: Molecular mechanisms and future perspective. Signal Transduct Target Ther. 7:3292022. View Article : Google Scholar : PubMed/NCBI | |
Moslehi JJ: Cardiovascular toxic effects of targeted cancer therapies. N Engl J Med. 375:1457–1467. 2016. View Article : Google Scholar : PubMed/NCBI | |
Kerkelä R, Grazette L, Yacobi R, Iliescu C, Patten R, Beahm C, Walters B, Shevtsov S, Pesant S, Clubb FJ, et al: Cardiotoxicity of the cancer therapeutic agent imatinib mesylate. Nat Med. 12:908–916. 2006. View Article : Google Scholar : PubMed/NCBI | |
Sayegh N, Yirerong J, Agarwal N, Addison D, Fradley M, Cortes J, Weintraub NL, Sayed N, Raval G and Guha A: Cardiovascular toxicities associated with tyrosine kinase inhibitors. Curr Cardiol Rep. 25:269–280. 2023. View Article : Google Scholar : PubMed/NCBI | |
Kantarjian H, Shah NP, Hochhaus A, Cortes J, Shah S, Ayala M, Moiraghi B, Shen Z, Mayer J, Pasquini R, et al: Dasatinib versus imatinib in newly diagnosed chronic-phase chronic myeloid leukemia. N Engl J Med. 362:2260–2270. 2010. View Article : Google Scholar : PubMed/NCBI | |
Montani D, Bergot E, Günther S, Savale L, Bergeron A, Bourdin A, Bouvaist H, Canuet M, Pison C, Macro M, et al: Pulmonary arterial hypertension in patients treated by dasatinib. Circulation. 125:2128–2137. 2012. View Article : Google Scholar : PubMed/NCBI | |
Cortes JE, Kim DW, Pinilla-Ibarz J, le Coutre P, Paquette R, Chuah C, Nicolini FE, Apperley JF, Khoury HJ, Talpaz M, et al: A phase 2 trial of ponatinib in Philadelphia chromosome-positive leukemias. N Engl J Med. 369:1783–1796. 2013. View Article : Google Scholar : PubMed/NCBI | |
Dorer DJ, Knickerbocker RK, Baccarani M, Cortes JE, Hochhaus A, Talpaz M and Haluska FG: Impact of dose intensity of ponatinib on selected adverse events: Multivariate analyses from a pooled population of clinical trial patients. Leuk Res. 48:84–91. 2016. View Article : Google Scholar : PubMed/NCBI | |
Korashy HM, Al-Suwayeh HA, Maayah ZH, Ansari MA, Ahmad SF and Bakheet SA: Mitogen-activated protein kinases pathways mediate the sunitinib-induced hypertrophy in rat cardiomyocyte H9c2 cells. Cardiovasc Toxicol. 15:41–51. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zhao Y, Xue T, Yang X, Zhu H, Ding X, Lou L, Lu W, Yang B and He Q: Autophagy plays an important role in sunitinib- mediated cell death in H9c2 cardiac muscle cells. Toxicol Appl Pharmacol. 248:20–27. 2010. View Article : Google Scholar : PubMed/NCBI | |
Will Y, Dykens JA, Nadanaciva S, Hirakawa B, Jamieson J, Marroquin LD, Hynes J, Patyna S and Jessen BA: Effect of the multitargeted tyrosine kinase inhibitors imatinib, dasatinib, sunitinib, and sorafenib on mitochondrial function in isolated rat heart mitochondria and H9c2 cells. Toxicol Sci. 106:153–161. 2008. View Article : Google Scholar : PubMed/NCBI | |
Talbert DR, Doherty KR, Trusk PB, Moran DM, Shell SA and Bacus S: A multi-parameter in vitro screen in human stem cell-derived cardiomyocytes identifies ponatinib-induced structural and functional cardiac toxicity. Toxicol Sci. 143:147–155. 2015. View Article : Google Scholar : PubMed/NCBI | |
Doherty KR, Wappel RL, Talbert DR, Trusk PB, Moran DM, Kramer JW, Brown AM, Shell SA and Bacus S: Multi-parameter in vitro toxicity testing of crizotinib, sunitinib, erlotinib, and nilotinib in human cardiomyocytes. Toxicol Appl Pharmacol. 272:245–255. 2013. View Article : Google Scholar : PubMed/NCBI | |
French KJ, Coatney RW, Renninger JP, Hu CX, Gales TL, Zhao S, Storck LM, Davis CB, McSurdy-Freed J, Chen E and Frazier KS: Differences in effects on myocardium and mitochondria by angiogenic inhibitors suggest separate mechanisms of cardiotoxicity. Toxicol Pathol. 38:691–702. 2010. View Article : Google Scholar : PubMed/NCBI | |
Pembrey RS, Marshall KC and Schneider RP: Cell surface analysis techniques: What do cell preparation protocols do to cell surface properties? Appl Environ Microbiol. 65:2877–2894. 1999. View Article : Google Scholar : PubMed/NCBI | |
Prabhu KS, Siveen KS, Kuttikrishnan S, Iskandarani A, Tsakou M, Achkar IW, Therachiyil L, Krishnankutty R, Parray A, Kulinski M, et al: Targeting of X-linked inhibitor of apoptosis protein and PI3-kinase/AKT signaling by embelin suppresses growth of leukemic cells. PLoS One. 12:e01808952017. View Article : Google Scholar : PubMed/NCBI | |
Khan AQ, Siveen KS, Prabhu KS, Kuttikrishnan S, Akhtar S, Shaar A, Raza A, Mraiche F, Dermime S and Uddin S: Curcumin-mediated degradation of S-phase kinase protein 2 induces cytotoxic effects in human papillomavirus-positive and negative squamous carcinoma cells. Front Oncol. 8:3992018. View Article : Google Scholar : PubMed/NCBI | |
Westerfield M: The zebrafish book: A guide for the laboratory use of zebrafish (Danio rerio). 4th edition. University of Oregon Press; Eugene: 2000, http://zfin. org/zf_info/zfbook/zfbk.html | |
Kimmel CB, Ballard WW, Kimmel SR, Ullmann B and Schilling TF: Stages of embryonic development of the zebrafish. Dev Dyn. 203:253–310. 1995. View Article : Google Scholar : PubMed/NCBI | |
Benslimane FM, Zakaria ZZ, Shurbaji S, Abdelrasool MKA, Al-Badr MAHI, Al Absi ESK and Yalcin HC: Cardiac function and blood flow hemodynamics assessment of zebrafish (Danio rerio) using high-speed video microscopy. Micron. 136:1028762020. View Article : Google Scholar : PubMed/NCBI | |
Yalcin HC, Amindari A, Butcher JT, Althani A and Yacoub M: Heart function and hemodynamics analysis for zebrafish embryos. Dev Dyn. 246:868–880. 2017. View Article : Google Scholar : PubMed/NCBI | |
Benslimane FM, Alser M, Zakaria ZZ, Sharma A, Abdelrahman HA and Yalcin HC: Adaptation of a mice doppler echocardiography platform to measure cardiac flow velocities for embryonic chicken and adult zebrafish. Front Bioeng Biotechnol. 7:962019. View Article : Google Scholar : PubMed/NCBI | |
Rao X, Huang X, Zhou Z and Lin X: An improvement of the 2ˆ(−delta delta CT) method for quantitative real-time polymerase chain reaction data analysis. Biostat Bioinforma Biomath. 3:71–85. 2013.PubMed/NCBI | |
Huang CC, Chen PC, Huang CW and Yu J: Aristolochic acid induces heart failure in zebrafish embryos that is mediated by inflammation. Toxicol Sci. 100:486–494. 2007. View Article : Google Scholar : PubMed/NCBI | |
Narumanchi S, Wang H, Perttunen S, Tikkanen I, Lakkisto P and Paavola J: Zebrafish heart failure models. Front Cell Dev Biol. 9:6625832021. View Article : Google Scholar : PubMed/NCBI | |
Januzzi JL Jr: Natriuretic peptides as biomarkers in heart failure. J Investig Med. 61:950–955. 2013. View Article : Google Scholar : PubMed/NCBI | |
Wickramasinghe CD, Nguyen KL, Watson KE, Vorobiof G and Yang EH: Concepts in cardio-oncology: Definitions, mechanisms, diagnosis and treatment strategies of cancer therapy-induced cardiotoxicity. Future Oncol. 12:855–870. 2016. View Article : Google Scholar : PubMed/NCBI | |
Dolci A, Dominici R, Cardinale D, Sandri MT and Panteghini M: Biochemical markers for prediction of chemotherapy-induced cardiotoxicity: Systematic review of the literature and recommendations for use. Am J Clin Pathol. 130:688–695. 2008. View Article : Google Scholar : PubMed/NCBI | |
Pai VB and Nahata MC: Cardiotoxicity of chemotherapeutic agents: Incidence, treatment and prevention. Drug Saf. 22:263–302. 2000. View Article : Google Scholar : PubMed/NCBI | |
Albini A, Pennesi G, Donatelli F, Cammarota R, De Flora S and Noonan DM: Cardiotoxicity of anticancer drugs: The need for cardio-oncology and cardio-oncological prevention. J Natl Cancer Inst. 102:14–25. 2010. View Article : Google Scholar : PubMed/NCBI | |
Sheng CC, Amiri-Kordestani L, Palmby T, Force T, Hong CC, Wu JC, Croce K, Kim G and Moslehi J: 21st Century cardio-oncology: Identifying cardiac safety signals in the era of personalized medicine. JACC Basic Transl Sci. 1:386–398. 2016. View Article : Google Scholar : PubMed/NCBI | |
Cortes JE, Kim DW, Pinilla-Ibarz J, Le Coutre P, Paquette R, Chuah C, Nicolini FE, Apperley JF, Khoury HJ, Talpaz M, et al: Long-term follow-up of ponatinib efficacy and safety in the phase 2 PACE trial. Blood. 124:31352014. View Article : Google Scholar | |
Sayed-Ahmed MM, Alrufaiq BI, Alrikabi A, Abdullah ML, Hafez MM and Al-Shabanah OA: Carnitine supplementation attenuates sunitinib-induced inhibition of AMP-activated protein kinase downstream signals in cardiac tissues. Cardiovasc Toxicol. 19:344–356. 2019. View Article : Google Scholar : PubMed/NCBI | |
Jin Y, Xu Z, Yan H, He Q, Yang X and Luo P: A comprehensive review of clinical cardiotoxicity incidence of FDA-approved small-molecule kinase inhibitors. Front Pharmacol. 11:8912020. View Article : Google Scholar : PubMed/NCBI | |
Moslehi JJ and Deininger M: Tyrosine kinase inhibitor-associated cardiovascular toxicity in chronic myeloid leukemia. J Clin Oncol. 33:4210–4218. 2015. View Article : Google Scholar : PubMed/NCBI | |
Shah RR and Morganroth J: Update on cardiovascular safety of tyrosine kinase inhibitors: With a special focus on QT interval, left ventricular dysfunction and overall risk/benefit. Drug Saf. 38:693–710. 2015. View Article : Google Scholar : PubMed/NCBI | |
Cortes JE, Kim DW, Pinilla-Ibarz J, le Coutre P, Paquette R, Chuah C, Nicolini FE, Apperley JF, Khoury HJ, Talpaz M, et al: Long-term follow-up of ponatinib efficacy and safety in the phase 2 PACE trial. Blood. 124:31352014. View Article : Google Scholar | |
Zordoky BN and El-Kadi AOS: H9c2 cell line is a valuable in vitro model to study the drug metabolizing enzymes in the heart. J Pharmacol Toxicol Methods. 56:317–322. 2007. View Article : Google Scholar : PubMed/NCBI | |
Watkins SJ, Borthwick GM and Arthur HM: The H9C2 cell line and primary neonatal cardiomyocyte cells show similar hypertrophic responses in vitro. In Vitro Cell Dev Biol Anim. 47:125–131. 2011. View Article : Google Scholar : PubMed/NCBI | |
Witek P, Korga A, Burdan F, Ostrowska M, Nosowska B, Iwan M and Dudka J: The effect of a number of H9C2 rat cardiomyocytes passage on repeatability of cytotoxicity study results. Cytotechnology. 68:2407–2415. 2016. View Article : Google Scholar : PubMed/NCBI | |
Kobuszewska A, Tomecka E, Zukowski K, Jastrzebska E, Chudy M, Dybko A, Renaud P and Brzozka Z: Heart-on-a-Chip: An investigation of the influence of static and perfusion conditions on cardiac (H9C2) cell proliferation, morphology, and alignment. SLAS Technol. 22:536–546. 2017. View Article : Google Scholar : PubMed/NCBI | |
Bouleftour W, Mery B, Rowinski E, Rivier C, Daguenet E and Magne N: Cardio-oncology preclinical models: A comprehensive review. Anticancer Res. 41:5355–5364. 2021. View Article : Google Scholar : PubMed/NCBI | |
Khan FR and Alhewairini SS: Zebrafish (Danio rerio) as a model organism. Curr Trends Cancer manage. 27:3–18. 2018. | |
Lane S, More LA and Asnani A: Zebrafish models of cancer therapy-induced cardiovascular toxicity. J Cardiovasc Dev Dis. 8:82021.PubMed/NCBI | |
Al-Thani HF, Shurbaji S, Zakaria ZZ, Hasan MH, Goracinova K, Korashy HM and Yalcin HC: Reduced cardiotoxicity of ponatinib-loaded PLGA-PEG-PLGA nanoparticles in zebrafish xenograft model. Materials (Basel). 15:39602022. View Article : Google Scholar : PubMed/NCBI | |
Suleiman M: The role of P90 ribosomal S6 kinase and autophagy in sunitinib and ponatinib-induced cardiotoxicity. 2019. | |
Lekes D, Szadvari I, Krizanova O, Lopusna K, Rezuchova I, Novakova M, Novakova Z, Parak T and Babula P: Nilotinib induces ER stress and cell death in H9c2 cells. Physiol Res. 65 (Suppl 4):S505–S514. 2016. View Article : Google Scholar : PubMed/NCBI | |
Wang H, Wang Y, Li J, He Z, Boswell SA, Chung M, You F and Han S: Three tyrosine kinase inhibitors cause cardiotoxicity by inducing endoplasmic reticulum stress and inflammation in cardiomyocytes. BMC Med. 21:1472023. View Article : Google Scholar : PubMed/NCBI | |
Lamore SD, Kohnken RA, Peters MF and Kolaja KL: Cardiovascular toxicity induced by kinase inhibitors: Mechanisms and preclinical approaches. Chem Res Toxicol. 33:125–136. 2020. View Article : Google Scholar : PubMed/NCBI | |
Sun S, Qin J, Liao W, Gao X, Shang Z, Luo D and Xiong S: Mitochondrial dysfunction in cardiotoxicity induced by BCR-ABL1 tyrosine kinase inhibitors-underlying mechanisms, detection, potential therapies. Cardiovasc Toxicol. 23:233–254. 2023. View Article : Google Scholar : PubMed/NCBI | |
Méry B, Guy JB, Vallard A, Espenel S, Ardail D, Rodriguez-Lafrasse C, Rancoule C and Magné N: In vitro cell death determination for drug discovery: A landscape review of real issues. J Cell Death. 10:11796707176912512017. View Article : Google Scholar : PubMed/NCBI | |
Yussman MG, Toyokawa T, Odley A, Lynch RA, Wu G, Colbert MC, Aronow BJ, Lorenz JN and Dorn GW II: Mitochondrial death protein Nix is induced in cardiac hypertrophy and triggers apoptotic cardiomyopathy. Nat Med. 8:725–730. 2002. View Article : Google Scholar : PubMed/NCBI | |
Kostin S, Pool L, Elsässer A, Hein S, Drexler HC, Arnon E, Hayakawa Y, Zimmermann R, Bauer E, Klövekorn WP and Schaper J: Myocytes die by multiple mechanisms in failing human hearts. Circ Res. 92:715–724. 2003. View Article : Google Scholar : PubMed/NCBI | |
Tham YK, Bernardo BC, Ooi JY, Weeks KL and McMullen JR: Pathophysiology of cardiac hypertrophy and heart failure: Signaling pathways and novel therapeutic targets. Arch Toxicol. 89:1401–1438. 2015. View Article : Google Scholar : PubMed/NCBI | |
Ghasemi M, Turnbull T, Sebastian S and Kempson I: The MTT assay: Utility, limitations, pitfalls, and interpretation in bulk and single-cell analysis. Int J Mol Sci. 22:128272021. View Article : Google Scholar : PubMed/NCBI | |
Rai Y, Pathak R, Kumari N, Sah DK, Pandey S, Kalra N, Soni R, Dwarakanath BS and Bhatt AN: Mitochondrial biogenesis and metabolic hyperactivation limits the application of MTT assay in the estimation of radiation induced growth inhibition. Sci Rep. 8:15312018. View Article : Google Scholar : PubMed/NCBI | |
van Meerloo J, Kaspers GJ and Cloos J: Cell sensitivity assays: The MTT assay. Methods Mol Biol. 731:237–245. 2011. View Article : Google Scholar : PubMed/NCBI | |
Yu T, Cao J, Alaa Eddine M, Moustafa M, Mock A, Erkut C, Abdollahi A, Warta R, Unterberg A, Herold-Mende C and Jungwirth G: Receptor-tyrosine kinase inhibitor ponatinib inhibits meningioma growth in vitro and in vivo. Cancers (Basel). 13:58982021. View Article : Google Scholar : PubMed/NCBI | |
Ghasemi M, Liang S, Luu QM and Kempson I: The MTT assay: A method for error minimization and interpretation in measuring cytotoxicity and estimating cell viability. Methods Mol Biol. 2644:15–33. 2023. View Article : Google Scholar : PubMed/NCBI | |
Gustafson D, Fish JE, Lipton JH and Aghel N: Mechanisms of cardiovascular toxicity of BCR-ABL1 tyrosine kinase inhibitors in chronic myelogenous leukemia. Curr Hematol Malig Rep. 15:20–30. 2020. View Article : Google Scholar : PubMed/NCBI | |
Loren CP, Aslan JE, Rigg RA, Nowak MS, Healy LD, Gruber A, Druker BJ and McCarty OJ: The BCR-ABL inhibitor ponatinib inhibits platelet immunoreceptor tyrosine-based activation motif (ITAM) signaling, platelet activation and aggregate formation under shear. Thromb Res. 135:155–160. 2015. View Article : Google Scholar : PubMed/NCBI | |
Menyhárt O, Harami-Papp H, Sukumar S, Schäfer R, Magnani L, de Barrios O and Győrffy B: Guidelines for the selection of functional assays to evaluate the hallmarks of cancer. Biochim Biophys Acta. 1866:300–319. 2016.PubMed/NCBI | |
Wang X, Xia Y, Liu L, Liu M, Gu N, Guang H and Zhang F: Comparison of MTT assay, flow cytometry, and RT-PCR in the evaluation of cytotoxicity of five prosthodontic materials. J Biomed Mater Res B Appl Biomater. 95:357–364. 2010. View Article : Google Scholar : PubMed/NCBI | |
Yurinskaya V, Aksenov N, Moshkov A, Model M, Goryachaya T and Vereninov A: A comparative study of U937 cell size changes during apoptosis initiation by flow cytometry, light scattering, water assay and electronic sizing. Apoptosis. 22:1287–1295. 2017. View Article : Google Scholar : PubMed/NCBI | |
Chen L, Zhao L, Samanta A, Mahmoudi SM, Buehler T, Cantilena A, Vincent RJ, Girgis M, Breeden J, Asante S, et al: STAT3 balances myocyte hypertrophy vis-à-vis autophagy in response to Angiotensin II by modulating the AMPKα/mTOR axis. PLoS One. 12:e01798352017. View Article : Google Scholar : PubMed/NCBI | |
Hasinoff BB, Patel D and Wu X: The myocyte-damaging effects of the BCR-ABL1-targeted tyrosine kinase inhibitors increase with potency and decrease with specificity. Cardiovasc Toxicol. 17:297–306. 2017. View Article : Google Scholar : PubMed/NCBI | |
Hoyberghs J, Bars C, Ayuso M, Van Ginneken C, Foubert K and Van Cruchten S: DMSO concentrations up to 1% are safe to be used in the zebrafish embryo developmental toxicity assay. Front Toxicol. 3:8040332021. View Article : Google Scholar : PubMed/NCBI | |
OECD, . OECD guidelines for the testing of chemicals. Oecd. 1994. | |
Jaballah M, Mohamed IA, Alemrayat B, Al-Sulaiti F, Mlih M and Mraiche F: Na+/H+ exchanger isoform 1 induced cardiomyocyte hypertrophy involves activation of p90 ribosomal s6 kinase. PLoS One. 10:e01222302015. View Article : Google Scholar : PubMed/NCBI | |
Yamaguchi N, Chakraborty A, Pasek DA, Molkentin JD and Meissner G: Dysfunctional ryanodine receptor and cardiac hypertrophy: Role of signaling molecules. Am J Physiol Heart Circ Physiol. 300:H2187–H2195. 2011. View Article : Google Scholar : PubMed/NCBI |