Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
November-2024 Volume 30 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
November-2024 Volume 30 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Role of bariatric surgery in improving diabetic cardiomyopathy: Molecular mechanisms and therapeutic perspectives (Review)

  • Authors:
    • Ke Song
    • Dianyuan Liang
    • Dingqi Xiao
    • Aijia Kang
    • Yixing Ren
  • View Affiliations / Copyright

    Affiliations: Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China, Institute of Hepatobiliary Pancreatic Intestinal Diseases, North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
    Copyright: © Song et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 199
    |
    Published online on: September 6, 2024
       https://doi.org/10.3892/mmr.2024.13323
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Diabetic cardiomyopathy (DCM), a significant complication of diabetes mellitus, is marked by myocardial structural and functional alterations due to chronic hyperglycemia. Despite its clinical significance, optimal treatment strategies are still elusive. Bariatric surgery via sleeve gastrectomy and Roux-en-Y gastric bypass have shown promise in treating morbid obesity and associated metabolic disorders including improvements in diabetes mellitus and DCM. The present study reviews the molecular mechanisms by which bariatric surgery improves DCM, offering insights into potential therapeutic targets. Future research should further investigate the mechanistic links between bariatric surgery and DCM, to evaluate the benefits and limitations of these surgical interventions for DCM treatment. The present study aims to provide a foundation for more effective DCM therapies, contributing to the advancement of patient care.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

View References

1 

Ahmad E, Lim S, Lamptey R, Webb DR and Davies MJ: Type 2 diabetes. Lancet. 400:1803–1820. 2022. View Article : Google Scholar : PubMed/NCBI

2 

Jia G, DeMarco VG and Sowers JR: Insulin resistance and hyperinsulinemia in diabetic cardiomyopathy. Nat Rev Endocrinol. 12:144–153. 2016. View Article : Google Scholar : PubMed/NCBI

3 

Qiu Y, Buffonge S, Ramnath R, Jenner S, Fawaz S, Arkill KP, Neal C, Verkade P, White SJ, Hezzell M, et al: Endothelial glycocalyx is damaged in diabetic cardiomyopathy: Angiopoietin 1 restores glycocalyx and improves diastolic function in mice. Diabetologia. 65:879–894. 2022. View Article : Google Scholar : PubMed/NCBI

4 

Khokhlova A, Myachina T, Volzhaninov D, Butova X, Kochurova A, Berg V, Gette I, Moroz G, Klinova S, Minigalieva I, et al: Type 1 diabetes impairs cardiomyocyte contractility in the left and right ventricular free walls but preserves it in the interventricular septum. Int J Mol Sci. 23:17192022. View Article : Google Scholar : PubMed/NCBI

5 

Tan Y, Zhang Z, Zheng C, Wintergerst KA, Keller BB and Cai L: Mechanisms of diabetic cardiomyopathy and potential therapeutic strategies: Preclinical and clinical evidence. Nat Rev Cardiol. 17:585–607. 2020. View Article : Google Scholar : PubMed/NCBI

6 

Marfella R, Sardu C, Mansueto G, Napoli C and Paolisso G: Evidence for human diabetic cardiomyopathy. Acta Diabetol. 58:983–988. 2021. View Article : Google Scholar : PubMed/NCBI

7 

Cosentino F, Grant PJ, Aboyans V, Bailey CJ, Ceriello A, Delgado V, Federici M, Filippatos G, Grobbee DE, Hansen TB, et al: 2019 ESC guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD. Eur Heart J. 41:255–323. 2020. View Article : Google Scholar : PubMed/NCBI

8 

Bellary S, Kyrou I, Brown JE and Bailey CJ: Type 2 diabetes mellitus in older adults: Clinical considerations and management. Nat Rev Endocrinol. 17:534–548. 2021. View Article : Google Scholar : PubMed/NCBI

9 

Kelsey MD, Nelson AJ, Green JB, Granger CB, Peterson ED, McGuire DK and Pagidipati NJ: Guidelines for cardiovascular risk reduction in patients with type 2 diabetes: JACC guideline comparison. J Am Coll Cardiol. 79:1849–1857. 2022. View Article : Google Scholar : PubMed/NCBI

10 

Arterburn DE, Telem DA, Kushner RF and Courcoulas AP: Benefits risks of bariatric surgery in adults: A review. JAMA. 324:879–887. 2020. View Article : Google Scholar : PubMed/NCBI

11 

Mingrone G, Panunzi S, De Gaetano A, Guidone C, Iaconelli A, Nanni G, Castagneto M, Bornstein S and Rubino F: Bariatric-metabolic surgery versus conventional medical treatment in obese patients with type 2 diabetes: 5 Year follow-up of an open-label, single-centre, randomised controlled trial. Lancet. 386:964–973. 2015. View Article : Google Scholar : PubMed/NCBI

12 

English WJ and Williams DB: Metabolic, bariatric surgery: An effective treatment option for obesity and cardiovascular disease. Prog Cardiovasc Dis. 61:253–269. 2018. View Article : Google Scholar : PubMed/NCBI

13 

Sorimachi H, Obokata M, Omote K, Reddy YNV, Takahashi N, Koepp KE, Ng ACT, Rider OJ and Borlaug BA: Long-term changes in cardiac structure and function following bariatric surgery. J Am Coll Cardiol. 80:1501–1512. 2022. View Article : Google Scholar : PubMed/NCBI

14 

Heidenreich P: Weight loss and cardiac reverse remodeling. J Am Coll Cardiol. 80:1513–1515. 2022. View Article : Google Scholar : PubMed/NCBI

15 

Zhang H, Pu Y, Chen J, Tong W, Cui Y, Sun F, Zheng Z, Li Q, Yang T, Meng C, et al: Gastrointestinal intervention ameliorates high blood pressure through antagonizing overdrive of the sympathetic nerve in hypertensive patients and rats. J Am Heart Assoc. 3:e0009292014. View Article : Google Scholar : PubMed/NCBI

16 

Cao L, Qin X, Peterson MR, Haller SE, Wilson KA, Hu N, Lin X, Nair S, Ren J and He G: CARD9 knockout ameliorates myocardial dysfunction associated with high fat diet-induced obesity. J Mol Cell Cardiol. 92:185–195. 2016. View Article : Google Scholar : PubMed/NCBI

17 

Martin M, Beekley A, Kjorstad R and Sebesta J: Socioeconomic disparities in eligibility and access to bariatric surgery: A national population-based analysis. Surg Obes Relat Dis. 6:8–15. 2010. View Article : Google Scholar : PubMed/NCBI

18 

Nguyen N, Champion JK, Ponce J, Quebbemann B, Patterson E, Pham B, Raum W, Buchwald JN, Segato G and Favretti F: A review of unmet needs in obesity management. Obes Surg. 22:956–966. 2012. View Article : Google Scholar : PubMed/NCBI

19 

Pories WJ, Swanson MS, MacDonald KG, Long SB, Morris PG, Brown BM, Barakat HA, deRamon RA, Israel G, Dolezal JM, et al: Who would have thought it? An operation proves to be the most effective therapy for adult-onset diabetes mellitus. Ann Surg. 222:339–352. 1995. View Article : Google Scholar : PubMed/NCBI

20 

Phillips BT and Shikora SA: The history of metabolic and bariatric surgery: Development of standards for patient safety and efficacy. Metabolism. 79:97–107. 2018. View Article : Google Scholar : PubMed/NCBI

21 

Schauer PR, Kashyap SR, Wolski K, Brethauer SA, Kirwan JP, Pothier CE, Thomas S, Abood B, Nissen SE and Bhatt DL: Bariatric surgery versus intensive medical therapy in obese patients with diabetes. N Engl J Med. 366:1567–1576. 2012. View Article : Google Scholar : PubMed/NCBI

22 

Pareek M, Schauer PR, Kaplan LM, Leiter LA, Rubino F and Bhatt DL: Metabolic surgery: Weight loss, diabetes, and beyond. J Am Coll Cardiol. 71:670–687. 2018. View Article : Google Scholar : PubMed/NCBI

23 

Ferraz-Bannitz R, Kashyap S and Patti ME: Bariatric surgery: It's not just incretins! J Clin Endocrinol Metab. 107:e883–e885. 2022. View Article : Google Scholar : PubMed/NCBI

24 

Kopp HP, Kopp CW, Festa A, Krzyzanowska K, Kriwanek S, Minar E, Roka R and Schernthaner G: Impact of weight loss on inflammatory proteins and their association with the insulin resistance syndrome in morbidly obese patients. Arterioscler Thromb Vasc Biol. 23:1042–1047. 2003. View Article : Google Scholar : PubMed/NCBI

25 

Leichman JG, Aguilar D, King TM, Mehta S, Majka C, Scarborough T, Wilson EB and Taegtmeyer H: Improvements in systemic metabolism, anthropometrics, and left ventricular geometry 3 months after bariatric surgery. Surg Obes Relat Dis. 2:592–599. 2006. View Article : Google Scholar : PubMed/NCBI

26 

Rider OJ, Francis JM, Ali MK, Petersen SE, Robinson M, Robson MD, Byrne JP, Clarke K and Neubauer S: Beneficial cardiovascular effects of bariatric surgical and dietary weight loss in obesity. J Am Coll Cardiol. 54:718–726. 2009. View Article : Google Scholar : PubMed/NCBI

27 

Ikonomidis I, Mazarakis A, Papadopoulos C, Patsouras N, Kalfarentzos F, Lekakis J, Kremastinos DT and Alexopoulos D: Weight loss after bariatric surgery improves aortic elastic properties and left ventricular function in individuals with morbid obesity: A 3-year follow-up study. J Hypertens. 25:439–447. 2007. View Article : Google Scholar : PubMed/NCBI

28 

Willens HJ, Chakko SC, Byers P, Chirinos JA, Labrador E, Castrillon JC and Lowery MH: Effects of weight loss after gastric bypass on right and left ventricular function assessed by tissue Doppler imaging. Am J Cardiol. 95:1521–1524. 2005. View Article : Google Scholar : PubMed/NCBI

29 

Garza CA, Pellikka PA, Somers VK, Sarr MG, Collazo-Clavell ML, Korenfeld Y and Lopez-Jimenez F: Structural and functional changes in left and right ventricles after major weight loss following bariatric surgery for morbid obesity. Am J Cardiol. 105:550–556. 2010. View Article : Google Scholar : PubMed/NCBI

30 

Shah RV, Murthy VL, Abbasi SA, Eng J, Wu C, Ouyang P, Kwong RY, Goldfine A, Bluemke DA, Lima J and Jerosch-Herold M: Weight loss and progressive left ventricular remodelling: The multi-ethnic study of atherosclerosis (MESA). Eur J Prev Cardiol. 22:1408–1418. 2015. View Article : Google Scholar : PubMed/NCBI

31 

Di Bello V, Santini F, Di Cori A, Pucci A, Talini E, Palagi C, Delle Donne MG, Marsili A, Fierabracci P, Valeriano R, et al: Effects of bariatric surgery on early myocardial alterations in adult severely obese subjects. Cardiology. 109:241–248. 2008. View Article : Google Scholar : PubMed/NCBI

32 

Rubler S, Dlugash J, Yuceoglu YZ, Kumral T, Branwood AW and Grishman A: New type of cardiomyopathy associated with diabetic glomerulosclerosis. Am J Cardiol. 30:595–602. 1972. View Article : Google Scholar : PubMed/NCBI

33 

Avagimyan A, Popov S and Shalnova S: The pathophysiological basis of diabetic cardiomyopathy development. Curr Probl Cardiol. 47:1011562022. View Article : Google Scholar : PubMed/NCBI

34 

Jia G, Whaley-Connell A and Sowers JR: Diabetic cardiomyopathy: A hyperglycaemia- and insulin-resistance-induced heart disease. Diabetologia. 61:21–28. 2018. View Article : Google Scholar : PubMed/NCBI

35 

Pappachan JM, Varughese GI, Sriraman R and Arunagirinathan G: Diabetic cardiomyopathy: Pathophysiology, diagnostic evaluation and management. World J Diabetes. 4:177–189. 2013. View Article : Google Scholar : PubMed/NCBI

36 

Nakamura K, Miyoshi T, Yoshida M, Akagi S, Saito Y, Ejiri K, Matsuo N, Ichikawa K, Iwasaki K, Naito T, et al: Pathophysiology and treatment of diabetic cardiomyopathy and heart failure in patients with diabetes mellitus. Int J Mol Sci. 23:35872022. View Article : Google Scholar : PubMed/NCBI

37 

Huang X, Wu D, Cheng Y, Zhang X, Liu T, Liu Q, Xia P, Zhang G, Hu S and Liu S: Restoration of myocardial glucose uptake with facilitated myocardial glucose transporter 4 translocation contributes to alleviation of diabetic cardiomyopathy in rats after duodenal-jejunal bypass. J Diabetes Investig. 10:626–638. 2019. View Article : Google Scholar : PubMed/NCBI

38 

Bugger H and Abel ED: Molecular mechanisms of diabetic cardiomyopathy. Diabetologia. 57:660–671. 2014. View Article : Google Scholar : PubMed/NCBI

39 

Zhou Z, Mahdi A, Tratsiakovich Y, Zahorán S, Kövamees O, Nordin F, Uribe Gonzalez AE, Alvarsson M, Östenson CG, Andersson DC, et al: Erythrocytes from patients with type 2 diabetes induce endothelial dysfunction via arginase I. J Am Coll Cardiol. 72:769–780. 2018. View Article : Google Scholar : PubMed/NCBI

40 

Xiao H, Sun X, Lin Z, Yang Y, Zhang M, Xu Z, Liu P, Liu Z and Huang H: Gentiopicroside targets PAQR3 to activate the PI3K/AKT signaling pathway and ameliorate disordered glucose and lipid metabolism. Acta Pharm Sin B. 12:2887–2904. 2022. View Article : Google Scholar : PubMed/NCBI

41 

Alaaeldin R, Abdel-Rahman IAM, Hassan HA, Youssef N, Allam AE, Abdelwahab SF, Zhao QL and Fathy M: Carpachromene ameliorates insulin resistance in HepG2 cells via modulating IR/IRS1/PI3k/Akt/GSK3/FoxO1 pathway. Molecules. 26:76292021. View Article : Google Scholar : PubMed/NCBI

42 

Zhang N, Liu X, Zhuang L, Liu X, Zhao H, Shan Y, Liu Z, Li F, Wang Y and Fang J: Berberine decreases insulin resistance in a PCOS rats by improving GLUT4: Dual regulation of the PI3K/AKT and MAPK pathways. Regul Toxicol Pharmacol. 110:1045442020. View Article : Google Scholar : PubMed/NCBI

43 

Ruze R, Xu Q, Liu G, Li Y, Chen W, Cheng Z, Xiong Y, Liu S, Zhang G, Hu S and Yan Z: Central GLP-1 contributes to improved cognitive function and brain glucose uptake after duodenum-jejunum bypass on obese and diabetic rats. Am J Physiol Endocrinol Metab. 321:E392–E409. 2021. View Article : Google Scholar : PubMed/NCBI

44 

Wang N, Zhang S, Yuan Y, Xu H, Defossa E, Matter H, Besenius M, Derdau V, Dreyer M, Halland N, et al: Molecular basis for inhibiting human glucose transporters by exofacial inhibitors. Nat Commun. 13:26322022. View Article : Google Scholar : PubMed/NCBI

45 

Mafakheri S, Chadt A and Al-Hasani H: Regulation of RabGAPs involved in insulin action. Biochem Soc Trans. 46:683–690. 2018. View Article : Google Scholar : PubMed/NCBI

46 

Lee KD, Ilavenil S, Karnan M, Yang CJ, Kim D and Choi KC: Novel bacillus ginsengihumi CMRO6 inhibits adipogenesis via p38MAPK/Erk44/42 and stimulates glucose uptake in 3T3-L1 pre-adipocytes through Akt/AS160 signaling. Int J Mol Sci. 23:47272022. View Article : Google Scholar : PubMed/NCBI

47 

Xu Q, Ding H, Li S, Dong S, Li L, Shi B, Zhong M and Zhang G: Sleeve gastrectomy ameliorates diabetes-induced cardiac hypertrophy correlates with the MAPK signaling pathway. Front Physiol. 12:7857992021. View Article : Google Scholar : PubMed/NCBI

48 

Belke DD, Larsen TS, Gibbs EM and Severson DL: Altered metabolism causes cardiac dysfunction in perfused hearts from diabetic (db/db) mice. Am J Physiol Endocrinol Metab. 279:E1104–E1113. 2000. View Article : Google Scholar : PubMed/NCBI

49 

Lopaschuk GD, Ussher JR, Folmes CD, Jaswal JS and Stanley WC: Myocardial fatty acid metabolism in health and disease. Physiol Rev. 90:207–258. 2010. View Article : Google Scholar : PubMed/NCBI

50 

Lopaschuk GD and Ussher JR: Evolving concepts of myocardial energy metabolism: More than just fats and carbohydrates. Circ Res. 119:1173–1176. 2016. View Article : Google Scholar : PubMed/NCBI

51 

Carpentier AC: Abnormal myocardial dietary fatty acid metabolism and diabetic cardiomyopathy. Can J Cardiol. 34:605–614. 2018. View Article : Google Scholar : PubMed/NCBI

52 

Zhou YT, Grayburn P, Karim A, Shimabukuro M, Higa M, Baetens D, Orci L and Unger RH: Lipotoxic heart disease in obese rats: Implications for human obesity. Proc Natl Acad Sci USA. 97:1784–1789. 2000. View Article : Google Scholar : PubMed/NCBI

53 

Listenberger LL, Ory DS and Schaffer JE: Palmitate-induced apoptosis can occur through a ceramide-independent pathway. J Biol Chem. 276:14890–14895. 2001. View Article : Google Scholar : PubMed/NCBI

54 

Aasum E, Hafstad AD, Severson DL and Larsen TS: Age-dependent changes in metabolism, contractile function, and ischemic sensitivity in hearts from db/db mice. Diabetes. 52:434–441. 2003. View Article : Google Scholar : PubMed/NCBI

55 

Vincent HK, Powers SK, Dirks AJ and Scarpace PJ: Mechanism for obesity-induced increase in myocardial lipid peroxidation. Int J Obes Relat Metab Disord. 25:378–388. 2001. View Article : Google Scholar : PubMed/NCBI

56 

Lopaschuk GD, Karwi QG, Tian R, Wende AR and Abel ED: Cardiac energy metabolism in heart failure. Circ Res. 128:1487–1513. 2021. View Article : Google Scholar : PubMed/NCBI

57 

Wali JA, Jarzebska N, Raubenheimer D, Simpson SJ, Rodionov RN and O'Sullivan JF: Cardio-metabolic effects of high-fat diets and their underlying mechanisms-a narrative review. Nutrients. 12:15052020. View Article : Google Scholar : PubMed/NCBI

58 

Lin CH, Kurup S, Herrero P, Schechtman KB, Eagon JC, Klein S, Dávila-Román VG, Stein RI, Dorn GW II, Gropler RJ, et al: Myocardial oxygen consumption change predicts left ventricular relaxation improvement in obese humans after weight loss. Obesity (Silver Spring). 19:1804–1812. 2011. View Article : Google Scholar : PubMed/NCBI

59 

Carreau AM, Noll C, Blondin DP, Frisch F, Nadeau M, Pelletier M, Phoenix S, Cunnane SC, Guérin B, Turcotte EE, et al: Bariatric surgery rapidly decreases cardiac dietary fatty acid partitioning and hepatic insulin resistance through increased intra-abdominal adipose tissue storage and reduced spillover in type 2 diabetes. Diabetes. 69:567–577. 2020. View Article : Google Scholar : PubMed/NCBI

60 

Middleton ALO, Byrne JP and Calder PC: The influence of bariatric (metabolic) surgery on blood polyunsaturated fatty acids: A systematic review. Clin Nutr ESPEN. 48:121–140. 2022. View Article : Google Scholar : PubMed/NCBI

61 

Moreland AM, Santa Ana CA, Asplin JR, Kuhn JA, Holmes RP, Cole JA, Odstrcil EA, Van Dinter TG Jr, Martinez JG and Fordtran JS: Steatorrhea and hyperoxaluria in severely obese patients before and after Roux-en-Y gastric bypass. Gastroenterology. 152:1055–1067.e3. 2017. View Article : Google Scholar : PubMed/NCBI

62 

Verna EC and Berk PD: Role of fatty acids in the pathogenesis of obesity and fatty liver: Impact of bariatric surgery. Semin Liver Dis. 28:407–426. 2008. View Article : Google Scholar : PubMed/NCBI

63 

Ajoolabady A, Lebeaupin C, Wu NN, Kaufman RJ and Ren J: ER stress and inflammation crosstalk in obesity. Med Res Rev. 43:5–30. 2023. View Article : Google Scholar : PubMed/NCBI

64 

Liang B, Chen SW, Li YY, Zhang SX and Zhang Y: Comprehensive analysis of endoplasmic reticulum stress-related mechanisms in type 2 diabetes mellitus. World J Diabetes. 14:820–845. 2023. View Article : Google Scholar : PubMed/NCBI

65 

Lakshmanan AP, Harima M, Suzuki K, Soetikno V, Nagata M, Nakamura T, Takahashi T, Sone H, Kawachi H and Watanabe K: The hyperglycemia stimulated myocardial endoplasmic reticulum (ER) stress contributes to diabetic cardiomyopathy in the transgenic non-obese type 2 diabetic rats: A differential role of unfolded protein response (UPR) signaling proteins. Int J Biochem Cell Biol. 45:438–447. 2013. View Article : Google Scholar : PubMed/NCBI

66 

Yu H, Zhen J, Yang Y, Gu J, Wu S and Liu Q: Ginsenoside Rg1 ameliorates diabetic cardiomyopathy by inhibiting endoplasmic reticulum stress-induced apoptosis in a streptozotocin-induced diabetes rat model. J Cell Mol Med. 20:623–631. 2016. View Article : Google Scholar : PubMed/NCBI

67 

Hu H, Tian M, Ding C and Yu S: The C/EBP homologous protein (CHOP) transcription factor functions in endoplasmic reticulum stress-induced apoptosis and microbial infection. Front Immunol. 9:30832018. View Article : Google Scholar : PubMed/NCBI

68 

B'Chir W, Maurin AC, Carraro V, Averous J, Jousse C, Muranishi Y, Parry L, Stepien G, Fafournoux P and Bruhat A: The eIF2α/ATF4 pathway is essential for stress-induced autophagy gene expression. Nucleic Acids Res. 41:7683–7699. 2013. View Article : Google Scholar : PubMed/NCBI

69 

Belali OM, Ahmed MM, Mohany M, Belali TM, Alotaibi MM, Al-Hoshani A and Al-Rejaie SS: LCZ696 Protects against diabetic cardiomyopathy-induced myocardial inflammation, ER stress, and apoptosis through inhibiting AGEs/NF-κB and PERK/CHOP signaling pathways. Int J Mol Sci. 23:12882022. View Article : Google Scholar : PubMed/NCBI

70 

Meng Y, Xu X, Niu D, Xu Y, Qiu Y, Zhu Z, Zhang H and Yin D: Organophosphate flame retardants induce oxidative stress and Chop/Caspase 3-related apoptosis via Sod1/p53/Map3k6/Fkbp5 in NCI-1975 cells. Sci Total Environ. 819:1531602022. View Article : Google Scholar : PubMed/NCBI

71 

Zhang X, Liu S, Zhang G, Zhong M, Liu T, Wei M, Wu D, Huang X, Cheng Y, Wu Q and Hu S: Bariatric surgery ameliorates diabetic cardiac dysfunction by inhibiting ER stress in a diabetic rat model. Obes Surg. 27:1324–1334. 2017. View Article : Google Scholar : PubMed/NCBI

72 

Hetz C, Zhang K and Kaufman RJ: Mechanisms, regulation and functions of the unfolded protein response. Nat Rev Mol Cell Biol. 21:421–438. 2020. View Article : Google Scholar : PubMed/NCBI

73 

Ron D and Walter P: Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol. 8:519–5. 2007. View Article : Google Scholar : PubMed/NCBI

74 

Ren J, Bi Y, Sowers JR, Hetz C and Zhang Y: Endoplasmic reticulum stress and unfolded protein response in cardiovascular diseases. Nat Rev Cardiol. 18:499–521. 2021. View Article : Google Scholar : PubMed/NCBI

75 

Zhu G and Lee AS: Role of the unfolded protein response, GRP78 and GRP94 in organ homeostasis. J Cell Physiol. 230:1413–1420. 2015. View Article : Google Scholar : PubMed/NCBI

76 

Elfiky AA, Baghdady AM, Ali SA and Ahmed MI: GRP78 targeting: Hitting two birds with a stone. Life Sci. 260:1183172020. View Article : Google Scholar : PubMed/NCBI

77 

Kitada M and Koya D: Autophagy in metabolic disease and ageing. Nat Rev Endocrinol. 17:647–661. 2021. View Article : Google Scholar : PubMed/NCBI

78 

Dewanjee S, Vallamkondu J, Kalra RS, John A, Reddy PH and Kandimalla R: Autophagy in the diabetic heart: A potential pharmacotherapeutic target in diabetic cardiomyopathy. Ageing Res Rev. 68:1013382021. View Article : Google Scholar : PubMed/NCBI

79 

Huang X, Liu S, Wu D, Cheng Y, Han H, Wang K, Zhang G and Hu S: Facilitated Ca2+ homeostasis and attenuated myocardial autophagy contribute to alleviation of diabetic cardiomyopathy after bariatric surgery. Am J Physiol Heart Circ Physiol. 315:H1258–H1268. 2018. View Article : Google Scholar : PubMed/NCBI

80 

Packer M: SGLT2 inhibitors produce cardiorenal benefits by promoting adaptive cellular reprogramming to induce a state of fasting mimicry: A paradigm shift in understanding their mechanism of action. Diabetes Care. 43:508–511. 2020. View Article : Google Scholar : PubMed/NCBI

81 

He B, Liu L, Yu C, Wang Y and Han P: Roux-en-Y gastric bypass reduces lipid overaccumulation in liver by upregulating hepatic autophagy in obese diabetic rats. Obes Surg. 25:109–118. 2015. View Article : Google Scholar : PubMed/NCBI

82 

Rodríguez-Hernández A, Cordero MD, Salviati L, Artuch R, Pineda M, Briones P, Gómez Izquierdo L, Cotán D, Navas P and Sánchez-Alcázar JA: Coenzyme Q deficiency triggers mitochondria degradation by mitophagy. Autophagy. 5:19–32. 2009. View Article : Google Scholar : PubMed/NCBI

83 

Russo SB, Baicu CF, Van Laer A, Geng T, Kasiganesan H, Zile MR and Cowart LA: Ceramide synthase 5 mediates lipid-induced autophagy and hypertrophy in cardiomyocytes. J Clin Invest. 122:3919–3930. 2012. View Article : Google Scholar : PubMed/NCBI

84 

Sun Y and Ding S: NLRP3 inflammasome in diabetic cardiomyopathy and exercise intervention. Int J Mol Sci. 22:132282021. View Article : Google Scholar : PubMed/NCBI

85 

Zheng Y, Xu L, Dong N and Li F: NLRP3 inflammasome: The rising star in cardiovascular diseases. Front Cardiovasc Med. 9:9270612022. View Article : Google Scholar : PubMed/NCBI

86 

Zhang L, Ai C, Bai M, Niu J and Zhang Z: NLRP3 inflammasome/pyroptosis: A key driving force in diabetic cardiomyopathy. Int J Mol Sci. 23:106322022. View Article : Google Scholar : PubMed/NCBI

87 

Ding K, Song C, Hu H, Yin K, Huang H and Tang H: The Role of NLRP3 inflammasome in diabetic cardiomyopathy and its therapeutic implications. Oxid Med Cell Longev. 2022:37907212022. View Article : Google Scholar : PubMed/NCBI

88 

Sun X, Sun X, Meng H, Wu J, Guo X, Du L and Wu H: Krill oil inhibits NLRP3 inflammasome activation in the prevention of the pathological injuries of diabetic cardiomyopathy. Nutrients. 14:3682022. View Article : Google Scholar : PubMed/NCBI

89 

Mocanu AO, Mulya A, Huang H, Dan O, Schauer PR, Dinischiotu A, Brethauer SA and Kirwan JP: Effect of Roux-en-Y gastric bypass on the NLRP3 inflammasome in pancreatic islets from zucker diabetic fatty rats. Obes Surg. 26:3076–3081. 2016. View Article : Google Scholar : PubMed/NCBI

90 

Mocanu AO, Mulya A, Huang H, Dan O, Shimizu H, Batayyah E, Brethauer SA, Dinischiotu A and Kirwan JP: Effect of Roux-en-Y gastric bypass on the NLRP3 inflammasome in adipose tissue from obese rats. PLoS One. 10:e01397642015. View Article : Google Scholar : PubMed/NCBI

91 

Sun K, Wang J, Lan Z, Li L, Wang Y, Li A, Liu S and Li Y: Sleeve gastroplasty combined with the NLRP3 inflammasome inhibitor CY-09 reduces body weight, improves insulin resistance and alleviates hepatic steatosis in mouse model. Obes Surg. 30:3435–3443. 2020. View Article : Google Scholar : PubMed/NCBI

92 

Wu D, Yan ZB, Cheng YG, Zhong MW, Liu SZ, Zhang GY and Hu SY: Deactivation of the NLRP3 inflammasome in infiltrating macrophages by duodenal-jejunal bypass surgery mediates improvement of beta cell function in type 2 diabetes. Metabolism. 81:1–12. 2018. View Article : Google Scholar : PubMed/NCBI

93 

Li S, Dong S, Shi B, Xu Q, Li L, Wang S, Zhang W, Zhong M, Zhu J, Cheng Y, et al: Attenuation of ROS/chloride efflux-mediated NLRP3 inflammasome activation contributes to alleviation of diabetic cardiomyopathy in rats after sleeve gastrectomy. Oxid Med Cell Longev. 2022:46089142022.PubMed/NCBI

94 

Zhou R, Yazdi AS, Menu P and Tschopp J: A role for mitochondria in NLRP3 inflammasome activation. Nature. 469:221–225. 2011. View Article : Google Scholar : PubMed/NCBI

95 

Yang F, Qin Y, Wang Y, Meng S, Xian H, Che H, Lv J, Li Y, Yu Y, Bai Y and Wang L: Metformin inhibits the NLRP3 inflammasome via AMPK/mTOR-dependent effects in diabetic cardiomyopathy. Int J Biol Sci. 15:1010–1019. 2019. View Article : Google Scholar : PubMed/NCBI

96 

Li R and Chen J: Salidroside protects dopaminergic neurons by enhancing PINK1/parkin-mediated mitophagy. Oxid Med Cell Longev. 2019:93410182019. View Article : Google Scholar : PubMed/NCBI

97 

Yang Y, Zhao J, Qiu J, Li J, Liang X, Zhang Z, Zhang X, Fu H, Korantzopoulos P, Letsas KP, et al: Xanthine oxidase inhibitor allopurinol prevents oxidative stress-mediated atrial remodeling in alloxan-induced diabetes mellitus rabbits. J Am Heart Assoc. 7:e0088072018. View Article : Google Scholar : PubMed/NCBI

98 

Zhang N, Yu H, Liu T, Zhou Z, Feng B, Wang Y, Qian Z, Hou X and Zou J: Bmal1 downregulation leads to diabetic cardiomyopathy by promoting Bcl2/IP3R-mediated mitochondrial Ca2+ overload. Redox Biol. 64:1027882023. View Article : Google Scholar : PubMed/NCBI

99 

Gutiérrez T, Parra V, Troncoso R, Pennanen C, Contreras-Ferrat A, Vasquez-Trincado C, Morales PE, Lopez-Crisosto C, Sotomayor-Flores C, Chiong M, et al: Alteration in mitochondrial Ca(2+) uptake disrupts insulin signaling in hypertrophic cardiomyocytes. Cell Commun Signal. 12:682014. View Article : Google Scholar : PubMed/NCBI

100 

Luptak I, Sverdlov AL, Panagia M, Qin F, Pimentel DR, Croteau D, Siwik DA, Ingwall JS, Bachschmid MM, Balschi JA and Colucci WS: Decreased ATP production and myocardial contractile reserve in metabolic heart disease. J Mol Cell Cardiol. 116:106–114. 2018. View Article : Google Scholar : PubMed/NCBI

101 

Dillmann WH: Diabetic cardiomyopathy. Circ Res. 124:1160–1162. 2019. View Article : Google Scholar : PubMed/NCBI

102 

Zamora M and Villena JA: Contribution of impaired insulin signaling to the pathogenesis of diabetic cardiomyopathy. Int J Mol Sci. 20:28332019. View Article : Google Scholar : PubMed/NCBI

103 

Dia M, Gomez L, Thibault H, Tessier N, Leon C, Chouabe C, Ducreux S, Gallo-Bona N, Tubbs E, Bendridi N, et al: Reduced reticulum-mitochondria Ca2+ transfer is an early and reversible trigger of mitochondrial dysfunctions in diabetic cardiomyopathy. Basic Res Cardiol. 115:742020. View Article : Google Scholar : PubMed/NCBI

104 

Mohan HM, Aherne CM, Rogers AC, Baird AW, Winter DC and Murphy EP: Molecular pathways: The role of NR4A orphan nuclear receptors in cancer. Clin Cancer Res. 18:3223–3228. 2012. View Article : Google Scholar : PubMed/NCBI

105 

Zhou H, Wang J, Zhu P, Zhu H, Toan S, Hu S, Ren J and Chen Y: NR4A1 aggravates the cardiac microvascular ischemia reperfusion injury through suppressing FUNDC1-mediated mitophagy and promoting Mff-required mitochondrial fission by CK2α. Basic Res Cardiol. 113:232018. View Article : Google Scholar : PubMed/NCBI

106 

Wang D, Yin Y, Wang S, Zhao T, Gong F, Zhao Y, Wang B, Huang Y, Cheng Z, Zhu G, et al: FGF1ΔHBS prevents diabetic cardiomyopathy by maintaining mitochondrial homeostasis and reducing oxidative stress via AMPK/Nur77 suppression. Signal Transduct Target Ther. 6:1332021. View Article : Google Scholar : PubMed/NCBI

107 

Zheng Y, Tao Y, Zhan X and Wu Q: Nuclear receptor 4A1 (NR4A1) silencing protects hepatocyte against hypoxia-reperfusion injury in vitro by activating liver kinase B1 (LKB1)/AMP-activated protein kinase (AMPK) signaling. Bioengineered. 13:8349–8359. 2022. View Article : Google Scholar : PubMed/NCBI

108 

Li S, Dong S, Xu Q, Shi B, Li L, Zhang W, Zhu J, Cheng Y, Zhang G and Zhong M: Sleeve gastrectomy-induced AMPK activation attenuates diabetic cardiomyopathy by maintaining mitochondrial homeostasis via NR4A1 suppression in rats. Front Physiol. 13:8377982022. View Article : Google Scholar : PubMed/NCBI

109 

Meier JJ: GLP-1 receptor agonists for individualized treatment of type 2 diabetes mellitus. Nat Rev Endocrinol. 8:728–742. 2012. View Article : Google Scholar : PubMed/NCBI

110 

Du Z, Wang J, Lu Y, Ma X, Wen R, Lin J, Zhou C, Song Z, Li J, Tu P and Jiang Y: The cardiac protection of Baoyuan decoction via gut-heart axis metabolic pathway. Phytomedicine. 79:1533222020. View Article : Google Scholar : PubMed/NCBI

111 

Chambers AP, Jessen L, Ryan KK, Sisley S, Wilson-Pérez HE, Stefater MA, Gaitonde SG, Sorrell JE, Toure M, Berger J, et al: Weight-independent changes in blood glucose homeostasis after gastric bypass or vertical sleeve gastrectomy in rats. Gastroenterology. 141:950–958. 2011. View Article : Google Scholar : PubMed/NCBI

112 

Ryan KK, Tremaroli V, Clemmensen C, Kovatcheva-Datchary P, Myronovych A, Karns R, Wilson-Pérez HE, Sandoval DA, Kohli R, Bäckhed F and Seeley RJ: FXR is a molecular target for the effects of vertical sleeve gastrectomy. Nature. 509:183–188. 2014. View Article : Google Scholar : PubMed/NCBI

113 

Ding H, Zhang Y, Ma X, Zhang Z, Xu Q, Liu C, Li B, Dong S, Li L, Zhu J, et al: Bariatric surgery for diabetic comorbidities: A focus on hepatic, cardiac and renal fibrosis. Front Pharmacol. 13:10166352022. View Article : Google Scholar : PubMed/NCBI

114 

Helmstädter J, Frenis K, Filippou K, Grill A, Dib M, Kalinovic S, Pawelke F, Kus K, Kröller-Schön S, Oelze M, et al: Endothelial GLP-1 (glucagon-like peptide-1) receptor mediates cardiovascular protection by liraglutide in mice with experimental arterial hypertension. Arterioscler Thromb Vasc Biol. 40:145–158. 2020. View Article : Google Scholar : PubMed/NCBI

115 

Osto E, Doytcheva P, Corteville C, Bueter M, Dörig C, Stivala S, Buhmann H, Colin S, Rohrer L, Hasballa R, et al: Rapid and body weight-independent improvement of endothelial and high-density lipoprotein function after Roux-en-Y gastric bypass: Role of glucagon-like peptide-1. Circulation. 131:871–881. 2015. View Article : Google Scholar : PubMed/NCBI

116 

Lee CJ, Sears CL and Maruthur N: Gut microbiome and its role in obesity and insulin resistance. Ann NY Acad Sci. 1461:37–52. 2020. View Article : Google Scholar : PubMed/NCBI

117 

Castellanos-Jankiewicz A, Guzmán-Quevedo O, Fénelon VS, Zizzari P, Quarta C, Bellocchio L, Tailleux A, Charton J, Fernandois D, Henricsson M, et al: Hypothalamic bile acid-TGR5 signaling protects from obesity. Cell Metab. 33:1483–1492.e10. 2021. View Article : Google Scholar : PubMed/NCBI

118 

Fuchs CD and Trauner M: Role of bile acids and their receptors in gastrointestinal and hepatic pathophysiology. Nat Rev Gastroenterol Hepatol. 19:432–450. 2022. View Article : Google Scholar : PubMed/NCBI

119 

Tu J, Wang Y, Jin L and Huang W: Bile acids, gut microbiota and metabolic surgery. Front Endocrinol (Lausanne). 13:9295302022. View Article : Google Scholar : PubMed/NCBI

120 

Stefura T, Zapała B, Gosiewski T, Krzysztofik M, Skomarovska O and Major P: Relationship between bariatric surgery outcomes and the preoperative gastrointestinal microbiota: a cohort study. Surg Obes Relat Dis. 17:889–899. 2021. View Article : Google Scholar : PubMed/NCBI

121 

Coimbra VOR, Crovesy L, Ribeiro-Alves M, Faller ALK, Mattos F and Rosado EL: Gut microbiota profile in adults undergoing bariatric surgery: A systematic review. Nutrients. 14:49792022. View Article : Google Scholar : PubMed/NCBI

122 

Anhê FF, Zlitni S, Zhang SY, Choi BS, Chen CY, Foley KP, Barra NG, Surette MG, Biertho L, Richard D, et al: Human gut microbiota after bariatric surgery alters intestinal morphology and glucose absorption in mice independently of obesity. Gut. 72:460–471. 2023. View Article : Google Scholar : PubMed/NCBI

123 

Martínez-Montoro JI, Kuchay MS, Balaguer-Román A, Martínez-Sánchez MA, Frutos MD, Fernández-García JC and Ramos-Molina B: Gut microbiota and related metabolites in the pathogenesis of nonalcoholic steatohepatitis and its resolution after bariatric surgery. Obes Rev. 23:e133672022. View Article : Google Scholar : PubMed/NCBI

124 

Debédat J, Le Roy T, Voland L, Belda E, Alili R, Adriouch S, Bel Lassen P, Kasahara K, Hutchison E, Genser L, et al: The human gut microbiota contributes to type-2 diabetes non-resolution 5-years after Roux-en-Y gastric bypass. Gut Microbes. 14:20506352022. View Article : Google Scholar : PubMed/NCBI

125 

Gutiérrez-Repiso C, Moreno-Indias I, Martín-Núñez GM, Ho-Plagaro A, Ocaña-Wilhelmi L, Fernández García D, Gonzalo Marín M, Moreno-Ruiz FJ, García-Fuentes E and Tinahones FJ: Influence of factors altering gastric microbiota on bariatric surgery metabolic outcomes. Microbiol Spectr. 9:e00535212021. View Article : Google Scholar : PubMed/NCBI

126 

Chaudhari SN, Luo JN, Harris DA, Aliakbarian H, Yao L, Paik D, Subramaniam R, Adhikari AA, Vernon AH, Kiliç A, et al: A microbial metabolite remodels the gut-liver axis following bariatric surgery. Cell Host Microbe. 29:408–424.e7. 2021. View Article : Google Scholar : PubMed/NCBI

127 

Wang J, Chen P, Cao Q, Wang W and Chang X: Traditional Chinese medicine ginseng dingzhi decoction ameliorates myocardial fibrosis and high glucose-induced cardiomyocyte injury by regulating intestinal flora and mitochondrial dysfunction. Oxid Med Cell Longev. 2022:92059082022.PubMed/NCBI

128 

Bastin M and Andreelli F: The gut microbiota and diabetic cardiomyopathy in humans. Diabetes Metab. 46:197–202. 2020. View Article : Google Scholar : PubMed/NCBI

129 

Shu H, Peng Y, Hang W, Nie J, Zhou N and Wang DW: The role of CD36 in cardiovascular disease. Cardiovasc Res. 118:115–129. 2022. View Article : Google Scholar : PubMed/NCBI

130 

Wang H, Wang J, Cui H, Fan C, Xue Y, Liu H, Li H, Li J, Li H, Sun Y, et al: Inhibition of fatty acid uptake by TGR5 prevents diabetic cardiomyopathy. Nat Metab. 6:1161–1177. 2024. View Article : Google Scholar : PubMed/NCBI

131 

Cesario DA, Brar R and Shivkumar K: Alterations in ion channel physiology in diabetic cardiomyopathy. Endocrinol Metab Clin North Am. 35:601–610. ix–x. 2006. View Article : Google Scholar : PubMed/NCBI

132 

Ming Y, Yin Y and Sun Z: Interaction of nuclear receptor subfamily 4 group A member 1 (Nr4a1) and liver linase B1 (LKB1) mitigates type 2 diabetes mellitus by activating monophosphate-activated protein kinase (AMPK)/sirtuin 1 (SIRT1) axis and inhibiting nuclear factor-kappa B (NF-κB) activation. Med Sci Monit. 26:e9202782020. View Article : Google Scholar : PubMed/NCBI

133 

Liu M, Chen H, Dai H, Wang Y, Li J, Tian F, Li Z and Ge RS: Effects of bis (2-butoxyethyl) phthalate on adrenocortical function in male rats in puberty partially via down-regulating NR5A1/NR4A1/NR4A2 pathways. Environ Toxicol. 37:2419–2433. 2022. View Article : Google Scholar : PubMed/NCBI

134 

Huynh K, Bernardo BC, McMullen JR and Ritchie RH: Diabetic cardiomyopathy: Mechanisms and new treatment strategies targeting antioxidant signaling pathways. Pharmacol Ther. 142:375–415. 2014. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Song K, Liang D, Xiao D, Kang A and Ren Y: Role of bariatric surgery in improving diabetic cardiomyopathy: Molecular mechanisms and therapeutic perspectives (Review). Mol Med Rep 30: 199, 2024.
APA
Song, K., Liang, D., Xiao, D., Kang, A., & Ren, Y. (2024). Role of bariatric surgery in improving diabetic cardiomyopathy: Molecular mechanisms and therapeutic perspectives (Review). Molecular Medicine Reports, 30, 199. https://doi.org/10.3892/mmr.2024.13323
MLA
Song, K., Liang, D., Xiao, D., Kang, A., Ren, Y."Role of bariatric surgery in improving diabetic cardiomyopathy: Molecular mechanisms and therapeutic perspectives (Review)". Molecular Medicine Reports 30.5 (2024): 199.
Chicago
Song, K., Liang, D., Xiao, D., Kang, A., Ren, Y."Role of bariatric surgery in improving diabetic cardiomyopathy: Molecular mechanisms and therapeutic perspectives (Review)". Molecular Medicine Reports 30, no. 5 (2024): 199. https://doi.org/10.3892/mmr.2024.13323
Copy and paste a formatted citation
x
Spandidos Publications style
Song K, Liang D, Xiao D, Kang A and Ren Y: Role of bariatric surgery in improving diabetic cardiomyopathy: Molecular mechanisms and therapeutic perspectives (Review). Mol Med Rep 30: 199, 2024.
APA
Song, K., Liang, D., Xiao, D., Kang, A., & Ren, Y. (2024). Role of bariatric surgery in improving diabetic cardiomyopathy: Molecular mechanisms and therapeutic perspectives (Review). Molecular Medicine Reports, 30, 199. https://doi.org/10.3892/mmr.2024.13323
MLA
Song, K., Liang, D., Xiao, D., Kang, A., Ren, Y."Role of bariatric surgery in improving diabetic cardiomyopathy: Molecular mechanisms and therapeutic perspectives (Review)". Molecular Medicine Reports 30.5 (2024): 199.
Chicago
Song, K., Liang, D., Xiao, D., Kang, A., Ren, Y."Role of bariatric surgery in improving diabetic cardiomyopathy: Molecular mechanisms and therapeutic perspectives (Review)". Molecular Medicine Reports 30, no. 5 (2024): 199. https://doi.org/10.3892/mmr.2024.13323
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team