|
1
|
Ahmad E, Lim S, Lamptey R, Webb DR and
Davies MJ: Type 2 diabetes. Lancet. 400:1803–1820. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Jia G, DeMarco VG and Sowers JR: Insulin
resistance and hyperinsulinemia in diabetic cardiomyopathy. Nat Rev
Endocrinol. 12:144–153. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Qiu Y, Buffonge S, Ramnath R, Jenner S,
Fawaz S, Arkill KP, Neal C, Verkade P, White SJ, Hezzell M, et al:
Endothelial glycocalyx is damaged in diabetic cardiomyopathy:
Angiopoietin 1 restores glycocalyx and improves diastolic function
in mice. Diabetologia. 65:879–894. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Khokhlova A, Myachina T, Volzhaninov D,
Butova X, Kochurova A, Berg V, Gette I, Moroz G, Klinova S,
Minigalieva I, et al: Type 1 diabetes impairs cardiomyocyte
contractility in the left and right ventricular free walls but
preserves it in the interventricular septum. Int J Mol Sci.
23:17192022. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Tan Y, Zhang Z, Zheng C, Wintergerst KA,
Keller BB and Cai L: Mechanisms of diabetic cardiomyopathy and
potential therapeutic strategies: Preclinical and clinical
evidence. Nat Rev Cardiol. 17:585–607. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Marfella R, Sardu C, Mansueto G, Napoli C
and Paolisso G: Evidence for human diabetic cardiomyopathy. Acta
Diabetol. 58:983–988. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Cosentino F, Grant PJ, Aboyans V, Bailey
CJ, Ceriello A, Delgado V, Federici M, Filippatos G, Grobbee DE,
Hansen TB, et al: 2019 ESC guidelines on diabetes, pre-diabetes,
and cardiovascular diseases developed in collaboration with the
EASD. Eur Heart J. 41:255–323. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Bellary S, Kyrou I, Brown JE and Bailey
CJ: Type 2 diabetes mellitus in older adults: Clinical
considerations and management. Nat Rev Endocrinol. 17:534–548.
2021. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Kelsey MD, Nelson AJ, Green JB, Granger
CB, Peterson ED, McGuire DK and Pagidipati NJ: Guidelines for
cardiovascular risk reduction in patients with type 2 diabetes:
JACC guideline comparison. J Am Coll Cardiol. 79:1849–1857. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Arterburn DE, Telem DA, Kushner RF and
Courcoulas AP: Benefits risks of bariatric surgery in adults: A
review. JAMA. 324:879–887. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Mingrone G, Panunzi S, De Gaetano A,
Guidone C, Iaconelli A, Nanni G, Castagneto M, Bornstein S and
Rubino F: Bariatric-metabolic surgery versus conventional medical
treatment in obese patients with type 2 diabetes: 5 Year follow-up
of an open-label, single-centre, randomised controlled trial.
Lancet. 386:964–973. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
English WJ and Williams DB: Metabolic,
bariatric surgery: An effective treatment option for obesity and
cardiovascular disease. Prog Cardiovasc Dis. 61:253–269. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Sorimachi H, Obokata M, Omote K, Reddy
YNV, Takahashi N, Koepp KE, Ng ACT, Rider OJ and Borlaug BA:
Long-term changes in cardiac structure and function following
bariatric surgery. J Am Coll Cardiol. 80:1501–1512. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Heidenreich P: Weight loss and cardiac
reverse remodeling. J Am Coll Cardiol. 80:1513–1515. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Zhang H, Pu Y, Chen J, Tong W, Cui Y, Sun
F, Zheng Z, Li Q, Yang T, Meng C, et al: Gastrointestinal
intervention ameliorates high blood pressure through antagonizing
overdrive of the sympathetic nerve in hypertensive patients and
rats. J Am Heart Assoc. 3:e0009292014. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Cao L, Qin X, Peterson MR, Haller SE,
Wilson KA, Hu N, Lin X, Nair S, Ren J and He G: CARD9 knockout
ameliorates myocardial dysfunction associated with high fat
diet-induced obesity. J Mol Cell Cardiol. 92:185–195. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Martin M, Beekley A, Kjorstad R and
Sebesta J: Socioeconomic disparities in eligibility and access to
bariatric surgery: A national population-based analysis. Surg Obes
Relat Dis. 6:8–15. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Nguyen N, Champion JK, Ponce J, Quebbemann
B, Patterson E, Pham B, Raum W, Buchwald JN, Segato G and Favretti
F: A review of unmet needs in obesity management. Obes Surg.
22:956–966. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Pories WJ, Swanson MS, MacDonald KG, Long
SB, Morris PG, Brown BM, Barakat HA, deRamon RA, Israel G, Dolezal
JM, et al: Who would have thought it? An operation proves to be the
most effective therapy for adult-onset diabetes mellitus. Ann Surg.
222:339–352. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Phillips BT and Shikora SA: The history of
metabolic and bariatric surgery: Development of standards for
patient safety and efficacy. Metabolism. 79:97–107. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Schauer PR, Kashyap SR, Wolski K,
Brethauer SA, Kirwan JP, Pothier CE, Thomas S, Abood B, Nissen SE
and Bhatt DL: Bariatric surgery versus intensive medical therapy in
obese patients with diabetes. N Engl J Med. 366:1567–1576. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Pareek M, Schauer PR, Kaplan LM, Leiter
LA, Rubino F and Bhatt DL: Metabolic surgery: Weight loss,
diabetes, and beyond. J Am Coll Cardiol. 71:670–687. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Ferraz-Bannitz R, Kashyap S and Patti ME:
Bariatric surgery: It's not just incretins! J Clin Endocrinol
Metab. 107:e883–e885. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Kopp HP, Kopp CW, Festa A, Krzyzanowska K,
Kriwanek S, Minar E, Roka R and Schernthaner G: Impact of weight
loss on inflammatory proteins and their association with the
insulin resistance syndrome in morbidly obese patients.
Arterioscler Thromb Vasc Biol. 23:1042–1047. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Leichman JG, Aguilar D, King TM, Mehta S,
Majka C, Scarborough T, Wilson EB and Taegtmeyer H: Improvements in
systemic metabolism, anthropometrics, and left ventricular geometry
3 months after bariatric surgery. Surg Obes Relat Dis. 2:592–599.
2006. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Rider OJ, Francis JM, Ali MK, Petersen SE,
Robinson M, Robson MD, Byrne JP, Clarke K and Neubauer S:
Beneficial cardiovascular effects of bariatric surgical and dietary
weight loss in obesity. J Am Coll Cardiol. 54:718–726. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Ikonomidis I, Mazarakis A, Papadopoulos C,
Patsouras N, Kalfarentzos F, Lekakis J, Kremastinos DT and
Alexopoulos D: Weight loss after bariatric surgery improves aortic
elastic properties and left ventricular function in individuals
with morbid obesity: A 3-year follow-up study. J Hypertens.
25:439–447. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Willens HJ, Chakko SC, Byers P, Chirinos
JA, Labrador E, Castrillon JC and Lowery MH: Effects of weight loss
after gastric bypass on right and left ventricular function
assessed by tissue Doppler imaging. Am J Cardiol. 95:1521–1524.
2005. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Garza CA, Pellikka PA, Somers VK, Sarr MG,
Collazo-Clavell ML, Korenfeld Y and Lopez-Jimenez F: Structural and
functional changes in left and right ventricles after major weight
loss following bariatric surgery for morbid obesity. Am J Cardiol.
105:550–556. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Shah RV, Murthy VL, Abbasi SA, Eng J, Wu
C, Ouyang P, Kwong RY, Goldfine A, Bluemke DA, Lima J and
Jerosch-Herold M: Weight loss and progressive left ventricular
remodelling: The multi-ethnic study of atherosclerosis (MESA). Eur
J Prev Cardiol. 22:1408–1418. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Di Bello V, Santini F, Di Cori A, Pucci A,
Talini E, Palagi C, Delle Donne MG, Marsili A, Fierabracci P,
Valeriano R, et al: Effects of bariatric surgery on early
myocardial alterations in adult severely obese subjects.
Cardiology. 109:241–248. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Rubler S, Dlugash J, Yuceoglu YZ, Kumral
T, Branwood AW and Grishman A: New type of cardiomyopathy
associated with diabetic glomerulosclerosis. Am J Cardiol.
30:595–602. 1972. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Avagimyan A, Popov S and Shalnova S: The
pathophysiological basis of diabetic cardiomyopathy development.
Curr Probl Cardiol. 47:1011562022. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Jia G, Whaley-Connell A and Sowers JR:
Diabetic cardiomyopathy: A hyperglycaemia- and
insulin-resistance-induced heart disease. Diabetologia. 61:21–28.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Pappachan JM, Varughese GI, Sriraman R and
Arunagirinathan G: Diabetic cardiomyopathy: Pathophysiology,
diagnostic evaluation and management. World J Diabetes. 4:177–189.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Nakamura K, Miyoshi T, Yoshida M, Akagi S,
Saito Y, Ejiri K, Matsuo N, Ichikawa K, Iwasaki K, Naito T, et al:
Pathophysiology and treatment of diabetic cardiomyopathy and heart
failure in patients with diabetes mellitus. Int J Mol Sci.
23:35872022. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Huang X, Wu D, Cheng Y, Zhang X, Liu T,
Liu Q, Xia P, Zhang G, Hu S and Liu S: Restoration of myocardial
glucose uptake with facilitated myocardial glucose transporter 4
translocation contributes to alleviation of diabetic cardiomyopathy
in rats after duodenal-jejunal bypass. J Diabetes Investig.
10:626–638. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Bugger H and Abel ED: Molecular mechanisms
of diabetic cardiomyopathy. Diabetologia. 57:660–671. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Zhou Z, Mahdi A, Tratsiakovich Y, Zahorán
S, Kövamees O, Nordin F, Uribe Gonzalez AE, Alvarsson M, Östenson
CG, Andersson DC, et al: Erythrocytes from patients with type 2
diabetes induce endothelial dysfunction via arginase I. J Am Coll
Cardiol. 72:769–780. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Xiao H, Sun X, Lin Z, Yang Y, Zhang M, Xu
Z, Liu P, Liu Z and Huang H: Gentiopicroside targets PAQR3 to
activate the PI3K/AKT signaling pathway and ameliorate disordered
glucose and lipid metabolism. Acta Pharm Sin B. 12:2887–2904. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Alaaeldin R, Abdel-Rahman IAM, Hassan HA,
Youssef N, Allam AE, Abdelwahab SF, Zhao QL and Fathy M:
Carpachromene ameliorates insulin resistance in HepG2 cells via
modulating IR/IRS1/PI3k/Akt/GSK3/FoxO1 pathway. Molecules.
26:76292021. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Zhang N, Liu X, Zhuang L, Liu X, Zhao H,
Shan Y, Liu Z, Li F, Wang Y and Fang J: Berberine decreases insulin
resistance in a PCOS rats by improving GLUT4: Dual regulation of
the PI3K/AKT and MAPK pathways. Regul Toxicol Pharmacol.
110:1045442020. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Ruze R, Xu Q, Liu G, Li Y, Chen W, Cheng
Z, Xiong Y, Liu S, Zhang G, Hu S and Yan Z: Central GLP-1
contributes to improved cognitive function and brain glucose uptake
after duodenum-jejunum bypass on obese and diabetic rats. Am J
Physiol Endocrinol Metab. 321:E392–E409. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Wang N, Zhang S, Yuan Y, Xu H, Defossa E,
Matter H, Besenius M, Derdau V, Dreyer M, Halland N, et al:
Molecular basis for inhibiting human glucose transporters by
exofacial inhibitors. Nat Commun. 13:26322022. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Mafakheri S, Chadt A and Al-Hasani H:
Regulation of RabGAPs involved in insulin action. Biochem Soc
Trans. 46:683–690. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Lee KD, Ilavenil S, Karnan M, Yang CJ, Kim
D and Choi KC: Novel bacillus ginsengihumi CMRO6 inhibits
adipogenesis via p38MAPK/Erk44/42 and stimulates glucose uptake in
3T3-L1 pre-adipocytes through Akt/AS160 signaling. Int J Mol Sci.
23:47272022. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Xu Q, Ding H, Li S, Dong S, Li L, Shi B,
Zhong M and Zhang G: Sleeve gastrectomy ameliorates
diabetes-induced cardiac hypertrophy correlates with the MAPK
signaling pathway. Front Physiol. 12:7857992021. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Belke DD, Larsen TS, Gibbs EM and Severson
DL: Altered metabolism causes cardiac dysfunction in perfused
hearts from diabetic (db/db) mice. Am J Physiol Endocrinol Metab.
279:E1104–E1113. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Lopaschuk GD, Ussher JR, Folmes CD, Jaswal
JS and Stanley WC: Myocardial fatty acid metabolism in health and
disease. Physiol Rev. 90:207–258. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Lopaschuk GD and Ussher JR: Evolving
concepts of myocardial energy metabolism: More than just fats and
carbohydrates. Circ Res. 119:1173–1176. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Carpentier AC: Abnormal myocardial dietary
fatty acid metabolism and diabetic cardiomyopathy. Can J Cardiol.
34:605–614. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Zhou YT, Grayburn P, Karim A, Shimabukuro
M, Higa M, Baetens D, Orci L and Unger RH: Lipotoxic heart disease
in obese rats: Implications for human obesity. Proc Natl Acad Sci
USA. 97:1784–1789. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Listenberger LL, Ory DS and Schaffer JE:
Palmitate-induced apoptosis can occur through a
ceramide-independent pathway. J Biol Chem. 276:14890–14895. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Aasum E, Hafstad AD, Severson DL and
Larsen TS: Age-dependent changes in metabolism, contractile
function, and ischemic sensitivity in hearts from db/db mice.
Diabetes. 52:434–441. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Vincent HK, Powers SK, Dirks AJ and
Scarpace PJ: Mechanism for obesity-induced increase in myocardial
lipid peroxidation. Int J Obes Relat Metab Disord. 25:378–388.
2001. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Lopaschuk GD, Karwi QG, Tian R, Wende AR
and Abel ED: Cardiac energy metabolism in heart failure. Circ Res.
128:1487–1513. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Wali JA, Jarzebska N, Raubenheimer D,
Simpson SJ, Rodionov RN and O'Sullivan JF: Cardio-metabolic effects
of high-fat diets and their underlying mechanisms-a narrative
review. Nutrients. 12:15052020. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Lin CH, Kurup S, Herrero P, Schechtman KB,
Eagon JC, Klein S, Dávila-Román VG, Stein RI, Dorn GW II, Gropler
RJ, et al: Myocardial oxygen consumption change predicts left
ventricular relaxation improvement in obese humans after weight
loss. Obesity (Silver Spring). 19:1804–1812. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Carreau AM, Noll C, Blondin DP, Frisch F,
Nadeau M, Pelletier M, Phoenix S, Cunnane SC, Guérin B, Turcotte
EE, et al: Bariatric surgery rapidly decreases cardiac dietary
fatty acid partitioning and hepatic insulin resistance through
increased intra-abdominal adipose tissue storage and reduced
spillover in type 2 diabetes. Diabetes. 69:567–577. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Middleton ALO, Byrne JP and Calder PC: The
influence of bariatric (metabolic) surgery on blood polyunsaturated
fatty acids: A systematic review. Clin Nutr ESPEN. 48:121–140.
2022. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Moreland AM, Santa Ana CA, Asplin JR, Kuhn
JA, Holmes RP, Cole JA, Odstrcil EA, Van Dinter TG Jr, Martinez JG
and Fordtran JS: Steatorrhea and hyperoxaluria in severely obese
patients before and after Roux-en-Y gastric bypass.
Gastroenterology. 152:1055–1067.e3. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Verna EC and Berk PD: Role of fatty acids
in the pathogenesis of obesity and fatty liver: Impact of bariatric
surgery. Semin Liver Dis. 28:407–426. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Ajoolabady A, Lebeaupin C, Wu NN, Kaufman
RJ and Ren J: ER stress and inflammation crosstalk in obesity. Med
Res Rev. 43:5–30. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Liang B, Chen SW, Li YY, Zhang SX and
Zhang Y: Comprehensive analysis of endoplasmic reticulum
stress-related mechanisms in type 2 diabetes mellitus. World J
Diabetes. 14:820–845. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Lakshmanan AP, Harima M, Suzuki K,
Soetikno V, Nagata M, Nakamura T, Takahashi T, Sone H, Kawachi H
and Watanabe K: The hyperglycemia stimulated myocardial endoplasmic
reticulum (ER) stress contributes to diabetic cardiomyopathy in the
transgenic non-obese type 2 diabetic rats: A differential role of
unfolded protein response (UPR) signaling proteins. Int J Biochem
Cell Biol. 45:438–447. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Yu H, Zhen J, Yang Y, Gu J, Wu S and Liu
Q: Ginsenoside Rg1 ameliorates diabetic cardiomyopathy by
inhibiting endoplasmic reticulum stress-induced apoptosis in a
streptozotocin-induced diabetes rat model. J Cell Mol Med.
20:623–631. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Hu H, Tian M, Ding C and Yu S: The C/EBP
homologous protein (CHOP) transcription factor functions in
endoplasmic reticulum stress-induced apoptosis and microbial
infection. Front Immunol. 9:30832018. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
B'Chir W, Maurin AC, Carraro V, Averous J,
Jousse C, Muranishi Y, Parry L, Stepien G, Fafournoux P and Bruhat
A: The eIF2α/ATF4 pathway is essential for stress-induced autophagy
gene expression. Nucleic Acids Res. 41:7683–7699. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Belali OM, Ahmed MM, Mohany M, Belali TM,
Alotaibi MM, Al-Hoshani A and Al-Rejaie SS: LCZ696 Protects against
diabetic cardiomyopathy-induced myocardial inflammation, ER stress,
and apoptosis through inhibiting AGEs/NF-κB and PERK/CHOP signaling
pathways. Int J Mol Sci. 23:12882022. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Meng Y, Xu X, Niu D, Xu Y, Qiu Y, Zhu Z,
Zhang H and Yin D: Organophosphate flame retardants induce
oxidative stress and Chop/Caspase 3-related apoptosis via
Sod1/p53/Map3k6/Fkbp5 in NCI-1975 cells. Sci Total Environ.
819:1531602022. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Zhang X, Liu S, Zhang G, Zhong M, Liu T,
Wei M, Wu D, Huang X, Cheng Y, Wu Q and Hu S: Bariatric surgery
ameliorates diabetic cardiac dysfunction by inhibiting ER stress in
a diabetic rat model. Obes Surg. 27:1324–1334. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Hetz C, Zhang K and Kaufman RJ:
Mechanisms, regulation and functions of the unfolded protein
response. Nat Rev Mol Cell Biol. 21:421–438. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Ron D and Walter P: Signal integration in
the endoplasmic reticulum unfolded protein response. Nat Rev Mol
Cell Biol. 8:519–5. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Ren J, Bi Y, Sowers JR, Hetz C and Zhang
Y: Endoplasmic reticulum stress and unfolded protein response in
cardiovascular diseases. Nat Rev Cardiol. 18:499–521. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Zhu G and Lee AS: Role of the unfolded
protein response, GRP78 and GRP94 in organ homeostasis. J Cell
Physiol. 230:1413–1420. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Elfiky AA, Baghdady AM, Ali SA and Ahmed
MI: GRP78 targeting: Hitting two birds with a stone. Life Sci.
260:1183172020. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Kitada M and Koya D: Autophagy in
metabolic disease and ageing. Nat Rev Endocrinol. 17:647–661. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Dewanjee S, Vallamkondu J, Kalra RS, John
A, Reddy PH and Kandimalla R: Autophagy in the diabetic heart: A
potential pharmacotherapeutic target in diabetic cardiomyopathy.
Ageing Res Rev. 68:1013382021. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Huang X, Liu S, Wu D, Cheng Y, Han H, Wang
K, Zhang G and Hu S: Facilitated Ca2+ homeostasis and
attenuated myocardial autophagy contribute to alleviation of
diabetic cardiomyopathy after bariatric surgery. Am J Physiol Heart
Circ Physiol. 315:H1258–H1268. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Packer M: SGLT2 inhibitors produce
cardiorenal benefits by promoting adaptive cellular reprogramming
to induce a state of fasting mimicry: A paradigm shift in
understanding their mechanism of action. Diabetes Care. 43:508–511.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
He B, Liu L, Yu C, Wang Y and Han P:
Roux-en-Y gastric bypass reduces lipid overaccumulation in liver by
upregulating hepatic autophagy in obese diabetic rats. Obes Surg.
25:109–118. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Rodríguez-Hernández A, Cordero MD,
Salviati L, Artuch R, Pineda M, Briones P, Gómez Izquierdo L, Cotán
D, Navas P and Sánchez-Alcázar JA: Coenzyme Q deficiency triggers
mitochondria degradation by mitophagy. Autophagy. 5:19–32. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Russo SB, Baicu CF, Van Laer A, Geng T,
Kasiganesan H, Zile MR and Cowart LA: Ceramide synthase 5 mediates
lipid-induced autophagy and hypertrophy in cardiomyocytes. J Clin
Invest. 122:3919–3930. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Sun Y and Ding S: NLRP3 inflammasome in
diabetic cardiomyopathy and exercise intervention. Int J Mol Sci.
22:132282021. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Zheng Y, Xu L, Dong N and Li F: NLRP3
inflammasome: The rising star in cardiovascular diseases. Front
Cardiovasc Med. 9:9270612022. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Zhang L, Ai C, Bai M, Niu J and Zhang Z:
NLRP3 inflammasome/pyroptosis: A key driving force in diabetic
cardiomyopathy. Int J Mol Sci. 23:106322022. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Ding K, Song C, Hu H, Yin K, Huang H and
Tang H: The Role of NLRP3 inflammasome in diabetic cardiomyopathy
and its therapeutic implications. Oxid Med Cell Longev.
2022:37907212022. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Sun X, Sun X, Meng H, Wu J, Guo X, Du L
and Wu H: Krill oil inhibits NLRP3 inflammasome activation in the
prevention of the pathological injuries of diabetic cardiomyopathy.
Nutrients. 14:3682022. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Mocanu AO, Mulya A, Huang H, Dan O,
Schauer PR, Dinischiotu A, Brethauer SA and Kirwan JP: Effect of
Roux-en-Y gastric bypass on the NLRP3 inflammasome in pancreatic
islets from zucker diabetic fatty rats. Obes Surg. 26:3076–3081.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Mocanu AO, Mulya A, Huang H, Dan O,
Shimizu H, Batayyah E, Brethauer SA, Dinischiotu A and Kirwan JP:
Effect of Roux-en-Y gastric bypass on the NLRP3 inflammasome in
adipose tissue from obese rats. PLoS One. 10:e01397642015.
View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Sun K, Wang J, Lan Z, Li L, Wang Y, Li A,
Liu S and Li Y: Sleeve gastroplasty combined with the NLRP3
inflammasome inhibitor CY-09 reduces body weight, improves insulin
resistance and alleviates hepatic steatosis in mouse model. Obes
Surg. 30:3435–3443. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Wu D, Yan ZB, Cheng YG, Zhong MW, Liu SZ,
Zhang GY and Hu SY: Deactivation of the NLRP3 inflammasome in
infiltrating macrophages by duodenal-jejunal bypass surgery
mediates improvement of beta cell function in type 2 diabetes.
Metabolism. 81:1–12. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Li S, Dong S, Shi B, Xu Q, Li L, Wang S,
Zhang W, Zhong M, Zhu J, Cheng Y, et al: Attenuation of
ROS/chloride efflux-mediated NLRP3 inflammasome activation
contributes to alleviation of diabetic cardiomyopathy in rats after
sleeve gastrectomy. Oxid Med Cell Longev.
2022:46089142022.PubMed/NCBI
|
|
94
|
Zhou R, Yazdi AS, Menu P and Tschopp J: A
role for mitochondria in NLRP3 inflammasome activation. Nature.
469:221–225. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Yang F, Qin Y, Wang Y, Meng S, Xian H, Che
H, Lv J, Li Y, Yu Y, Bai Y and Wang L: Metformin inhibits the NLRP3
inflammasome via AMPK/mTOR-dependent effects in diabetic
cardiomyopathy. Int J Biol Sci. 15:1010–1019. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Li R and Chen J: Salidroside protects
dopaminergic neurons by enhancing PINK1/parkin-mediated mitophagy.
Oxid Med Cell Longev. 2019:93410182019. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Yang Y, Zhao J, Qiu J, Li J, Liang X,
Zhang Z, Zhang X, Fu H, Korantzopoulos P, Letsas KP, et al:
Xanthine oxidase inhibitor allopurinol prevents oxidative
stress-mediated atrial remodeling in alloxan-induced diabetes
mellitus rabbits. J Am Heart Assoc. 7:e0088072018. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Zhang N, Yu H, Liu T, Zhou Z, Feng B, Wang
Y, Qian Z, Hou X and Zou J: Bmal1 downregulation leads to diabetic
cardiomyopathy by promoting Bcl2/IP3R-mediated mitochondrial
Ca2+ overload. Redox Biol. 64:1027882023. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Gutiérrez T, Parra V, Troncoso R, Pennanen
C, Contreras-Ferrat A, Vasquez-Trincado C, Morales PE,
Lopez-Crisosto C, Sotomayor-Flores C, Chiong M, et al: Alteration
in mitochondrial Ca(2+) uptake disrupts insulin signaling in
hypertrophic cardiomyocytes. Cell Commun Signal. 12:682014.
View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Luptak I, Sverdlov AL, Panagia M, Qin F,
Pimentel DR, Croteau D, Siwik DA, Ingwall JS, Bachschmid MM,
Balschi JA and Colucci WS: Decreased ATP production and myocardial
contractile reserve in metabolic heart disease. J Mol Cell Cardiol.
116:106–114. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Dillmann WH: Diabetic cardiomyopathy. Circ
Res. 124:1160–1162. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Zamora M and Villena JA: Contribution of
impaired insulin signaling to the pathogenesis of diabetic
cardiomyopathy. Int J Mol Sci. 20:28332019. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Dia M, Gomez L, Thibault H, Tessier N,
Leon C, Chouabe C, Ducreux S, Gallo-Bona N, Tubbs E, Bendridi N, et
al: Reduced reticulum-mitochondria Ca2+ transfer is an
early and reversible trigger of mitochondrial dysfunctions in
diabetic cardiomyopathy. Basic Res Cardiol. 115:742020. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Mohan HM, Aherne CM, Rogers AC, Baird AW,
Winter DC and Murphy EP: Molecular pathways: The role of NR4A
orphan nuclear receptors in cancer. Clin Cancer Res. 18:3223–3228.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Zhou H, Wang J, Zhu P, Zhu H, Toan S, Hu
S, Ren J and Chen Y: NR4A1 aggravates the cardiac microvascular
ischemia reperfusion injury through suppressing FUNDC1-mediated
mitophagy and promoting Mff-required mitochondrial fission by CK2α.
Basic Res Cardiol. 113:232018. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Wang D, Yin Y, Wang S, Zhao T, Gong F,
Zhao Y, Wang B, Huang Y, Cheng Z, Zhu G, et al: FGF1ΔHBS
prevents diabetic cardiomyopathy by maintaining mitochondrial
homeostasis and reducing oxidative stress via AMPK/Nur77
suppression. Signal Transduct Target Ther. 6:1332021. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Zheng Y, Tao Y, Zhan X and Wu Q: Nuclear
receptor 4A1 (NR4A1) silencing protects hepatocyte against
hypoxia-reperfusion injury in vitro by activating liver kinase B1
(LKB1)/AMP-activated protein kinase (AMPK) signaling.
Bioengineered. 13:8349–8359. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Li S, Dong S, Xu Q, Shi B, Li L, Zhang W,
Zhu J, Cheng Y, Zhang G and Zhong M: Sleeve gastrectomy-induced
AMPK activation attenuates diabetic cardiomyopathy by maintaining
mitochondrial homeostasis via NR4A1 suppression in rats. Front
Physiol. 13:8377982022. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Meier JJ: GLP-1 receptor agonists for
individualized treatment of type 2 diabetes mellitus. Nat Rev
Endocrinol. 8:728–742. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Du Z, Wang J, Lu Y, Ma X, Wen R, Lin J,
Zhou C, Song Z, Li J, Tu P and Jiang Y: The cardiac protection of
Baoyuan decoction via gut-heart axis metabolic pathway.
Phytomedicine. 79:1533222020. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Chambers AP, Jessen L, Ryan KK, Sisley S,
Wilson-Pérez HE, Stefater MA, Gaitonde SG, Sorrell JE, Toure M,
Berger J, et al: Weight-independent changes in blood glucose
homeostasis after gastric bypass or vertical sleeve gastrectomy in
rats. Gastroenterology. 141:950–958. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Ryan KK, Tremaroli V, Clemmensen C,
Kovatcheva-Datchary P, Myronovych A, Karns R, Wilson-Pérez HE,
Sandoval DA, Kohli R, Bäckhed F and Seeley RJ: FXR is a molecular
target for the effects of vertical sleeve gastrectomy. Nature.
509:183–188. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Ding H, Zhang Y, Ma X, Zhang Z, Xu Q, Liu
C, Li B, Dong S, Li L, Zhu J, et al: Bariatric surgery for diabetic
comorbidities: A focus on hepatic, cardiac and renal fibrosis.
Front Pharmacol. 13:10166352022. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Helmstädter J, Frenis K, Filippou K, Grill
A, Dib M, Kalinovic S, Pawelke F, Kus K, Kröller-Schön S, Oelze M,
et al: Endothelial GLP-1 (glucagon-like peptide-1) receptor
mediates cardiovascular protection by liraglutide in mice with
experimental arterial hypertension. Arterioscler Thromb Vasc Biol.
40:145–158. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Osto E, Doytcheva P, Corteville C, Bueter
M, Dörig C, Stivala S, Buhmann H, Colin S, Rohrer L, Hasballa R, et
al: Rapid and body weight-independent improvement of endothelial
and high-density lipoprotein function after Roux-en-Y gastric
bypass: Role of glucagon-like peptide-1. Circulation. 131:871–881.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Lee CJ, Sears CL and Maruthur N: Gut
microbiome and its role in obesity and insulin resistance. Ann NY
Acad Sci. 1461:37–52. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Castellanos-Jankiewicz A, Guzmán-Quevedo
O, Fénelon VS, Zizzari P, Quarta C, Bellocchio L, Tailleux A,
Charton J, Fernandois D, Henricsson M, et al: Hypothalamic bile
acid-TGR5 signaling protects from obesity. Cell Metab.
33:1483–1492.e10. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Fuchs CD and Trauner M: Role of bile acids
and their receptors in gastrointestinal and hepatic
pathophysiology. Nat Rev Gastroenterol Hepatol. 19:432–450. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Tu J, Wang Y, Jin L and Huang W: Bile
acids, gut microbiota and metabolic surgery. Front Endocrinol
(Lausanne). 13:9295302022. View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Stefura T, Zapała B, Gosiewski T,
Krzysztofik M, Skomarovska O and Major P: Relationship between
bariatric surgery outcomes and the preoperative gastrointestinal
microbiota: a cohort study. Surg Obes Relat Dis. 17:889–899. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Coimbra VOR, Crovesy L, Ribeiro-Alves M,
Faller ALK, Mattos F and Rosado EL: Gut microbiota profile in
adults undergoing bariatric surgery: A systematic review.
Nutrients. 14:49792022. View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Anhê FF, Zlitni S, Zhang SY, Choi BS, Chen
CY, Foley KP, Barra NG, Surette MG, Biertho L, Richard D, et al:
Human gut microbiota after bariatric surgery alters intestinal
morphology and glucose absorption in mice independently of obesity.
Gut. 72:460–471. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Martínez-Montoro JI, Kuchay MS,
Balaguer-Román A, Martínez-Sánchez MA, Frutos MD, Fernández-García
JC and Ramos-Molina B: Gut microbiota and related metabolites in
the pathogenesis of nonalcoholic steatohepatitis and its resolution
after bariatric surgery. Obes Rev. 23:e133672022. View Article : Google Scholar : PubMed/NCBI
|
|
124
|
Debédat J, Le Roy T, Voland L, Belda E,
Alili R, Adriouch S, Bel Lassen P, Kasahara K, Hutchison E, Genser
L, et al: The human gut microbiota contributes to type-2 diabetes
non-resolution 5-years after Roux-en-Y gastric bypass. Gut
Microbes. 14:20506352022. View Article : Google Scholar : PubMed/NCBI
|
|
125
|
Gutiérrez-Repiso C, Moreno-Indias I,
Martín-Núñez GM, Ho-Plagaro A, Ocaña-Wilhelmi L, Fernández García
D, Gonzalo Marín M, Moreno-Ruiz FJ, García-Fuentes E and Tinahones
FJ: Influence of factors altering gastric microbiota on bariatric
surgery metabolic outcomes. Microbiol Spectr. 9:e00535212021.
View Article : Google Scholar : PubMed/NCBI
|
|
126
|
Chaudhari SN, Luo JN, Harris DA,
Aliakbarian H, Yao L, Paik D, Subramaniam R, Adhikari AA, Vernon
AH, Kiliç A, et al: A microbial metabolite remodels the gut-liver
axis following bariatric surgery. Cell Host Microbe. 29:408–424.e7.
2021. View Article : Google Scholar : PubMed/NCBI
|
|
127
|
Wang J, Chen P, Cao Q, Wang W and Chang X:
Traditional Chinese medicine ginseng dingzhi decoction ameliorates
myocardial fibrosis and high glucose-induced cardiomyocyte injury
by regulating intestinal flora and mitochondrial dysfunction. Oxid
Med Cell Longev. 2022:92059082022.PubMed/NCBI
|
|
128
|
Bastin M and Andreelli F: The gut
microbiota and diabetic cardiomyopathy in humans. Diabetes Metab.
46:197–202. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
129
|
Shu H, Peng Y, Hang W, Nie J, Zhou N and
Wang DW: The role of CD36 in cardiovascular disease. Cardiovasc
Res. 118:115–129. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
130
|
Wang H, Wang J, Cui H, Fan C, Xue Y, Liu
H, Li H, Li J, Li H, Sun Y, et al: Inhibition of fatty acid uptake
by TGR5 prevents diabetic cardiomyopathy. Nat Metab. 6:1161–1177.
2024. View Article : Google Scholar : PubMed/NCBI
|
|
131
|
Cesario DA, Brar R and Shivkumar K:
Alterations in ion channel physiology in diabetic cardiomyopathy.
Endocrinol Metab Clin North Am. 35:601–610. ix–x. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
132
|
Ming Y, Yin Y and Sun Z: Interaction of
nuclear receptor subfamily 4 group A member 1 (Nr4a1) and liver
linase B1 (LKB1) mitigates type 2 diabetes mellitus by activating
monophosphate-activated protein kinase (AMPK)/sirtuin 1 (SIRT1)
axis and inhibiting nuclear factor-kappa B (NF-κB) activation. Med
Sci Monit. 26:e9202782020. View Article : Google Scholar : PubMed/NCBI
|
|
133
|
Liu M, Chen H, Dai H, Wang Y, Li J, Tian
F, Li Z and Ge RS: Effects of bis (2-butoxyethyl) phthalate on
adrenocortical function in male rats in puberty partially via
down-regulating NR5A1/NR4A1/NR4A2 pathways. Environ Toxicol.
37:2419–2433. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
134
|
Huynh K, Bernardo BC, McMullen JR and
Ritchie RH: Diabetic cardiomyopathy: Mechanisms and new treatment
strategies targeting antioxidant signaling pathways. Pharmacol
Ther. 142:375–415. 2014. View Article : Google Scholar : PubMed/NCBI
|