Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
November-2024 Volume 30 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
November-2024 Volume 30 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Tetraspanins in digestive‑system cancers: Expression, function and therapeutic potential (Review)

  • Authors:
    • Kexin Chen
    • Qiuhong Li
    • Yangyi Li
    • Donghui Jiang
    • Ligang Chen
    • Jun Jiang
    • Shengbiao Li
    • Chunxiang Zhang
  • View Affiliations / Copyright

    Affiliations: School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China, Department of Medical Imaging, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China, Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China, Department of General Surgery (Thyroid Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China, Department of Cardiology, Institute of Cardiovascular Research, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
    Copyright: © Chen et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 200
    |
    Published online on: September 6, 2024
       https://doi.org/10.3892/mmr.2024.13324
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

The tetraspanin family of membrane proteins is essential for controlling different biological processes such as cell migration, penetration, adhesion, growth, apoptosis, angiogenesis and metastasis. The present review summarized the current knowledge regarding the expression and roles of tetraspanins in different types of cancer of the digestive system, including gastric, liver, colorectal, pancreatic, esophageal and oral cancer. Depending on the type and context of cancer, tetraspanins can act as either tumor promoters or suppressors. In the present review, the importance of tetraspanins in serving as biomarkers and targets for different types of digestive system‑related cancer was emphasized. Additionally, the molecular mechanisms underlying the involvement of tetraspanins in cancer progression and metastasis were explored. Furthermore, the current challenges are addressed and future research directions for advancing investigations related to tetraspanins in the context of digestive system malignancies are proposed.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

View References

1 

Hemler ME: Tetraspanin proteins mediate cellular penetration, invasion, and fusion events and define a novel type of membrane microdomain. Annu Rev Cell Dev Biol. 19:397–422. 2003. View Article : Google Scholar : PubMed/NCBI

2 

Min G, Wang H, Sun TT and Kong XP: Structural basis for tetraspanin functions as revealed by the cryo-EM structure of uroplakin complexes at 6-A resolution. J Cell Biol. 173:975–983. 2006. View Article : Google Scholar : PubMed/NCBI

3 

Kitadokoro K, Bordo D, Galli G, Petracca R, Falugi F, Abrignani S, Grandi G and Bolognesi M: CD81 extracellular domain 3D structure: Insight into the tetraspanin superfamily structural motifs. EMBO J. 20:12–18. 2001. View Article : Google Scholar : PubMed/NCBI

4 

Maecker HT, Todd SC and Levy S: The tetraspanin superfamily: molecular facilitators. FASEB J. 11:428–442. 1997. View Article : Google Scholar : PubMed/NCBI

5 

Boucheix C and Rubinstein E: Tetraspanins. Cell Mol Life Sci. 58:1189–1205. 2001. View Article : Google Scholar : PubMed/NCBI

6 

Boucheix C, Duc GH, Jasmin C and Rubinstein E: Tetraspanins and malignancy. Expert Rev Mol Med. 2001:1–17. 2001. View Article : Google Scholar : PubMed/NCBI

7 

Tarrant JM, Robb L, van Spriel AB and Wright MD: Tetraspanins: Molecular organisers of the leukocyte surface. Trends Immunol. 24:610–617. 2003. View Article : Google Scholar : PubMed/NCBI

8 

Berditchevski F: Complexes of tetraspanins with integrins: More than meets the eye. J Cell Sci. 114:4143–4151. 2001. View Article : Google Scholar : PubMed/NCBI

9 

Claas C, Stipp CS and Hemler ME: Evaluation of prototype transmembrane 4 superfamily protein complexes and their relation to lipid rafts. J Biol Chem. 276:7974–7984. 2001. View Article : Google Scholar : PubMed/NCBI

10 

Garcia-Mayea Y, Mir C, Carballo L, Sánchez-García A, Bataller M and LLeonart ME: TSPAN1, a novel tetraspanin member highly involved in carcinogenesis and chemoresistance. Biochim Biophys Acta Rev Cancer. 1877:1886742022. View Article : Google Scholar : PubMed/NCBI

11 

Global Burden of Disease 2019 Cancer Collaboration, . Kocarnik JM, Compton K, Dean FE, Fu W, Gaw BL, Harvey JD, Henrikson HJ, Lu D, Pennini A, et al: Cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life years for 29 cancer groups from 2010 to 2019: A systematic analysis for the global burden of disease study 2019. JAMA Oncol. 8:420–444. 2022. View Article : Google Scholar : PubMed/NCBI

12 

Berditchevski F, Gilbert E, Griffiths MR, Fitter S, Ashman L and Jenner SJ: Analysis of the CD151-alpha3beta1 integrin and CD151-tetraspanin interactions by mutagenesis. J Biol Chem. 276:41165–41174. 2001. View Article : Google Scholar : PubMed/NCBI

13 

Gesierich S, Paret C, Hildebrand D, Weitz J, Zgraggen K, Schmitz-Winnenthal FH, Horejsi V, Yoshie O, Herlyn D, Ashman LK and Zöller M: Colocalization of the, tetraspanins CO-029 and CD151, with integrins in human pancreatic adenocarcinoma: Impact on cell motility. Clin Cancer Res. 11:2840–2852. 2005. View Article : Google Scholar : PubMed/NCBI

14 

Lazo PA: Functional implications of tetraspanin proteins in cancer biology. Cancer Sci. 98:1666–1677. 2007. View Article : Google Scholar : PubMed/NCBI

15 

Li J, Xu J, Li L, Ianni A, Kumari P, Liu S, Sun P, Braun T, Tan X, Xiang R and Yue S: MGAT3-mediated glycosylation of tetraspanin CD82 at asparagine 157 suppresses ovarian cancer metastasis by inhibiting the integrin signaling pathway. Theranostics. 10:6467–6482. 2020. View Article : Google Scholar : PubMed/NCBI

16 

Tiwari-Woodruff SK, Buznikov AG, Vu TQ, Micevych PE, Chen K, Kornblum HI and Bronstein JM: OSP/claudin-11 forms a complex with a novel member of the tetraspanin super family and beta1 integrin and regulates proliferation and migration of oligodendrocytes. J Cell Biol. 153:295–305. 2001. View Article : Google Scholar : PubMed/NCBI

17 

Otsubo C, Otomo R, Miyazaki M, Matsushima-Hibiya Y, Kohno T, Iwakawa R, Takeshita F, Okayama H, Ichikawa H, Saya H, et al: TSPAN2 is involved in cell invasion and motility during lung cancer progression. Cell Rep. 7:527–538. 2014. View Article : Google Scholar : PubMed/NCBI

18 

Tardif MR and Tremblay MJ: Tetraspanin CD81 provides a costimulatory signal resulting in increased human immunodeficiency virus type 1 gene expression in primary CD4+ T lymphocytes through NF-kappaB, NFAT, and AP-1 transduction pathways. J Virol. 79:4316–4328. 2005. View Article : Google Scholar : PubMed/NCBI

19 

Levy S and Shoham T: The tetraspanin web modulates immune-signalling complexes. Nat Rev Immunol. 5:136–148. 2005. View Article : Google Scholar : PubMed/NCBI

20 

Arduise C, Abache T, Li L, Billard M, Chabanon A, Ludwig A, Mauduit P, Boucheix C, Rubinstein E and Le Naour F: Tetraspanins regulate ADAM10-mediated cleavage of TNF-alpha and epidermal growth factor. J Immunol. 181:7002–7013. 2008. View Article : Google Scholar : PubMed/NCBI

21 

Yañez-Mó M, Barreiro O, Gonzalo P, Batista A, Megías D, Genís L, Sachs N, Sala-Valdés M, Alonso MA, Montoya MC, et al: MT1-MMP collagenolytic activity is regulated through association with tetraspanin CD151 in primary endothelial cells. Blood. 112:3217–3226. 2008. View Article : Google Scholar : PubMed/NCBI

22 

Bass R, Werner F, Odintsova E, Sugiura T, Berditchevski F and Ellis V: Regulation of urokinase receptor proteolytic function by the tetraspanin CD82. J Biol Chem. 280:14811–14818. 2005. View Article : Google Scholar : PubMed/NCBI

23 

Lu Z, Luo T, Nie M, Pang T, Zhang X, Shen X, Ma L, Bi J, Wei G, Fang G and Xue X: TSPAN1 functions as an oncogene in gastric cancer and is downregulated by miR-573. FEBS Lett. 589:1988–1994. 2015. View Article : Google Scholar : PubMed/NCBI

24 

Sun X, Wang M, Zhang F and Kong X: Inhibition of NET-1 suppresses proliferation and promotes apoptosis of hepatocellular carcinoma cells by activating the PI3K/AKT signaling pathway. Exp Ther Med. 17:2334–2340. 2019.PubMed/NCBI

25 

Huang H, Li H, Zhao T, Khan AA, Pan R, Wang S, Wang S and Liu X: TSPAN1-elevated FAM110A promotes pancreatic cancer progression by transcriptionally regulating HIST1H2BK. J Cancer. 13:906–917. 2022. View Article : Google Scholar : PubMed/NCBI

26 

Chen L, Yuan D, Zhao R, Li H and Zhu J: Suppression of TSPAN1 by RNA interference inhibits proliferation and invasion of colon cancer cells in vitro. Tumori. 96:744–750. 2010. View Article : Google Scholar : PubMed/NCBI

27 

Chen Z, Gu S, Trojanowicz B, Liu N, Zhu G, Dralle H and Hoang-Vu C: Down-regulation of TM4SF is associated with the metastatic potential of gastric carcinoma TM4SF members in gastric carcinoma. World J Surg Oncol. 9:432011. View Article : Google Scholar : PubMed/NCBI

28 

He P, Wang S, Zhang X, Gao Y, Niu W, Dong N, Shi X, Geng Y, Ma Q, Li M, et al: Tspan5 is an independent favourable prognostic factor and suppresses tumour growth in gastric cancer. Oncotarget. 7:40160–40173. 2016. View Article : Google Scholar : PubMed/NCBI

29 

Xie Q, Guo H, He P, Deng H, Gao Y, Dong N, Niu W, Liu T, Li M, Wang S, et al: Tspan5 promotes epithelial-mesenchymal transition and tumour metastasis of hepatocellular carcinoma by activating Notch signalling. Mol Oncol. 15:3184–3202. 2021. View Article : Google Scholar : PubMed/NCBI

30 

Roh S, Kim S, Hong I, Lee M, Kim HJ, Ahn TS, Kang DH, Baek MJ, Kwak HJ, Kim CJ and Jeong D: High expression of tetraspanin 5 as a prognostic marker of colorectal cancer. Int J Mol Sci. 24:64762023. View Article : Google Scholar : PubMed/NCBI

31 

Andrijes R, Hejmadi RK, Pugh M, Rajesh S, Novitskaya V, Ibrahim M, Overduin M, Tselepis C, Middleton GW, Győrffy B, et al: Tetraspanin 6 is a regulator of carcinogenesis in colorectal cancer. Proc Natl Acad Sci USA. 118:e20114111182021. View Article : Google Scholar : PubMed/NCBI

32 

Qi Y, Li H, Lv J, Qi W, Shen L, Liu S, Ding A, Wang G, Sun L and Qiu W: Expression and function of transmembrane 4 superfamily proteins in digestive system cancers. Cancer Cell Int. 20:3142020. View Article : Google Scholar : PubMed/NCBI

33 

Zhu H, Wu Y, Zheng W and Lu S: CO-029 is overexpressed in gastric cancer and mediates the effects of EGF on gastric cancer cell proliferation and invasion. Int J Mol Med. 35:798–802. 2015. View Article : Google Scholar : PubMed/NCBI

34 

Wei L, Li Y and Suo Z: TSPAN8 promotes gastric cancer growth and metastasis via ERK MAPK pathway. Int J Clin Exp Med. 8:8599–8607. 2015.PubMed/NCBI

35 

Akiel MA, Santhekadur PK, Mendoza RG, Siddiq A, Fisher PB and Sarkar D: Tetraspanin 8 mediates AEG-1-induced invasion and metastasis in hepatocellular carcinoma cells. FEBS Lett. 590:2700–2708. 2016. View Article : Google Scholar : PubMed/NCBI

36 

Li J, Chen X, Zhu L, Lao Z, Zhou T, Zang L, Ge W, Jiang M, Xu J, Cao Y, et al: SOX9 is a critical regulator of TSPAN8-mediated metastasis in pancreatic cancer. Oncogene. 40:4884–4893. 2021. View Article : Google Scholar : PubMed/NCBI

37 

Guo Q, Xia B, Zhang F, Richardson MM, Li M, Zhang JS, Chen F and Zhang XA: Tetraspanin CO-029 inhibits colorectal cancer cell movement by deregulating cell-matrix and cell-cell adhesions. PLoS One. 7:e384642012. View Article : Google Scholar : PubMed/NCBI

38 

Zhou Z, Ran YL, Hu H, Pan J, Li ZF, Chen LZ, Sun LC, Peng L, Zhao XL, Yu L, et al: TM4SF3 promotes esophageal carcinoma metastasis via upregulating ADAM12m expression. Clin Exp Metastasis. 25:537–548. 2008. View Article : Google Scholar : PubMed/NCBI

39 

Qi Y, Lv J, Liu S, Sun L, Wang Y, Li H, Qi W and Qiu W: TSPAN9 and EMILIN1 synergistically inhibit the migration and invasion of gastric cancer cells by increasing TSPAN9 expression. BMC Cancer. 19:6302019. View Article : Google Scholar : PubMed/NCBI

40 

Dash S, Wu CC, Wu CC, Chiang SF, Lu YT, Yeh CY, You JF, Chu LJ, Yeh TS and Yu JS: Extracellular vesicle membrane protein profiling and targeted mass spectrometry unveil CD59 and tetraspanin 9 as novel plasma biomarkers for detection of colorectal cancer. Cancers (Basel). 15:1772022. View Article : Google Scholar : PubMed/NCBI

41 

Liu J, Chen C, Li G, Chen D and Zhou Q: Upregulation of TSPAN12 is associated with the colorectal cancer growth and metastasis. Am J Transl Res. 9:812–822. 2017.PubMed/NCBI

42 

Sidahmed-Adrar N, Ottavi JF, Benzoubir N, Ait Saadi T, Bou Saleh M, Mauduit P, Guettier C, Desterke C and Le Naour F: Tspan15 is a new stemness-related marker in hepatocellular carcinoma. Proteomics. 19:e19000252019. View Article : Google Scholar : PubMed/NCBI

43 

Zhang B, Zhang Z, Li L, Qin YR, Liu H, Jiang C, Zeng TT, Li MQ, Xie D, Li Y, et al: TSPAN15 interacts with BTRC to promote oesophageal squamous cell carcinoma metastasis via activating NF-κB signaling. Nat Commun. 9:14232018. View Article : Google Scholar : PubMed/NCBI

44 

Zheng Y, Wang DD, Wang W, Pan K, Huang CY, Li YF, Wang QJ, Yuan SQ, Jiang SS, Qiu HB, et al: Reduced expression of uroplakin 1A is associated with the poor prognosis of gastric adenocarcinoma patients. PLoS One. 9:e930732014. View Article : Google Scholar : PubMed/NCBI

45 

Yang YM, Zhang ZW, Liu QM, Sun YF, Yu JR and Xu WX: Overexpression of CD151 predicts prognosis in patients with resected gastric cancer. PLoS One. 8:e589902013. View Article : Google Scholar : PubMed/NCBI

46 

Ke AW, Shi GM, Zhou J, Wu FZ, Ding ZB, Hu MY, Xu Y, Song ZJ, Wang ZJ, Wu JC, et al: Role of overexpression of CD151 and/or c-Met in predicting prognosis of hepatocellular carcinoma. Hepatology. 49:491–503. 2009. View Article : Google Scholar : PubMed/NCBI

47 

Suzuki S, Miyazaki T, Tanaka N, Sakai M, Sano A, Inose T, Sohda M, Nakajima M, Kato H and Kuwano H: Prognostic significance of CD151 expression in esophageal squamous cell carcinoma with aggressive cell proliferation and invasiveness. Ann Surg Oncol. 18:888–893. 2011. View Article : Google Scholar : PubMed/NCBI

48 

Xu L, Hou Y, Tu G, Chen Y, Du YE, Zhang H, Wen S, Tang X, Yin J, Lang L, et al: Nuclear Drosha enhances cell invasion via an EGFR-ERK1/2-MMP7 signaling pathway induced by dysregulated miRNA-622/197 and their targets LAMC2 and CD82 in gastric cancer. Cell Death Dis. 8:e26422017. View Article : Google Scholar : PubMed/NCBI

49 

Hemler ME, Mannion BA and Berditchevski F: Association of TM4SF proteins with integrins: Relevance to cancer. Biochim Biophys Acta. 1287:67–71. 1996.PubMed/NCBI

50 

Dong JT, Lamb PW, Rinker-Schaeffer CW, Vukanovic J, Ichikawa T, Isaacs JT and Barrett JC: KAI1, a metastasis suppressor gene for prostate cancer on human chromosome 11p11.2. Science. 268:884–886. 1995. View Article : Google Scholar : PubMed/NCBI

51 

Liu X, Guo X, Li H, Chen J and Qi X: Src/STAT3 signaling pathways are involved in KAI1-induced downregulation of VEGF-C expression in pancreatic cancer. Mol Med Rep. 13:4774–4778. 2016. View Article : Google Scholar : PubMed/NCBI

52 

Huang X, Li Y, He X, Chen Y, Wei W, Yang X and Ma K: Gangliosides and CD82 inhibit the motility of colon cancer by downregulating the phosphorylation of EGFR at different tyrosine sites and signaling pathways. Mol Med Rep. 22:3994–4002. 2020.PubMed/NCBI

53 

Takaoka A, Hinoda Y, Satoh S, Adachi Y, Itoh F, Adachi M and Imai K: Suppression of invasive properties of colon cancer cells by a metastasis suppressor KAI1 gene. Oncogene. 16:1443–1453. 1998. View Article : Google Scholar : PubMed/NCBI

54 

Miyazaki T, Kato H, Shitara Y, Yoshikawa M, Tajima K, Masuda N, Shouji H, Tsukada K, Nakajima T and Kuwano H: Mutation and expression of the metastasis suppressor gene KAI1 in esophageal squamous cell carcinoma. Cancer. 89:955–962. 2000. View Article : Google Scholar : PubMed/NCBI

55 

Zeng TD, Zheng B, Zheng W and Chen C: CD82/KAI1 inhibits invasion and metastasis of esophageal squamous cell carcinoma via TGF-β1. Eur Rev Med Pharmacol Sci. 22:5928–5937. 2018.PubMed/NCBI

56 

Yoo TH, Ryu BK, Lee MG and Chi SG: CD81 is a candidate tumor suppressor gene in human gastric cancer. Cell Oncol (Dordr). 36:141–153. 2013. View Article : Google Scholar : PubMed/NCBI

57 

Fang TT, Sun XJ, Chen J, Zhao Y, Sun RX, Ren N and Liu BB: Long non-coding RNAs are differentially expressed in hepatocellular carcinoma cell lines with differing metastatic potential. Asian Pac J Cancer Prev. 15:10513–10524. 2014. View Article : Google Scholar : PubMed/NCBI

58 

Murayama Y, Miyagawa J, Shinomura Y, Kanayama S, Isozaki K, Yamamori K, Mizuno H, Ishiguro S, Kiyohara T, Miyazaki Y, et al: Significance of the association between heparin-binding epidermal growth factor-like growth factor and CD9 in human gastric cancer. Int J Cancer. 98:505–513. 2002. View Article : Google Scholar : PubMed/NCBI

59 

Nakamoto T, Murayama Y, Oritani K, Boucheix C, Rubinstein E, Nishida M, Katsube F, Watabe K, Kiso S, Tsutsui S, et al: A novel therapeutic strategy with anti-CD9 antibody in gastric cancers. J Gastroenterol. 44:889–896. 2009. View Article : Google Scholar : PubMed/NCBI

60 

Li Y, Yu S, Li L, Chen J, Quan M, Li Q and Gao Y: KLF4-mediated upregulation of CD9 and CD81 suppresses hepatocellular carcinoma development via JNK signaling. Cell Death Dis. 11:2992020. View Article : Google Scholar : PubMed/NCBI

61 

Tang M, Yin G, Wang F, Liu H, Zhou S, Ni J, Chen C, Zhou Y and Zhao Y: Downregulation of CD9 promotes pancreatic cancer growth and metastasis through upregulation of epidermal growth factor on the cell surface. Oncol Rep. 34:350–358. 2015. View Article : Google Scholar : PubMed/NCBI

62 

Ovalle S, Gutiérrez-López MD, Olmo N, Turnay J, Lizarbe MA, Majano P, Molina-Jiménez F, López-Cabrera M, Yáñez-Mó M, Sánchez-Madrid F and Cabañas C: The tetraspanin CD9 inhibits the proliferation and tumorigenicity of human colon carcinoma cells. Int J Cancer. 121:2140–2152. 2007. View Article : Google Scholar : PubMed/NCBI

63 

Buim ME, Lourenço SV, Carvalho KC, Cardim R, Pereira C, Carvalho AL, Fregnani JH and Soares FA: Downregulation of CD9 protein expression is associated with aggressive behavior of oral squamous cell carcinoma. Oral Oncol. 46:166–171. 2010. View Article : Google Scholar : PubMed/NCBI

64 

Kusukawa J, Ryu F, Kameyama T and Mekada E: Reduced expression of CD9 in oral squamous cell carcinoma: CD9 expression inversely related to high prevalence of lymph node metastasis. J Oral Pathol Med. 30:73–79. 2001. View Article : Google Scholar : PubMed/NCBI

65 

Park SA, Kim MJ, Park SY, Kim JS, Lim W, Nam JS and Yhong Sheen Y: TIMP-1 mediates TGF-β-dependent crosstalk between hepatic stellate and cancer cells via FAK signaling. Sci Rep. 5:164922015. View Article : Google Scholar : PubMed/NCBI

66 

Takashima Y, Komatsu S, Ohashi T, Kiuchi J, Kamiya H, Shimizu H, Arita T, Konishi H, Shiozaki A, Kubota T, et al: Overexpression of Tetraspanin31 contributes to malignant potential and poor outcomes in gastric cancer. Cancer Sci. 113:1984–1998. 2022. View Article : Google Scholar : PubMed/NCBI

67 

Wang J, Zhou Y, Li D, Sun X, Deng Y and Zhao Q: TSPAN31 is a critical regulator on transduction of survival and apoptotic signals in hepatocellular carcinoma cells. FEBS Lett. 591:2905–2918. 2017. View Article : Google Scholar : PubMed/NCBI

68 

Smyth EC, Nilsson M, Grabsch HI, van Grieken NC and Lordick F: Gastric cancer. Lancet. 396:635–648. 2020. View Article : Google Scholar : PubMed/NCBI

69 

Yang L, Ying X, Liu S, Lyu G, Xu Z, Zhang X, Li H, Li Q, Wang N and Ji J: Gastric cancer: Epidemiology, risk factors and prevention strategies. Chin J Cancer Res. 32:695–704. 2020. View Article : Google Scholar : PubMed/NCBI

70 

Deng Y, Cai S, Shen J and Peng H: Tetraspanins: Novel molecular regulators of gastric cancer. Front Oncol. 11:7025102021. View Article : Google Scholar : PubMed/NCBI

71 

Hemler ME: Tetraspanin proteins promote multiple cancer stages. Nat Rev Cancer. 14:49–60. 2014. View Article : Google Scholar : PubMed/NCBI

72 

Zöller M: Tetraspanins: Push and pull in suppressing and promoting metastasis. Nat Rev Cancer. 9:40–55. 2009. View Article : Google Scholar : PubMed/NCBI

73 

Bonnet M, Maisonial-Besset A, Zhu Y, Witkowski T, Roche G, Boucheix C, Greco C and Degoul F: Targeting the tetraspanins with monoclonal antibodies in oncology: Focus on Tspan8/Co-029. Cancers (Basel). 11:1792019. View Article : Google Scholar : PubMed/NCBI

74 

Claas C, Seiter S, Claas A, Savelyeva L, Schwab M and Zöller M: Association between the rat homologue of CO-029, a metastasis-associated tetraspanin molecule and consumption coagulopathy. J Cell Biol. 141:267–280. 1998. View Article : Google Scholar : PubMed/NCBI

75 

Gesierich S, Berezovskiy I, Ryschich E and Zöller M: Systemic induction of the angiogenesis switch by the tetraspanin D6.1A/CO-029. Cancer Res. 66:7083–7094. 2006. View Article : Google Scholar : PubMed/NCBI

76 

Anami K, Oue N, Noguchi T, Sakamoto N, Sentani K, Hayashi T, Naito Y, Oo HZ and Yasui W: TSPAN8, identified by Escherichia coli ampicillin secretion trap, is associated with cell growth and invasion in gastric cancer. Gastric Cancer. 19:370–380. 2016. View Article : Google Scholar : PubMed/NCBI

77 

Hemler ME: Tetraspanin functions and associated microdomains. Nat Rev Mol Cell Biol. 16:801–811. 2005. View Article : Google Scholar : PubMed/NCBI

78 

Wang HX, Li Q, Sharma C, Knoblich K and Hemler ME: Tetraspanin protein contributions to cancer. Biochem Soc Trans. 39:547–552. 2011. View Article : Google Scholar : PubMed/NCBI

79 

Li T, Meng XL and Yang WQ: Long noncoding RNA PVT1 acts as a ‘sponge’ to inhibit microRNA-152 in gastric cancer cells. Dig Dis Sci. 62:3021–3028. 2017. View Article : Google Scholar : PubMed/NCBI

80 

Murray D, Horgan G, Macmathuna P and Doran P: NET1-mediated RhoA activation facilitates lysophosphatidic acid-induced cell migration and invasion in gastric cancer. Br J Cancer. 99:1322–1329. 2008. View Article : Google Scholar : PubMed/NCBI

81 

Wang GL, Chen L, Wei YZ, Zhou JM, Wu YY, Zhang YX, Qin J and Zhu YY: The effect of NET-1 on the proliferation, migration and endocytosis of the SMMC-7721 HCC cell line. Oncol Rep. 27:1944–1952. 2012.PubMed/NCBI

82 

Shang H, Wu B, Liang X, Sun Y, Han X, Zhang L, Wang Q and Cheng W: Evaluation of therapeutic effect of targeting nanobubbles conjugated with NET-1 siRNA by shear wave elastography: an in vivo study of hepatocellular carcinoma bearing mice model. Drug Deliv. 26:944–951. 2019. View Article : Google Scholar : PubMed/NCBI

83 

Li T, Xue Y, Wang G, Gu T, Li Y, Zhu YY and Chen L: Multi-target siRNA: Therapeutic strategy for hepatocellular carcinoma. J Cancer. 7:1317–1327. 2016. View Article : Google Scholar : PubMed/NCBI

84 

Garcia-Mayea Y, Mir C, Carballo L, Castellvi J, Temprana-Salvador J, Lorente J, Benavente S, García-Pedrero JM, Allonca E, Rodrigo JP and LLeonart ME: TSPAN1: A novel protein involved in head and neck squamous cell carcinoma chemoresistance. Cancers (Basel). 12:32692020. View Article : Google Scholar : PubMed/NCBI

85 

Ma L, Li Y, Peng J, Wu D, Zhao X, Cui Y, Chen L, Yan X, Du Y and Yu L: Discovery of the migrasome, an organelle mediating release of cytoplasmic contents during cell migration. Cell Res. 25:24–38. 2015. View Article : Google Scholar : PubMed/NCBI

86 

Wu L, Yang S, Li H, Zhang Y, Feng L, Zhang C, Wei J, Gu X, Xu G, Wang Z and Wang F: TSPAN4-positive migrasome derived from retinal pigmented epithelium cells contributes to the development of proliferative vitreoretinopathy. J Nanobiotechnology. 20:5192022. View Article : Google Scholar : PubMed/NCBI

87 

Zhang C, Li T, Yin S, Gao M, He H, Li Y, Jiang D, Shi M, Wang J and Yu L: Monocytes deposit migrasomes to promote embryonic angiogenesis. Nat Cell Biol. 24:1726–1738. 2022. View Article : Google Scholar : PubMed/NCBI

88 

Zhang Y, Zhang M, Xie Z, Ding Y, Huang J, Yao J, Lv Y and Zuo J: Research progress and direction of novel organelle-migrasomes. Cancers (Basel). 15:1342022. View Article : Google Scholar : PubMed/NCBI

89 

Qi W, Sun L, Liu N, Zhao S, Lv J and Qiu W: Tetraspanin family identified as the central genes detected in gastric cancer using bioinformatics analysis. Mol Med Rep. 18:3599–3610. 2018.PubMed/NCBI

90 

Hori H, Yano S, Koufuji K, Takeda J and Shirouzu K: CD9 expression in gastric cancer and its significance. J Surg Res. 117:208–215. 2004. View Article : Google Scholar : PubMed/NCBI

91 

Setoguchi T, Kikuchi H, Yamamoto M, Baba M, Ohta M, Kamiya K, Tanaka T, Baba S, Goto-Inoue N, Setou M, et al: Microarray analysis identifies versican and CD9 as potent prognostic markers in gastric gastrointestinal stromal tumors. Cancer Sci. 102:883–889. 2011. View Article : Google Scholar : PubMed/NCBI

92 

Zhao LJ, Fan QQ, Li YY, Ren HM, Zhang T, Liu S, Maa M, Zheng YC and Liu HM: LSD1 deletion represses gastric cancer migration by upregulating a novel miR-142-5p target protein CD9. Pharmacol Res. 159:1049912020. View Article : Google Scholar : PubMed/NCBI

93 

Wunder JS, Eppert K, Burrow SR, Gokgoz N, Bell RS and Andrulis IL: Co-amplification and overexpression of CDK4, SAS and MDM2 occurs frequently in human parosteal osteosarcomas. Oncogene. 18:783–788. 1999. View Article : Google Scholar : PubMed/NCBI

94 

Ma X, Qiu S, Tang X, Song Q, Wang P, Wang J, Xia Q, Wang Z, Zhao Q and Lu M: TSPAN31 regulates the proliferation, migration, and apoptosis of gastric cancer cells through the METTL1/CCT2 pathway. Transl Oncol. 20:1014232022. View Article : Google Scholar : PubMed/NCBI

95 

Oren R, Takahashi S, Doss C, Levy R and Levy S: TAPA-1, the target of an antiproliferative antibody, defines a new family of transmembrane proteins. Mol Cell Biol. 10:4007–4015. 1990. View Article : Google Scholar : PubMed/NCBI

96 

Levy S, Todd SC and Maecker HT: CD81 (TAPA-1): A molecule involved in signal transduction and cell adhesion in the immune system. Annu Rev Immunol. 16:89–109. 1998. View Article : Google Scholar : PubMed/NCBI

97 

Dong JT, Suzuki H, Pin SS, Bova GS, Schalken JA, Isaacs WB, Barrett JC and Isaacs JT: Down-regulation of the KAI1 metastasis suppressor gene during the progression of human prostatic cancer infrequently involves gene mutation or allelic loss. Cancer Res. 56:4387–4390. 1996.PubMed/NCBI

98 

García-Frigola C, Burgaya F, Calbet M, de Lecea L and Soriano E: Mouse Tspan-5, a member of the tetraspanin superfamily, is highly expressed in brain cortical structures. Neuroreport. 11:3181–3185. 2000. View Article : Google Scholar : PubMed/NCBI

99 

Li PY, Lv J, Qi WW, Zhao SF, Sun LB, Liu N, Sheng J and Qiu WS: Tspan9 inhibits the proliferation, migration and invasion of human gastric cancer SGC7901 cells via the ERK1/2 pathway. Oncol Rep. 36:448–454. 2016. View Article : Google Scholar : PubMed/NCBI

100 

Qi Y, Qi W, Liu S, Sun L, Ding A, Yu G, Li H, Wang Y, Qiu W and Lv J: TSPAN9 suppresses the chemosensitivity of gastric cancer to 5-fluorouracil by promoting autophagy. Cancer Cell Int. 20:42020. View Article : Google Scholar : PubMed/NCBI

101 

Sayiner M, Golabi P and Younossi ZM: Disease burden of hepatocellular carcinoma: A global perspective. Dig Dis Sci. 64:910–917. 2019. View Article : Google Scholar : PubMed/NCBI

102 

Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA and Jemal A: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 68:394–424. 2018. View Article : Google Scholar : PubMed/NCBI

103 

Zhang K, Lai X, Song J, He L, Wang L, Ou G, Tian X, Wang L, Deng J, Zhang J, et al: A novel cell culture model reveals the viral interference during hepatitis B and C virus coinfection. Antiviral Res. 189:1050612021. View Article : Google Scholar : PubMed/NCBI

104 

Chen L, Wang Z, Zhan X, Li DC, Zhu YY and Zhu J: Association of NET-1 gene expression with human hepatocellular carcinoma. Int J Surg Pathol. 15:346–353. 2007. View Article : Google Scholar : PubMed/NCBI

105 

Wu B, Shang H, Liang X, Sun Y, Jing H, Han X and Cheng W: Preparation of novel targeting nanobubbles conjugated with small interfering RNA for concurrent molecular imaging and gene therapy in vivo. FASEB J. 33:14129–14136. 2019. View Article : Google Scholar : PubMed/NCBI

106 

Wu B, Qiao Q, Han X, Jing H, Zhang H, Liang H and Cheng W: Targeted nanobubbles in low-frequency ultrasound-mediated gene transfection and growth inhibition of hepatocellular carcinoma cells. Tumour Biol. 37:12113–12121. 2016. View Article : Google Scholar : PubMed/NCBI

107 

Kanetaka K, Sakamoto M, Yamamoto Y, Yamasaki S, Lanza F, Kanematsu T and Hirohashi S: Overexpression of tetraspanin CO-029 in hepatocellular carcinoma. J Hepatol. 35:637–642. 2001. View Article : Google Scholar : PubMed/NCBI

108 

Fang T, Lin J, Wang Y, Chen G, Huang J, Chen J, Zhao Y, Sun R, Liang C and Liu B: Tetraspanin-8 promotes hepatocellular carcinoma metastasis by increasing ADAM12m expression. Oncotarget. 7:40630–40643. 2016. View Article : Google Scholar : PubMed/NCBI

109 

Herlevsen M, Schmidt DS, Miyazaki K and Zöller M: The association of the tetraspanin D6.1A with the alpha6beta4 integrin supports cell motility and liver metastasis formation. J Cell Sci. 116:4373–4390. 2003. View Article : Google Scholar : PubMed/NCBI

110 

Sanjmyatav J, Steiner T, Wunderlich H, Diegmann J, Gajda M and Junker K: A specific gene expression signature characterizes metastatic potential in clear cell renal cell carcinoma. J Urol. 186:289–294. 2011. View Article : Google Scholar : PubMed/NCBI

111 

Tokuhara T, Hasegawa H, Hattori N, Ishida H, Taki T, Tachibana S, Sasaki S and Miyake M: Clinical significance of CD151 gene expression in non-small cell lung cancer. Clin Cancer Res. 7:4109–4114. 2001.PubMed/NCBI

112 

Devbhandari RP, Shi GM, Ke AW, Wu FZ, Huang XY, Wang XY, Shi YH, Ding ZB, Xu Y, Dai Z, et al: Profiling of the tetraspanin CD151 web and conspiracy of CD151/integrin β1 complex in the progression of hepatocellular carcinoma. PLoS One. 6:e249012011. View Article : Google Scholar : PubMed/NCBI

113 

Shi GM, Ke AW, Zhou J, Wang XY, Xu Y, Ding ZB, Devbhandari RP, Huang XY, Qiu SJ, Shi YH, et al: CD151 modulates expression of matrix metalloproteinase 9 and promotes neoangiogenesis and progression of hepatocellular carcinoma. Hepatology. 52:183–196. 2010. View Article : Google Scholar : PubMed/NCBI

114 

Zhang PF, Wang F, Wu J, Wu Y, Huang W, Liu D, Huang XY, Zhang XM and Ke AW: LncRNA SNHG3 induces EMT and sorafenib resistance by modulating the miR-128/CD151 pathway in hepatocellular carcinoma. J Cell Physiol. 234:2788–2794. 2019. View Article : Google Scholar : PubMed/NCBI

115 

Liu T, Zu CH, Wang SS, Song HL, Wang ZL, Xu XN, Liu HS, Wang YL and Shen ZY: PIK3C2A mRNA functions as a miR-124 sponge to facilitate CD151 expression and enhance malignancy of hepatocellular carcinoma cells. Oncotarget. 7:43376–43389. 2016. View Article : Google Scholar : PubMed/NCBI

116 

Kim JH, Badawi M, Park JK, Jiang J, Mo X, Roberts LR and Schmittgen TD: Anti-invasion and anti-migration effects of miR-199a-3p in hepatocellular carcinoma are due in part to targeting CD151. Int J Oncol. 49:2037–2045. 2016. View Article : Google Scholar : PubMed/NCBI

117 

Schreyer L, Mittermeier C, Franz MJ, Meier MA, Martin DE, Maier KC, Huebner K, Schneider-Stock R, Singer S, Holzer K, et al: Tetraspanin 5 (TSPAN5), a novel gatekeeper of the tumor suppressor DLC1 and myocardin-related transcription factors (MRTFs), controls HCC growth and senescence. Cancers (Basel). 13:53732021. View Article : Google Scholar : PubMed/NCBI

118 

Guo XZ, Friess H, Di Mola FF, Heinicke JM, Abou-Shady M, Graber HU, Baer HU, Zimmermann A, Korc M and Büchler MW: KAI1, a new metastasis suppressor gene, is reduced in metastatic hepatocellular carcinoma. Hepatology. 28:1481–1488. 1998. View Article : Google Scholar : PubMed/NCBI

119 

Yu G, Bing Y, Li W, Xia L and Liu Z: Hepatitis B virus inhibits the expression of CD82 through hypermethylation of its promoter in hepatoma cells. Mol Med Rep. 10:2580–2586. 2014. View Article : Google Scholar : PubMed/NCBI

120 

Gilsanz A, Sánchez-Martín L, Gutiérrez-López MD, Ovalle S, Machado-Pineda Y, Reyes R, Swart GW, Figdor CG, Lafuente EM and Cabañas C: ALCAM/CD166 adhesive function is regulated by the tetraspanin CD9. Cell Mol Life Sci. 70:475–493. 2013. View Article : Google Scholar : PubMed/NCBI

121 

Wang J, Ma L, Weng W, Qiao Y, Zhang Y, He J, Wang H, Xiao W, Li L, Chu Q, et al: Mutual interaction between YAP and CREB promotes tumorigenesis in liver cancer. Hepatology. 58:1011–1120. 2013. View Article : Google Scholar : PubMed/NCBI

122 

Ma L, Wang J, Lin J, Pan Q, Yu Y and Sun F: Cluster of differentiation 166 (CD166) regulated by phosphatidylinositide 3-Kinase (PI3K)/AKT signaling to exert its anti-apoptotic role via yes-associated protein (YAP) in liver cancer. J Biol Chem. 289:6921–6933. 2014. View Article : Google Scholar : PubMed/NCBI

123 

Jentzsch V, Davis JAA and Djamgoz MBA: Pancreatic cancer (PDAC): Introduction of evidence-based complementary measures into integrative clinical management. Cancers (Basel). 12:30962020. View Article : Google Scholar : PubMed/NCBI

124 

Siegel RL, Miller KD and Jemal A: Cancer statistics, 2016. CA Cancer J Clin. 66:7–30. 2016. View Article : Google Scholar : PubMed/NCBI

125 

Zeitouni D, Pylayeva-Gupta Y, Der CJ and Bryant KL: KRAS mutant pancreatic cancer: No lone path to an effective treatment. Cancers (Basel). 8:452016. View Article : Google Scholar : PubMed/NCBI

126 

Ye H, Li T, Wang H, Wu J, Yi C, Shi J, Wang P, Song C, Dai L, Jiang G, et al: TSPAN1, TMPRSS4, SDR16C5, and CTSE as novel panel for pancreatic cancer: A bioinformatics analysis and experiments validation. Front Immunol. 12:6495512021. View Article : Google Scholar : PubMed/NCBI

127 

Zhou C, Liang Y, Zhou L, Yan Y, Liu N, Zhang R, Huang Y, Wang M, Tang Y, Ali DW, et al: TSPAN1 promotes autophagy flux and mediates cooperation between WNT-CTNNB1 signaling and autophagy via the MIR454-FAM83A-TSPAN1 axis in pancreatic cancer. Autophagy. 17:3175–3195. 2021. View Article : Google Scholar : PubMed/NCBI

128 

Liu S, Cai Y, Changyong E, Sheng J and Zhang X: Screening and validation of independent predictors of poor survival in pancreatic cancer. Pathol Oncol Res. 27:16098682021. View Article : Google Scholar : PubMed/NCBI

129 

Wang L, Gao P, Yuan P, Zhou P, Fan H, Lin X, Yuan X, Zhu M, Fan X, Lu Y and Wang Z: miR-573 suppresses pancreatic cancer cell proliferation, migration, and invasion through targeting TSPAN1. Strahlenther Onkol. 197:438–448. 2021. View Article : Google Scholar : PubMed/NCBI

130 

Ma C, Cui Z, Wang Y, Zhang L, Wen J, Guo H, Li N and Zhang W: Bioinformatics analysis reveals TSPAN1 as a candidate biomarker of progression and prognosis in pancreatic cancer. Bosn J Basic Med Sci. 21:47–60. 2021.PubMed/NCBI

131 

Wang S, Liu X, Khan AA, Li H, Tahir M, Yan X, Wang J and Huang H: miR-216a-mediated upregulation of TSPAN1 contributes to pancreatic cancer progression via transcriptional regulation of ITGA2. Am J Cancer Res. 10:1115–1129. 2020.PubMed/NCBI

132 

Zhang X, Shi G, Gao F, Liu P, Wang H and Tan X: TSPAN1 upregulates MMP2 to promote pancreatic cancer cell migration and invasion via PLCγ. Oncol Rep. 41:2117–2125. 2019.PubMed/NCBI

133 

Mayado A, Orfao A, Mentink A, Gutierrez ML, Muñoz-Bellvis L and Terstappen LWMM: Detection of circulating tumor cells in blood of pancreatic ductal adenocarcinoma patients. Cancer Drug Resist. 3:83–97. 2020.PubMed/NCBI

134 

Wang H, Rana S, Giese N, Büchler MW and Zöller M: Tspan8, CD44v6 and alpha6beta4 are biomarkers of migrating pancreatic cancer-initiating cells. Int J Cancer. 133:416–426. 2013. View Article : Google Scholar : PubMed/NCBI

135 

Yue S, Mu W and Zöller M: Tspan8 and CD151 promote metastasis by distinct mechanisms. Eur J Cancer. 49:2934–2948. 2013. View Article : Google Scholar : PubMed/NCBI

136 

Yue S, Mu W, Erb U and Zöller M: The tetraspanins CD151 and Tspan8 are essential exosome components for the crosstalk between cancer initiating cells and their surrounding. Oncotarget. 6:2366–2384. 2015. View Article : Google Scholar : PubMed/NCBI

137 

Greenow K and Clarke AR: Controlling the stem cell compartment and regeneration in vivo: The role of pluripotency pathways. Physiol Rev. 92:75–99. 2012. View Article : Google Scholar : PubMed/NCBI

138 

Sales KM, Winslet MC and Seifalian AM: Stem cells and cancer: An overview. Stem Cell Rev. 3:249–255. 2007. View Article : Google Scholar : PubMed/NCBI

139 

Heiler S, Wang Z and Zöller M: Pancreatic cancer stem cell markers and exosomes-the incentive push. World J Gastroenterol. 22:5971–6007. 2016. View Article : Google Scholar : PubMed/NCBI

140 

Wu M, Li X, Liu R, Yuan H, Liu W and Liu Z: Development and validation of a metastasis-related gene signature for predicting the overall survival in patients with pancreatic ductal adenocarcinoma. J Cancer. 11:6299–6318. 2020. View Article : Google Scholar : PubMed/NCBI

141 

Luo L, Li Y, Huang C, Lin Y, Su Y, Cen H, Chen Y, Peng S, Ren T, Xie R and Zeng L: A new 7-gene survival score assay for pancreatic cancer patient prognosis prediction. Am J Cancer Res. 11:495–512. 2021.PubMed/NCBI

142 

Crnogorac-Jurcevic T, Efthimiou E, Capelli P, Blaveri E, Baron A, Terris B, Jones M, Tyson K, Bassi C, Scarpa A and Lemoine NR: Gene expression profiles of pancreatic cancer and stromal desmoplasia. Oncogene. 20:7437–7446. 2001. View Article : Google Scholar : PubMed/NCBI

143 

Feng J, Huang C, Wren JD, Wang DW, Yan J, Zhang J, Sun Y, Han X and Zhang XA: Tetraspanin CD82: A suppressor of solid tumors and a modulator of membrane heterogeneity. Cancer Metastasis Rev. 34:619–633. 2015. View Article : Google Scholar : PubMed/NCBI

144 

Liu WM and Zhang XA: KAI1/CD82, a tumor metastasis suppressor. Cancer Lett. 240:183–194. 2006. View Article : Google Scholar : PubMed/NCBI

145 

Yan W, Huang J, Zhang Q and Zhang J: Role of metastasis suppressor KAI1/CD82 in different cancers. J Oncol. 2021:99244732021. View Article : Google Scholar : PubMed/NCBI

146 

Liu X, Guo XZ, Zhang WW, Lu ZZ, Zhang QW, Duan HF and Wang LS: KAI1 inhibits HGF-induced invasion of pancreatic cancer by sphingosine kinase activity. Hepatobiliary Pancreat Dis Int. 10:201–208. 2011. View Article : Google Scholar : PubMed/NCBI

147 

Siegel RL, Miller KD, Wagle NS and Jemal A: Cancer statistics, 2023. CA Cancer J Clin. 73:17–48. 2023. View Article : Google Scholar : PubMed/NCBI

148 

Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A and Bray F: Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 71:209–249. 2021. View Article : Google Scholar : PubMed/NCBI

149 

Miller KD, Nogueira L, Devasia T, Mariotto AB, Yabroff KR, Jemal A, Kramer J and Siegel RL: Cancer treatment and survivorship statistics, 2022. CA Cancer J Clin. 72:409–436. 2022. View Article : Google Scholar : PubMed/NCBI

150 

Lee CH, Im EJ, Moon PG and Baek MC: Discovery of a diagnostic biomarker for colon cancer through proteomic profiling of small extracellular vesicles. BMC Cancer. 18:10582018. View Article : Google Scholar : PubMed/NCBI

151 

Guo JN, Chen D, Deng SH, Huang JR, Song JX, Li XY, Cui BB and Liu YL: Identification and quantification of immune infiltration landscape on therapy and prognosis in left- and right-sided colon cancer. Cancer Immunol Immunother. 71:1313–1330. 2022. View Article : Google Scholar : PubMed/NCBI

152 

Min J, Yang S, Cai Y, Vanderwall DR, Wu Z, Li S, Liu S, Liu B, Wang J, Ding Y, et al: Tetraspanin Tspan8 restrains interferon signaling to stabilize intestinal epithelium by directing endocytosis of interferon receptor. Cell Mol Life Sci. 80:1542023. View Article : Google Scholar : PubMed/NCBI

153 

Kuhn S, Koch M, Nübel T, Ladwein M, Antolovic D, Klingbeil P, Hildebrand D, Moldenhauer G, Langbein L, Franke WW, et al: A complex of EpCAM, claudin-7, CD44 variant isoforms, and tetraspanins promotes colorectal cancer progression. Mol Cancer Res. 5:553–567. 2007. View Article : Google Scholar : PubMed/NCBI

154 

Visvader JE: Cells of origin in cancer. Nature. 469:314–322. 2011. View Article : Google Scholar : PubMed/NCBI

155 

Wang Z and Zöller M: Exosomes, metastases, and the miracle of cancer stem cell markers. Cancer Metastasis Rev. 38:259–295. 2019. View Article : Google Scholar : PubMed/NCBI

156 

Greco C, Bralet MP, Ailane N, Dubart-Kupperschmitt A, Rubinstein E, Le Naour F and Boucheix C: E-cadherin/p120-catenin and tetraspanin Co-029 cooperate for cell motility control in human colon carcinoma. Cancer Res. 70:7674–7583. 2010. View Article : Google Scholar : PubMed/NCBI

157 

Knoblich K, Wang HX, Sharma C, Fletcher AL, Turley SJ and Hemler ME: Tetraspanin TSPAN12 regulates tumor growth and metastasis and inhibits β-catenin degradation. Cell Mol Life Sci. 71:1305–1314. 2014. View Article : Google Scholar : PubMed/NCBI

158 

Chiang SF, Kan CY, Hsiao YC, Tang R, Hsieh LL, Chiang JM, Tsai WS, Yeh CY, Hsieh PS, Liang Y, et al: Bone marrow stromal antigen 2 is a novel plasma biomarker and prognosticator for colorectal carcinoma: A secretome-based verification study. Dis Markers. 2015:8740542015. View Article : Google Scholar : PubMed/NCBI

159 

Hashida H, Takabayashi A, Tokuhara T, Hattori N, Taki T, Hasegawa H, Satoh S, Kobayashi N, Yamaoka Y and Miyake M: Clinical significance of transmembrane 4 superfamily in colon cancer. Br J Cancer. 89:158–167. 2003. View Article : Google Scholar : PubMed/NCBI

160 

Mori M, Mimori K, Shiraishi T, Haraguchi M, Ueo H, Barnard GF and Akiyoshi T: Motility related protein 1 (MRP1/CD9) expression in colon cancer. Clin Cancer Res. 4:1507–1510. 1998.PubMed/NCBI

161 

Wu DH, Liu L, Chen LH and Ding YQ: KAI1 gene expression in colonic carcinoma and its clinical significances. World J Gastroenterol. 10:2245–2249. 2004. View Article : Google Scholar : PubMed/NCBI

162 

Lee JH, Bae JA, Lee JH, Seo YW, Kho DH, Sun EG, Lee SE, Cho SH, Joo YE, Ahn KY, et al: Glycoprotein 90K, downregulated in advanced colorectal cancer tissues, interacts with CD9/CD82 and suppresses the Wnt/beta-catenin signal via ISGylation of beta-catenin. Gut. 59:907–917. 2010. View Article : Google Scholar : PubMed/NCBI

163 

Morgan E, Soerjomataram I, Rumgay H, Coleman HG, Thrift AP, Vignat J, Laversanne M, Ferlay J and Arnold M: The Global landscape of esophageal squamous cell carcinoma and esophageal adenocarcinoma incidence and mortality in 2020 and projections to 2040: New estimates from GLOBOCAN 2020. Gastroenterology. 163:649–658.e2. 2022. View Article : Google Scholar : PubMed/NCBI

164 

van den Brandt PA: The impact of a healthy lifestyle on the risk of esophageal and gastric cancer subtypes. Eur J Epidemiol. 37:931–945. 2022. View Article : Google Scholar : PubMed/NCBI

165 

Botelho NK, Schneiders FI, Lord SJ, Freeman AK, Tyagi S, Nancarrow DJ, Hayward NK, Whiteman DC and Lord RV: Gene expression alterations in formalin-fixed, paraffin-embedded Barrett esophagus and esophageal adenocarcinoma tissues. Cancer Biol Ther. 10:172–179. 2010. View Article : Google Scholar : PubMed/NCBI

166 

Zhao WS, Yan WP, Chen DB, Dai L, Yang YB, Kang XZ, Fu H, Chen P, Deng KJ, Wang XY, et al: Genome-scale CRISPR activation screening identifies a role of ELAVL2-CDKN1A axis in paclitaxel resistance in esophageal squamous cell carcinoma. Am J Cancer Res. 9:1183–1200. 2019.PubMed/NCBI

167 

Fisher OM, Levert-Mignon AJ, Lehane CW, Botelho NK, Maag JL, Thomas ML, Edwards M, Lord SJ, Bobryshev YV, Whiteman DC and Lord RV: CD151 Gene and protein expression provides independent prognostic information for patients with adenocarcinoma of the esophagus and gastroesophageal junction treated by esophagectomy. Ann Surg Oncol. 23 (Suppl 5):S746–S754. 2016. View Article : Google Scholar

168 

Scully C and Porter S: ABC of oral health. Oral cancer. BMJ. 321:97–100. 2000. View Article : Google Scholar : PubMed/NCBI

169 

Scully C and Bedi R: Ethnicity and oral cancer. Lancet Oncol. 1:37–42. 2000. View Article : Google Scholar : PubMed/NCBI

170 

D'souza S and Addepalli V: Preventive measures in oral cancer: An overview. Biomed Pharmacother. 107:72–80. 2018. View Article : Google Scholar : PubMed/NCBI

171 

Hiroshima K, Shiiba M, Oka N, Hayashi F, Ishida S, Fukushima R, Koike K, Iyoda M, Nakashima D, Tanzawa H and Uzawa K: Tspan15 plays a crucial role in metastasis in oral squamous cell carcinoma. Exp Cell Res. 384:1116222019. View Article : Google Scholar : PubMed/NCBI

172 

Nankivell P, Williams H, McConkey C, Webster K, High A, MacLennan K, Senguven B, Rabbitts P and Mehanna H: Tetraspanins CD9 and CD151, epidermal growth factor receptor and cyclooxygenase-2 expression predict malignant progression in oral epithelial dysplasia. Br J Cancer. 109:2864–2874. 2013. View Article : Google Scholar : PubMed/NCBI

173 

Imai Y, Sasaki T, Shinagawa Y, Akimoto K and Fujibayashi T: Expression of metastasis suppressor gene (KAI1/CD82) in oral squamous cell carcinoma and its clinico-pathological significance. Oral Oncol. 38:557–561. 2002. View Article : Google Scholar : PubMed/NCBI

174 

Farhadieh RD, Smee R, Ow K, Yang JL, Russell PJ, Crouch R, Jackson P and Jacobson IV: Down-regulation of KAI1/CD82 protein expression in oral cancer correlates with reduced disease free survival and overall patient survival. Cancer Lett. 213:91–98. 2004. View Article : Google Scholar : PubMed/NCBI

175 

Matsumura N, Zembutsu H, Yamaguchi K, Sasaki K, Tsuruma T, Nishidate T, Denno R and Hirata K: Identification of novel molecular markers for detection of gastric cancer cells in the peripheral blood circulation using genome-wide microarray analysis. Exp Ther Med. 2:705–713. 2011. View Article : Google Scholar : PubMed/NCBI

176 

Lin H, Zhou AJ, Zhang JY, Liu SF and Gu JX: MiR-324-5p reduces viability and induces apoptosis in gastric cancer cells through modulating TSPAN8. J Pharm Pharmacol. 70:1513–1520. 2018. View Article : Google Scholar : PubMed/NCBI

177 

Zhai R, Kan X, Wang B, Du H, Long Y, Wu H, Tao K, Wang G, Bao L, Li F and Zhang W: miR-152 suppresses gastric cancer cell proliferation and motility by targeting CD151. Tumour Biol. 35:11367–11373. 2014. View Article : Google Scholar : PubMed/NCBI

178 

Blanco E, Hsiao A, Ruiz-Esparza GU, Landry MG, Meric-Bernstam F and Ferrari M: Molecular-targeted nanotherapies in cancer: Enabling treatment specificity. Mol Oncol. 5:492–503. 2011. View Article : Google Scholar : PubMed/NCBI

179 

Kim TK, Park CS, Jeoung MH, Lee WR, Go NK, Choi JR, Lee TS, Shim H and Lee S: Generation of a human antibody that inhibits TSPAN8-mediated invasion of metastatic colorectal cancer cells. Biochem Biophys Res Commun. 468:774–780. 2015. View Article : Google Scholar : PubMed/NCBI

180 

Park CS, Kim TK, Kim HG, Kim YJ, Jeoung MH, Lee WR, Go NK, Heo K and Lee S: Therapeutic targeting of tetraspanin8 in epithelial ovarian cancer invasion and metastasis. Oncogene. 35:4540–4548. 2016. View Article : Google Scholar : PubMed/NCBI

181 

Ke AW, Zhang PF, Shen YH, Gao PT, Dong ZR, Zhang C, Cai JB, Huang XY, Wu C, Zhang L, et al: Generation and characterization of a tetraspanin CD151/integrin α6β1-binding domain competitively binding monoclonal antibody for inhibition of tumor progression in HCC. Oncotarget. 7:6314–6322. 2016. View Article : Google Scholar : PubMed/NCBI

182 

Jin L and Cambier JC: SMIP-016 in action: CD37 as a death receptor. Cancer Cell. 21:597–598. 2012. View Article : Google Scholar : PubMed/NCBI

183 

Hwang JR, Jo K, Lee Y, Sung BJ, Park YW and Lee JH: Upregulation of CD9 in ovarian cancer is related to the induction of TNF-α gene expression and constitutive NF-κB activation. Carcinogenesis. 33:77–83. 2012. View Article : Google Scholar : PubMed/NCBI

184 

Longo N, Yáñez-Mó M, Mittelbrunn M, de la Rosa G, Muñoz ML, Sánchez-Madrid F and Sánchez-Mateos P: Regulatory role of tetraspanin CD9 in tumor-endothelial cell interaction during transendothelial invasion of melanoma cells. Blood. 98:3717–3726. 2001. View Article : Google Scholar : PubMed/NCBI

185 

Rock KL, Farfán-Arribas DJ, Colbert JD and Goldberg AL: Re-examining class-I presentation and the DRiP hypothesis. Trends Immunol. 35:144–152. 2014. View Article : Google Scholar : PubMed/NCBI

186 

Unternaehrer JJ, Chow A, Pypaert M, Inaba K and Mellman I: The tetraspanin CD9 mediates lateral association of MHC class II molecules on the dendritic cell surface. Proc Natl Acad Sci USA. 104:234–239. 2007. View Article : Google Scholar : PubMed/NCBI

187 

Suzuki M, Tachibana I, Takeda Y, He P, Minami S, Iwasaki T, Kida H, Goya S, Kijima T, Yoshida M, et al: Tetraspanin CD9 negatively regulates lipopolysaccharide-induced macrophage activation and lung inflammation. J Immunol. 182:6485–6493. 2009. View Article : Google Scholar : PubMed/NCBI

188 

Rocha-Perugini V, Martínez Del Hoyo G, González-Granado JM, Ramírez-Huesca M, Zorita V, Rubinstein E, Boucheix C and Sánchez-Madrid F: CD9 regulates major histocompatibility complex class II trafficking in monocyte-derived dendritic cells. Mol Cell Biol. 37:e00202–17. 2017. View Article : Google Scholar : PubMed/NCBI

189 

Jones EL, Wee JL, Demaria MC, Blakeley J, Ho PK, Vega-Ramos J, Villadangos JA, van Spriel AB, Hickey MJ, Hämmerling GJ and Wright MD: Dendritic cell migration and antigen presentation are coordinated by the opposing functions of the tetraspanins CD82 and CD37. J Immunol. 196:978–987. 2016. View Article : Google Scholar : PubMed/NCBI

190 

Gartlan KH, Wee JL, Demaria MC, Nastovska R, Chang TM, Jones EL, Apostolopoulos V, Pietersz GA, Hickey MJ, van Spriel AB and Wright MD: Tetraspanin CD37 contributes to the initiation of cellular immunity by promoting dendritic cell migration. Eur J Immunol. 43:1208–1219. 2013. View Article : Google Scholar : PubMed/NCBI

191 

Todros-Dawda I, Kveberg L, Vaage JT and Inngjerdingen M: The tetraspanin CD53 modulates responses from activating NK cell receptors, promoting LFA-1 activation and dampening NK cell effector functions. PLoS One. 9:e978442014. View Article : Google Scholar : PubMed/NCBI

192 

Petersen SH, Odintsova E, Haigh TA, Rickinson AB, Taylor GS and Berditchevski F: The role of tetraspanin CD63 in antigen presentation via MHC class II. Eur J Immunol. 41:2556–2561. 2011. View Article : Google Scholar : PubMed/NCBI

193 

Sheng KC, van Spriel AB, Gartlan KH, Sofi M, Apostolopoulos V, Ashman L and Wright MD: Tetraspanins CD37 and CD151 differentially regulate Ag presentation and T-cell co-stimulation by DC. Eur J Immunol. 39:50–55. 2009. View Article : Google Scholar : PubMed/NCBI

194 

Colbert JD, Cruz FM, Baer CE and Rock KL: Tetraspanin-5-mediated MHC class I clustering is required for optimal CD8 T cell activation. Proc Natl Acad Sci USA. 119:e21221881192022. View Article : Google Scholar : PubMed/NCBI

195 

Schäfer D, Tomiuk S, Küster LN, Rawashdeh WA, Henze J, Tischler-Höhle G, Agorku DJ, Brauner J, Linnartz C, Lock D, et al: Identification of CD318, TSPAN8 and CD66c as target candidates for CAR T cell based immunotherapy of pancreatic adenocarcinoma. Nat Commun. 12:14532021. View Article : Google Scholar : PubMed/NCBI

196 

Kohmo S, Kijima T, Otani Y, Mori M, Minami T, Takahashi R, Nagatomo I, Takeda Y, Kida H, Goya S, et al: Cell surface tetraspanin CD9 mediates chemoresistance in small cell lung cancer. Cancer Res. 70:8025–8035. 2010. View Article : Google Scholar : PubMed/NCBI

197 

Ullah M, Akbar A, Ng NN, Concepcion W and Thakor AS: Mesenchymal stem cells confer chemoresistance in breast cancer via a CD9 dependent mechanism. Oncotarget. 10:3435–3450. 2019. View Article : Google Scholar : PubMed/NCBI

198 

Pan SJ, Wu YB, Cai S, Pan YX, Liu W, Bian LG, Sun B and Sun QF: Over-expression of tetraspanin 8 in malignant glioma regulates tumor cell progression. Biochem Biophys Res Commun. 458:476–482. 2015. View Article : Google Scholar : PubMed/NCBI

199 

Zhu R, Gires O, Zhu L, Liu J, Li J, Yang H, Ju G, Huang J, Ge W, Chen Y, et al: TSPAN8 promotes cancer cell stemness via activation of sonic Hedgehog signaling. Nat Commun. 10:28632019. View Article : Google Scholar : PubMed/NCBI

200 

Tominaga N, Hagiwara K, Kosaka N, Honma K, Nakagama H and Ochiya T: RPN2-mediated glycosylation of tetraspanin CD63 regulates breast cancer cell malignancy. Mol Cancer. 13:1342014. View Article : Google Scholar : PubMed/NCBI

201 

Ye M, Wei T, Wang Q, Sun Y, Tang R, Guo L and Zhu W: TSPAN12 promotes chemoresistance and proliferation of SCLC under the regulation of miR-495. Biochem Biophys Res Commun. 486:349–356. 2017. View Article : Google Scholar : PubMed/NCBI

202 

Floren M, Restrepo Cruz S, Termini CM, Marjon KD, Lidke KA and Gillette JM: Tetraspanin CD82 drives acute myeloid leukemia chemoresistance by modulating protein kinase C alpha and β1 integrin activation. Oncogene. 39:3910–3925. 2020. View Article : Google Scholar : PubMed/NCBI

203 

Quagliano A, Gopalakrishnapillai A, Kolb EA and Barwe SP: CD81 knockout promotes chemosensitivity and disrupts in vivo homing and engraftment in acute lymphoblastic leukemia. Blood Adv. 4:4393–4405. 2020. View Article : Google Scholar : PubMed/NCBI

204 

Li L, Yang D, Cui D, Li Y, Nie Z, Wang J and Liang L: Quantitative proteomics analysis of the role of tetraspanin-8 in the drug resistance of gastric cancer. Int J Oncol. 52:473–484. 2018.PubMed/NCBI

205 

Gao X, Ran N, Dong X, Zuo B, Yang R, Zhou Q, Moulton HM, Seow Y and Yin H: Anchor peptide captures, targets, and loads exosomes of diverse origins for diagnostics and therapy. Sci Transl Med. 10:eaat01952018. View Article : Google Scholar : PubMed/NCBI

206 

Huang Y, Zucker B, Zhang S, Elias S, Zhu Y, Chen H, Ding T, Li Y, Sun Y, Lou J, et al: Migrasome formation is mediated by assembly of micron-scale tetraspanin macrodomains. Nat Cell Biol. 21:991–1002. 2019. View Article : Google Scholar : PubMed/NCBI

207 

Jiao H, Jiang D, Hu X, Du W, Ji L, Yang Y, Li X, Sho T, Wang X, Li Y, et al: Mitocytosis, a migrasome-mediated mitochondrial quality-control process. Cell. 184:2896–2910.e13. 2021. View Article : Google Scholar : PubMed/NCBI

208 

Yu S and Yu L: Migrasome biogenesis and functions. FEBS J. 289:7246–7254. 2022. View Article : Google Scholar : PubMed/NCBI

209 

Schmidt-Pogoda A, Strecker JK, Liebmann M, Massoth C, Beuker C, Hansen U, König S, Albrecht S, Bock S, Breuer J, et al: Dietary salt promotes ischemic brain injury and is associated with parenchymal migrasome formation. PLoS One. 13:e02098712018. View Article : Google Scholar : PubMed/NCBI

210 

Chen L, Ma L and Yu L: WGA is a probe for migrasomes. Cell Discov. 5:132019. View Article : Google Scholar : PubMed/NCBI

211 

Zheng Y, Lang Y, Qi B, Wang Y, Gao W and Li T: TSPAN4 is a prognostic and immune target in Glioblastoma multiforme. Front Mol Biosci. 9:10300572023. View Article : Google Scholar : PubMed/NCBI

212 

Zhang K, Zhu Z, Jia R, Wang NA, Shi M, Wang Y, Xiang S, Zhang Q and Xu L: CD151-enriched migrasomes mediate hepatocellular carcinoma invasion by conditioning cancer cells and promoting angiogenesis. J Exp Clin Cancer Res. 43:1602024. View Article : Google Scholar : PubMed/NCBI

213 

Qin Y, Yang J, Liang C, Liu J, Deng Z, Yan B, Fu Y, Luo Y, Li X, Wei X and Li W: Pan-cancer analysis identifies migrasome-related genes as a potential immunotherapeutic target: A bulk omics research and single cell sequencing validation. Front Immunol. 13:9948282022. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Chen K, Li Q, Li Y, Jiang D, Chen L, Jiang J, Li S and Zhang C: Tetraspanins in digestive‑system cancers: Expression, function and therapeutic potential (Review). Mol Med Rep 30: 200, 2024.
APA
Chen, K., Li, Q., Li, Y., Jiang, D., Chen, L., Jiang, J. ... Zhang, C. (2024). Tetraspanins in digestive‑system cancers: Expression, function and therapeutic potential (Review). Molecular Medicine Reports, 30, 200. https://doi.org/10.3892/mmr.2024.13324
MLA
Chen, K., Li, Q., Li, Y., Jiang, D., Chen, L., Jiang, J., Li, S., Zhang, C."Tetraspanins in digestive‑system cancers: Expression, function and therapeutic potential (Review)". Molecular Medicine Reports 30.5 (2024): 200.
Chicago
Chen, K., Li, Q., Li, Y., Jiang, D., Chen, L., Jiang, J., Li, S., Zhang, C."Tetraspanins in digestive‑system cancers: Expression, function and therapeutic potential (Review)". Molecular Medicine Reports 30, no. 5 (2024): 200. https://doi.org/10.3892/mmr.2024.13324
Copy and paste a formatted citation
x
Spandidos Publications style
Chen K, Li Q, Li Y, Jiang D, Chen L, Jiang J, Li S and Zhang C: Tetraspanins in digestive‑system cancers: Expression, function and therapeutic potential (Review). Mol Med Rep 30: 200, 2024.
APA
Chen, K., Li, Q., Li, Y., Jiang, D., Chen, L., Jiang, J. ... Zhang, C. (2024). Tetraspanins in digestive‑system cancers: Expression, function and therapeutic potential (Review). Molecular Medicine Reports, 30, 200. https://doi.org/10.3892/mmr.2024.13324
MLA
Chen, K., Li, Q., Li, Y., Jiang, D., Chen, L., Jiang, J., Li, S., Zhang, C."Tetraspanins in digestive‑system cancers: Expression, function and therapeutic potential (Review)". Molecular Medicine Reports 30.5 (2024): 200.
Chicago
Chen, K., Li, Q., Li, Y., Jiang, D., Chen, L., Jiang, J., Li, S., Zhang, C."Tetraspanins in digestive‑system cancers: Expression, function and therapeutic potential (Review)". Molecular Medicine Reports 30, no. 5 (2024): 200. https://doi.org/10.3892/mmr.2024.13324
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team