Tetraspanins in digestive‑system cancers: Expression, function and therapeutic potential (Review)
- Authors:
- Kexin Chen
- Qiuhong Li
- Yangyi Li
- Donghui Jiang
- Ligang Chen
- Jun Jiang
- Shengbiao Li
- Chunxiang Zhang
-
Affiliations: School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China, Department of Medical Imaging, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China, Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China, Department of General Surgery (Thyroid Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China, Department of Cardiology, Institute of Cardiovascular Research, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China - Published online on: September 6, 2024 https://doi.org/10.3892/mmr.2024.13324
- Article Number: 200
-
Copyright: © Chen et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Hemler ME: Tetraspanin proteins mediate cellular penetration, invasion, and fusion events and define a novel type of membrane microdomain. Annu Rev Cell Dev Biol. 19:397–422. 2003. View Article : Google Scholar : PubMed/NCBI | |
Min G, Wang H, Sun TT and Kong XP: Structural basis for tetraspanin functions as revealed by the cryo-EM structure of uroplakin complexes at 6-A resolution. J Cell Biol. 173:975–983. 2006. View Article : Google Scholar : PubMed/NCBI | |
Kitadokoro K, Bordo D, Galli G, Petracca R, Falugi F, Abrignani S, Grandi G and Bolognesi M: CD81 extracellular domain 3D structure: Insight into the tetraspanin superfamily structural motifs. EMBO J. 20:12–18. 2001. View Article : Google Scholar : PubMed/NCBI | |
Maecker HT, Todd SC and Levy S: The tetraspanin superfamily: molecular facilitators. FASEB J. 11:428–442. 1997. View Article : Google Scholar : PubMed/NCBI | |
Boucheix C and Rubinstein E: Tetraspanins. Cell Mol Life Sci. 58:1189–1205. 2001. View Article : Google Scholar : PubMed/NCBI | |
Boucheix C, Duc GH, Jasmin C and Rubinstein E: Tetraspanins and malignancy. Expert Rev Mol Med. 2001:1–17. 2001. View Article : Google Scholar : PubMed/NCBI | |
Tarrant JM, Robb L, van Spriel AB and Wright MD: Tetraspanins: Molecular organisers of the leukocyte surface. Trends Immunol. 24:610–617. 2003. View Article : Google Scholar : PubMed/NCBI | |
Berditchevski F: Complexes of tetraspanins with integrins: More than meets the eye. J Cell Sci. 114:4143–4151. 2001. View Article : Google Scholar : PubMed/NCBI | |
Claas C, Stipp CS and Hemler ME: Evaluation of prototype transmembrane 4 superfamily protein complexes and their relation to lipid rafts. J Biol Chem. 276:7974–7984. 2001. View Article : Google Scholar : PubMed/NCBI | |
Garcia-Mayea Y, Mir C, Carballo L, Sánchez-García A, Bataller M and LLeonart ME: TSPAN1, a novel tetraspanin member highly involved in carcinogenesis and chemoresistance. Biochim Biophys Acta Rev Cancer. 1877:1886742022. View Article : Google Scholar : PubMed/NCBI | |
Global Burden of Disease 2019 Cancer Collaboration, . Kocarnik JM, Compton K, Dean FE, Fu W, Gaw BL, Harvey JD, Henrikson HJ, Lu D, Pennini A, et al: Cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life years for 29 cancer groups from 2010 to 2019: A systematic analysis for the global burden of disease study 2019. JAMA Oncol. 8:420–444. 2022. View Article : Google Scholar : PubMed/NCBI | |
Berditchevski F, Gilbert E, Griffiths MR, Fitter S, Ashman L and Jenner SJ: Analysis of the CD151-alpha3beta1 integrin and CD151-tetraspanin interactions by mutagenesis. J Biol Chem. 276:41165–41174. 2001. View Article : Google Scholar : PubMed/NCBI | |
Gesierich S, Paret C, Hildebrand D, Weitz J, Zgraggen K, Schmitz-Winnenthal FH, Horejsi V, Yoshie O, Herlyn D, Ashman LK and Zöller M: Colocalization of the, tetraspanins CO-029 and CD151, with integrins in human pancreatic adenocarcinoma: Impact on cell motility. Clin Cancer Res. 11:2840–2852. 2005. View Article : Google Scholar : PubMed/NCBI | |
Lazo PA: Functional implications of tetraspanin proteins in cancer biology. Cancer Sci. 98:1666–1677. 2007. View Article : Google Scholar : PubMed/NCBI | |
Li J, Xu J, Li L, Ianni A, Kumari P, Liu S, Sun P, Braun T, Tan X, Xiang R and Yue S: MGAT3-mediated glycosylation of tetraspanin CD82 at asparagine 157 suppresses ovarian cancer metastasis by inhibiting the integrin signaling pathway. Theranostics. 10:6467–6482. 2020. View Article : Google Scholar : PubMed/NCBI | |
Tiwari-Woodruff SK, Buznikov AG, Vu TQ, Micevych PE, Chen K, Kornblum HI and Bronstein JM: OSP/claudin-11 forms a complex with a novel member of the tetraspanin super family and beta1 integrin and regulates proliferation and migration of oligodendrocytes. J Cell Biol. 153:295–305. 2001. View Article : Google Scholar : PubMed/NCBI | |
Otsubo C, Otomo R, Miyazaki M, Matsushima-Hibiya Y, Kohno T, Iwakawa R, Takeshita F, Okayama H, Ichikawa H, Saya H, et al: TSPAN2 is involved in cell invasion and motility during lung cancer progression. Cell Rep. 7:527–538. 2014. View Article : Google Scholar : PubMed/NCBI | |
Tardif MR and Tremblay MJ: Tetraspanin CD81 provides a costimulatory signal resulting in increased human immunodeficiency virus type 1 gene expression in primary CD4+ T lymphocytes through NF-kappaB, NFAT, and AP-1 transduction pathways. J Virol. 79:4316–4328. 2005. View Article : Google Scholar : PubMed/NCBI | |
Levy S and Shoham T: The tetraspanin web modulates immune-signalling complexes. Nat Rev Immunol. 5:136–148. 2005. View Article : Google Scholar : PubMed/NCBI | |
Arduise C, Abache T, Li L, Billard M, Chabanon A, Ludwig A, Mauduit P, Boucheix C, Rubinstein E and Le Naour F: Tetraspanins regulate ADAM10-mediated cleavage of TNF-alpha and epidermal growth factor. J Immunol. 181:7002–7013. 2008. View Article : Google Scholar : PubMed/NCBI | |
Yañez-Mó M, Barreiro O, Gonzalo P, Batista A, Megías D, Genís L, Sachs N, Sala-Valdés M, Alonso MA, Montoya MC, et al: MT1-MMP collagenolytic activity is regulated through association with tetraspanin CD151 in primary endothelial cells. Blood. 112:3217–3226. 2008. View Article : Google Scholar : PubMed/NCBI | |
Bass R, Werner F, Odintsova E, Sugiura T, Berditchevski F and Ellis V: Regulation of urokinase receptor proteolytic function by the tetraspanin CD82. J Biol Chem. 280:14811–14818. 2005. View Article : Google Scholar : PubMed/NCBI | |
Lu Z, Luo T, Nie M, Pang T, Zhang X, Shen X, Ma L, Bi J, Wei G, Fang G and Xue X: TSPAN1 functions as an oncogene in gastric cancer and is downregulated by miR-573. FEBS Lett. 589:1988–1994. 2015. View Article : Google Scholar : PubMed/NCBI | |
Sun X, Wang M, Zhang F and Kong X: Inhibition of NET-1 suppresses proliferation and promotes apoptosis of hepatocellular carcinoma cells by activating the PI3K/AKT signaling pathway. Exp Ther Med. 17:2334–2340. 2019.PubMed/NCBI | |
Huang H, Li H, Zhao T, Khan AA, Pan R, Wang S, Wang S and Liu X: TSPAN1-elevated FAM110A promotes pancreatic cancer progression by transcriptionally regulating HIST1H2BK. J Cancer. 13:906–917. 2022. View Article : Google Scholar : PubMed/NCBI | |
Chen L, Yuan D, Zhao R, Li H and Zhu J: Suppression of TSPAN1 by RNA interference inhibits proliferation and invasion of colon cancer cells in vitro. Tumori. 96:744–750. 2010. View Article : Google Scholar : PubMed/NCBI | |
Chen Z, Gu S, Trojanowicz B, Liu N, Zhu G, Dralle H and Hoang-Vu C: Down-regulation of TM4SF is associated with the metastatic potential of gastric carcinoma TM4SF members in gastric carcinoma. World J Surg Oncol. 9:432011. View Article : Google Scholar : PubMed/NCBI | |
He P, Wang S, Zhang X, Gao Y, Niu W, Dong N, Shi X, Geng Y, Ma Q, Li M, et al: Tspan5 is an independent favourable prognostic factor and suppresses tumour growth in gastric cancer. Oncotarget. 7:40160–40173. 2016. View Article : Google Scholar : PubMed/NCBI | |
Xie Q, Guo H, He P, Deng H, Gao Y, Dong N, Niu W, Liu T, Li M, Wang S, et al: Tspan5 promotes epithelial-mesenchymal transition and tumour metastasis of hepatocellular carcinoma by activating Notch signalling. Mol Oncol. 15:3184–3202. 2021. View Article : Google Scholar : PubMed/NCBI | |
Roh S, Kim S, Hong I, Lee M, Kim HJ, Ahn TS, Kang DH, Baek MJ, Kwak HJ, Kim CJ and Jeong D: High expression of tetraspanin 5 as a prognostic marker of colorectal cancer. Int J Mol Sci. 24:64762023. View Article : Google Scholar : PubMed/NCBI | |
Andrijes R, Hejmadi RK, Pugh M, Rajesh S, Novitskaya V, Ibrahim M, Overduin M, Tselepis C, Middleton GW, Győrffy B, et al: Tetraspanin 6 is a regulator of carcinogenesis in colorectal cancer. Proc Natl Acad Sci USA. 118:e20114111182021. View Article : Google Scholar : PubMed/NCBI | |
Qi Y, Li H, Lv J, Qi W, Shen L, Liu S, Ding A, Wang G, Sun L and Qiu W: Expression and function of transmembrane 4 superfamily proteins in digestive system cancers. Cancer Cell Int. 20:3142020. View Article : Google Scholar : PubMed/NCBI | |
Zhu H, Wu Y, Zheng W and Lu S: CO-029 is overexpressed in gastric cancer and mediates the effects of EGF on gastric cancer cell proliferation and invasion. Int J Mol Med. 35:798–802. 2015. View Article : Google Scholar : PubMed/NCBI | |
Wei L, Li Y and Suo Z: TSPAN8 promotes gastric cancer growth and metastasis via ERK MAPK pathway. Int J Clin Exp Med. 8:8599–8607. 2015.PubMed/NCBI | |
Akiel MA, Santhekadur PK, Mendoza RG, Siddiq A, Fisher PB and Sarkar D: Tetraspanin 8 mediates AEG-1-induced invasion and metastasis in hepatocellular carcinoma cells. FEBS Lett. 590:2700–2708. 2016. View Article : Google Scholar : PubMed/NCBI | |
Li J, Chen X, Zhu L, Lao Z, Zhou T, Zang L, Ge W, Jiang M, Xu J, Cao Y, et al: SOX9 is a critical regulator of TSPAN8-mediated metastasis in pancreatic cancer. Oncogene. 40:4884–4893. 2021. View Article : Google Scholar : PubMed/NCBI | |
Guo Q, Xia B, Zhang F, Richardson MM, Li M, Zhang JS, Chen F and Zhang XA: Tetraspanin CO-029 inhibits colorectal cancer cell movement by deregulating cell-matrix and cell-cell adhesions. PLoS One. 7:e384642012. View Article : Google Scholar : PubMed/NCBI | |
Zhou Z, Ran YL, Hu H, Pan J, Li ZF, Chen LZ, Sun LC, Peng L, Zhao XL, Yu L, et al: TM4SF3 promotes esophageal carcinoma metastasis via upregulating ADAM12m expression. Clin Exp Metastasis. 25:537–548. 2008. View Article : Google Scholar : PubMed/NCBI | |
Qi Y, Lv J, Liu S, Sun L, Wang Y, Li H, Qi W and Qiu W: TSPAN9 and EMILIN1 synergistically inhibit the migration and invasion of gastric cancer cells by increasing TSPAN9 expression. BMC Cancer. 19:6302019. View Article : Google Scholar : PubMed/NCBI | |
Dash S, Wu CC, Wu CC, Chiang SF, Lu YT, Yeh CY, You JF, Chu LJ, Yeh TS and Yu JS: Extracellular vesicle membrane protein profiling and targeted mass spectrometry unveil CD59 and tetraspanin 9 as novel plasma biomarkers for detection of colorectal cancer. Cancers (Basel). 15:1772022. View Article : Google Scholar : PubMed/NCBI | |
Liu J, Chen C, Li G, Chen D and Zhou Q: Upregulation of TSPAN12 is associated with the colorectal cancer growth and metastasis. Am J Transl Res. 9:812–822. 2017.PubMed/NCBI | |
Sidahmed-Adrar N, Ottavi JF, Benzoubir N, Ait Saadi T, Bou Saleh M, Mauduit P, Guettier C, Desterke C and Le Naour F: Tspan15 is a new stemness-related marker in hepatocellular carcinoma. Proteomics. 19:e19000252019. View Article : Google Scholar : PubMed/NCBI | |
Zhang B, Zhang Z, Li L, Qin YR, Liu H, Jiang C, Zeng TT, Li MQ, Xie D, Li Y, et al: TSPAN15 interacts with BTRC to promote oesophageal squamous cell carcinoma metastasis via activating NF-κB signaling. Nat Commun. 9:14232018. View Article : Google Scholar : PubMed/NCBI | |
Zheng Y, Wang DD, Wang W, Pan K, Huang CY, Li YF, Wang QJ, Yuan SQ, Jiang SS, Qiu HB, et al: Reduced expression of uroplakin 1A is associated with the poor prognosis of gastric adenocarcinoma patients. PLoS One. 9:e930732014. View Article : Google Scholar : PubMed/NCBI | |
Yang YM, Zhang ZW, Liu QM, Sun YF, Yu JR and Xu WX: Overexpression of CD151 predicts prognosis in patients with resected gastric cancer. PLoS One. 8:e589902013. View Article : Google Scholar : PubMed/NCBI | |
Ke AW, Shi GM, Zhou J, Wu FZ, Ding ZB, Hu MY, Xu Y, Song ZJ, Wang ZJ, Wu JC, et al: Role of overexpression of CD151 and/or c-Met in predicting prognosis of hepatocellular carcinoma. Hepatology. 49:491–503. 2009. View Article : Google Scholar : PubMed/NCBI | |
Suzuki S, Miyazaki T, Tanaka N, Sakai M, Sano A, Inose T, Sohda M, Nakajima M, Kato H and Kuwano H: Prognostic significance of CD151 expression in esophageal squamous cell carcinoma with aggressive cell proliferation and invasiveness. Ann Surg Oncol. 18:888–893. 2011. View Article : Google Scholar : PubMed/NCBI | |
Xu L, Hou Y, Tu G, Chen Y, Du YE, Zhang H, Wen S, Tang X, Yin J, Lang L, et al: Nuclear Drosha enhances cell invasion via an EGFR-ERK1/2-MMP7 signaling pathway induced by dysregulated miRNA-622/197 and their targets LAMC2 and CD82 in gastric cancer. Cell Death Dis. 8:e26422017. View Article : Google Scholar : PubMed/NCBI | |
Hemler ME, Mannion BA and Berditchevski F: Association of TM4SF proteins with integrins: Relevance to cancer. Biochim Biophys Acta. 1287:67–71. 1996.PubMed/NCBI | |
Dong JT, Lamb PW, Rinker-Schaeffer CW, Vukanovic J, Ichikawa T, Isaacs JT and Barrett JC: KAI1, a metastasis suppressor gene for prostate cancer on human chromosome 11p11.2. Science. 268:884–886. 1995. View Article : Google Scholar : PubMed/NCBI | |
Liu X, Guo X, Li H, Chen J and Qi X: Src/STAT3 signaling pathways are involved in KAI1-induced downregulation of VEGF-C expression in pancreatic cancer. Mol Med Rep. 13:4774–4778. 2016. View Article : Google Scholar : PubMed/NCBI | |
Huang X, Li Y, He X, Chen Y, Wei W, Yang X and Ma K: Gangliosides and CD82 inhibit the motility of colon cancer by downregulating the phosphorylation of EGFR at different tyrosine sites and signaling pathways. Mol Med Rep. 22:3994–4002. 2020.PubMed/NCBI | |
Takaoka A, Hinoda Y, Satoh S, Adachi Y, Itoh F, Adachi M and Imai K: Suppression of invasive properties of colon cancer cells by a metastasis suppressor KAI1 gene. Oncogene. 16:1443–1453. 1998. View Article : Google Scholar : PubMed/NCBI | |
Miyazaki T, Kato H, Shitara Y, Yoshikawa M, Tajima K, Masuda N, Shouji H, Tsukada K, Nakajima T and Kuwano H: Mutation and expression of the metastasis suppressor gene KAI1 in esophageal squamous cell carcinoma. Cancer. 89:955–962. 2000. View Article : Google Scholar : PubMed/NCBI | |
Zeng TD, Zheng B, Zheng W and Chen C: CD82/KAI1 inhibits invasion and metastasis of esophageal squamous cell carcinoma via TGF-β1. Eur Rev Med Pharmacol Sci. 22:5928–5937. 2018.PubMed/NCBI | |
Yoo TH, Ryu BK, Lee MG and Chi SG: CD81 is a candidate tumor suppressor gene in human gastric cancer. Cell Oncol (Dordr). 36:141–153. 2013. View Article : Google Scholar : PubMed/NCBI | |
Fang TT, Sun XJ, Chen J, Zhao Y, Sun RX, Ren N and Liu BB: Long non-coding RNAs are differentially expressed in hepatocellular carcinoma cell lines with differing metastatic potential. Asian Pac J Cancer Prev. 15:10513–10524. 2014. View Article : Google Scholar : PubMed/NCBI | |
Murayama Y, Miyagawa J, Shinomura Y, Kanayama S, Isozaki K, Yamamori K, Mizuno H, Ishiguro S, Kiyohara T, Miyazaki Y, et al: Significance of the association between heparin-binding epidermal growth factor-like growth factor and CD9 in human gastric cancer. Int J Cancer. 98:505–513. 2002. View Article : Google Scholar : PubMed/NCBI | |
Nakamoto T, Murayama Y, Oritani K, Boucheix C, Rubinstein E, Nishida M, Katsube F, Watabe K, Kiso S, Tsutsui S, et al: A novel therapeutic strategy with anti-CD9 antibody in gastric cancers. J Gastroenterol. 44:889–896. 2009. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Yu S, Li L, Chen J, Quan M, Li Q and Gao Y: KLF4-mediated upregulation of CD9 and CD81 suppresses hepatocellular carcinoma development via JNK signaling. Cell Death Dis. 11:2992020. View Article : Google Scholar : PubMed/NCBI | |
Tang M, Yin G, Wang F, Liu H, Zhou S, Ni J, Chen C, Zhou Y and Zhao Y: Downregulation of CD9 promotes pancreatic cancer growth and metastasis through upregulation of epidermal growth factor on the cell surface. Oncol Rep. 34:350–358. 2015. View Article : Google Scholar : PubMed/NCBI | |
Ovalle S, Gutiérrez-López MD, Olmo N, Turnay J, Lizarbe MA, Majano P, Molina-Jiménez F, López-Cabrera M, Yáñez-Mó M, Sánchez-Madrid F and Cabañas C: The tetraspanin CD9 inhibits the proliferation and tumorigenicity of human colon carcinoma cells. Int J Cancer. 121:2140–2152. 2007. View Article : Google Scholar : PubMed/NCBI | |
Buim ME, Lourenço SV, Carvalho KC, Cardim R, Pereira C, Carvalho AL, Fregnani JH and Soares FA: Downregulation of CD9 protein expression is associated with aggressive behavior of oral squamous cell carcinoma. Oral Oncol. 46:166–171. 2010. View Article : Google Scholar : PubMed/NCBI | |
Kusukawa J, Ryu F, Kameyama T and Mekada E: Reduced expression of CD9 in oral squamous cell carcinoma: CD9 expression inversely related to high prevalence of lymph node metastasis. J Oral Pathol Med. 30:73–79. 2001. View Article : Google Scholar : PubMed/NCBI | |
Park SA, Kim MJ, Park SY, Kim JS, Lim W, Nam JS and Yhong Sheen Y: TIMP-1 mediates TGF-β-dependent crosstalk between hepatic stellate and cancer cells via FAK signaling. Sci Rep. 5:164922015. View Article : Google Scholar : PubMed/NCBI | |
Takashima Y, Komatsu S, Ohashi T, Kiuchi J, Kamiya H, Shimizu H, Arita T, Konishi H, Shiozaki A, Kubota T, et al: Overexpression of Tetraspanin31 contributes to malignant potential and poor outcomes in gastric cancer. Cancer Sci. 113:1984–1998. 2022. View Article : Google Scholar : PubMed/NCBI | |
Wang J, Zhou Y, Li D, Sun X, Deng Y and Zhao Q: TSPAN31 is a critical regulator on transduction of survival and apoptotic signals in hepatocellular carcinoma cells. FEBS Lett. 591:2905–2918. 2017. View Article : Google Scholar : PubMed/NCBI | |
Smyth EC, Nilsson M, Grabsch HI, van Grieken NC and Lordick F: Gastric cancer. Lancet. 396:635–648. 2020. View Article : Google Scholar : PubMed/NCBI | |
Yang L, Ying X, Liu S, Lyu G, Xu Z, Zhang X, Li H, Li Q, Wang N and Ji J: Gastric cancer: Epidemiology, risk factors and prevention strategies. Chin J Cancer Res. 32:695–704. 2020. View Article : Google Scholar : PubMed/NCBI | |
Deng Y, Cai S, Shen J and Peng H: Tetraspanins: Novel molecular regulators of gastric cancer. Front Oncol. 11:7025102021. View Article : Google Scholar : PubMed/NCBI | |
Hemler ME: Tetraspanin proteins promote multiple cancer stages. Nat Rev Cancer. 14:49–60. 2014. View Article : Google Scholar : PubMed/NCBI | |
Zöller M: Tetraspanins: Push and pull in suppressing and promoting metastasis. Nat Rev Cancer. 9:40–55. 2009. View Article : Google Scholar : PubMed/NCBI | |
Bonnet M, Maisonial-Besset A, Zhu Y, Witkowski T, Roche G, Boucheix C, Greco C and Degoul F: Targeting the tetraspanins with monoclonal antibodies in oncology: Focus on Tspan8/Co-029. Cancers (Basel). 11:1792019. View Article : Google Scholar : PubMed/NCBI | |
Claas C, Seiter S, Claas A, Savelyeva L, Schwab M and Zöller M: Association between the rat homologue of CO-029, a metastasis-associated tetraspanin molecule and consumption coagulopathy. J Cell Biol. 141:267–280. 1998. View Article : Google Scholar : PubMed/NCBI | |
Gesierich S, Berezovskiy I, Ryschich E and Zöller M: Systemic induction of the angiogenesis switch by the tetraspanin D6.1A/CO-029. Cancer Res. 66:7083–7094. 2006. View Article : Google Scholar : PubMed/NCBI | |
Anami K, Oue N, Noguchi T, Sakamoto N, Sentani K, Hayashi T, Naito Y, Oo HZ and Yasui W: TSPAN8, identified by Escherichia coli ampicillin secretion trap, is associated with cell growth and invasion in gastric cancer. Gastric Cancer. 19:370–380. 2016. View Article : Google Scholar : PubMed/NCBI | |
Hemler ME: Tetraspanin functions and associated microdomains. Nat Rev Mol Cell Biol. 16:801–811. 2005. View Article : Google Scholar : PubMed/NCBI | |
Wang HX, Li Q, Sharma C, Knoblich K and Hemler ME: Tetraspanin protein contributions to cancer. Biochem Soc Trans. 39:547–552. 2011. View Article : Google Scholar : PubMed/NCBI | |
Li T, Meng XL and Yang WQ: Long noncoding RNA PVT1 acts as a ‘sponge’ to inhibit microRNA-152 in gastric cancer cells. Dig Dis Sci. 62:3021–3028. 2017. View Article : Google Scholar : PubMed/NCBI | |
Murray D, Horgan G, Macmathuna P and Doran P: NET1-mediated RhoA activation facilitates lysophosphatidic acid-induced cell migration and invasion in gastric cancer. Br J Cancer. 99:1322–1329. 2008. View Article : Google Scholar : PubMed/NCBI | |
Wang GL, Chen L, Wei YZ, Zhou JM, Wu YY, Zhang YX, Qin J and Zhu YY: The effect of NET-1 on the proliferation, migration and endocytosis of the SMMC-7721 HCC cell line. Oncol Rep. 27:1944–1952. 2012.PubMed/NCBI | |
Shang H, Wu B, Liang X, Sun Y, Han X, Zhang L, Wang Q and Cheng W: Evaluation of therapeutic effect of targeting nanobubbles conjugated with NET-1 siRNA by shear wave elastography: an in vivo study of hepatocellular carcinoma bearing mice model. Drug Deliv. 26:944–951. 2019. View Article : Google Scholar : PubMed/NCBI | |
Li T, Xue Y, Wang G, Gu T, Li Y, Zhu YY and Chen L: Multi-target siRNA: Therapeutic strategy for hepatocellular carcinoma. J Cancer. 7:1317–1327. 2016. View Article : Google Scholar : PubMed/NCBI | |
Garcia-Mayea Y, Mir C, Carballo L, Castellvi J, Temprana-Salvador J, Lorente J, Benavente S, García-Pedrero JM, Allonca E, Rodrigo JP and LLeonart ME: TSPAN1: A novel protein involved in head and neck squamous cell carcinoma chemoresistance. Cancers (Basel). 12:32692020. View Article : Google Scholar : PubMed/NCBI | |
Ma L, Li Y, Peng J, Wu D, Zhao X, Cui Y, Chen L, Yan X, Du Y and Yu L: Discovery of the migrasome, an organelle mediating release of cytoplasmic contents during cell migration. Cell Res. 25:24–38. 2015. View Article : Google Scholar : PubMed/NCBI | |
Wu L, Yang S, Li H, Zhang Y, Feng L, Zhang C, Wei J, Gu X, Xu G, Wang Z and Wang F: TSPAN4-positive migrasome derived from retinal pigmented epithelium cells contributes to the development of proliferative vitreoretinopathy. J Nanobiotechnology. 20:5192022. View Article : Google Scholar : PubMed/NCBI | |
Zhang C, Li T, Yin S, Gao M, He H, Li Y, Jiang D, Shi M, Wang J and Yu L: Monocytes deposit migrasomes to promote embryonic angiogenesis. Nat Cell Biol. 24:1726–1738. 2022. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Zhang M, Xie Z, Ding Y, Huang J, Yao J, Lv Y and Zuo J: Research progress and direction of novel organelle-migrasomes. Cancers (Basel). 15:1342022. View Article : Google Scholar : PubMed/NCBI | |
Qi W, Sun L, Liu N, Zhao S, Lv J and Qiu W: Tetraspanin family identified as the central genes detected in gastric cancer using bioinformatics analysis. Mol Med Rep. 18:3599–3610. 2018.PubMed/NCBI | |
Hori H, Yano S, Koufuji K, Takeda J and Shirouzu K: CD9 expression in gastric cancer and its significance. J Surg Res. 117:208–215. 2004. View Article : Google Scholar : PubMed/NCBI | |
Setoguchi T, Kikuchi H, Yamamoto M, Baba M, Ohta M, Kamiya K, Tanaka T, Baba S, Goto-Inoue N, Setou M, et al: Microarray analysis identifies versican and CD9 as potent prognostic markers in gastric gastrointestinal stromal tumors. Cancer Sci. 102:883–889. 2011. View Article : Google Scholar : PubMed/NCBI | |
Zhao LJ, Fan QQ, Li YY, Ren HM, Zhang T, Liu S, Maa M, Zheng YC and Liu HM: LSD1 deletion represses gastric cancer migration by upregulating a novel miR-142-5p target protein CD9. Pharmacol Res. 159:1049912020. View Article : Google Scholar : PubMed/NCBI | |
Wunder JS, Eppert K, Burrow SR, Gokgoz N, Bell RS and Andrulis IL: Co-amplification and overexpression of CDK4, SAS and MDM2 occurs frequently in human parosteal osteosarcomas. Oncogene. 18:783–788. 1999. View Article : Google Scholar : PubMed/NCBI | |
Ma X, Qiu S, Tang X, Song Q, Wang P, Wang J, Xia Q, Wang Z, Zhao Q and Lu M: TSPAN31 regulates the proliferation, migration, and apoptosis of gastric cancer cells through the METTL1/CCT2 pathway. Transl Oncol. 20:1014232022. View Article : Google Scholar : PubMed/NCBI | |
Oren R, Takahashi S, Doss C, Levy R and Levy S: TAPA-1, the target of an antiproliferative antibody, defines a new family of transmembrane proteins. Mol Cell Biol. 10:4007–4015. 1990. View Article : Google Scholar : PubMed/NCBI | |
Levy S, Todd SC and Maecker HT: CD81 (TAPA-1): A molecule involved in signal transduction and cell adhesion in the immune system. Annu Rev Immunol. 16:89–109. 1998. View Article : Google Scholar : PubMed/NCBI | |
Dong JT, Suzuki H, Pin SS, Bova GS, Schalken JA, Isaacs WB, Barrett JC and Isaacs JT: Down-regulation of the KAI1 metastasis suppressor gene during the progression of human prostatic cancer infrequently involves gene mutation or allelic loss. Cancer Res. 56:4387–4390. 1996.PubMed/NCBI | |
García-Frigola C, Burgaya F, Calbet M, de Lecea L and Soriano E: Mouse Tspan-5, a member of the tetraspanin superfamily, is highly expressed in brain cortical structures. Neuroreport. 11:3181–3185. 2000. View Article : Google Scholar : PubMed/NCBI | |
Li PY, Lv J, Qi WW, Zhao SF, Sun LB, Liu N, Sheng J and Qiu WS: Tspan9 inhibits the proliferation, migration and invasion of human gastric cancer SGC7901 cells via the ERK1/2 pathway. Oncol Rep. 36:448–454. 2016. View Article : Google Scholar : PubMed/NCBI | |
Qi Y, Qi W, Liu S, Sun L, Ding A, Yu G, Li H, Wang Y, Qiu W and Lv J: TSPAN9 suppresses the chemosensitivity of gastric cancer to 5-fluorouracil by promoting autophagy. Cancer Cell Int. 20:42020. View Article : Google Scholar : PubMed/NCBI | |
Sayiner M, Golabi P and Younossi ZM: Disease burden of hepatocellular carcinoma: A global perspective. Dig Dis Sci. 64:910–917. 2019. View Article : Google Scholar : PubMed/NCBI | |
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA and Jemal A: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 68:394–424. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zhang K, Lai X, Song J, He L, Wang L, Ou G, Tian X, Wang L, Deng J, Zhang J, et al: A novel cell culture model reveals the viral interference during hepatitis B and C virus coinfection. Antiviral Res. 189:1050612021. View Article : Google Scholar : PubMed/NCBI | |
Chen L, Wang Z, Zhan X, Li DC, Zhu YY and Zhu J: Association of NET-1 gene expression with human hepatocellular carcinoma. Int J Surg Pathol. 15:346–353. 2007. View Article : Google Scholar : PubMed/NCBI | |
Wu B, Shang H, Liang X, Sun Y, Jing H, Han X and Cheng W: Preparation of novel targeting nanobubbles conjugated with small interfering RNA for concurrent molecular imaging and gene therapy in vivo. FASEB J. 33:14129–14136. 2019. View Article : Google Scholar : PubMed/NCBI | |
Wu B, Qiao Q, Han X, Jing H, Zhang H, Liang H and Cheng W: Targeted nanobubbles in low-frequency ultrasound-mediated gene transfection and growth inhibition of hepatocellular carcinoma cells. Tumour Biol. 37:12113–12121. 2016. View Article : Google Scholar : PubMed/NCBI | |
Kanetaka K, Sakamoto M, Yamamoto Y, Yamasaki S, Lanza F, Kanematsu T and Hirohashi S: Overexpression of tetraspanin CO-029 in hepatocellular carcinoma. J Hepatol. 35:637–642. 2001. View Article : Google Scholar : PubMed/NCBI | |
Fang T, Lin J, Wang Y, Chen G, Huang J, Chen J, Zhao Y, Sun R, Liang C and Liu B: Tetraspanin-8 promotes hepatocellular carcinoma metastasis by increasing ADAM12m expression. Oncotarget. 7:40630–40643. 2016. View Article : Google Scholar : PubMed/NCBI | |
Herlevsen M, Schmidt DS, Miyazaki K and Zöller M: The association of the tetraspanin D6.1A with the alpha6beta4 integrin supports cell motility and liver metastasis formation. J Cell Sci. 116:4373–4390. 2003. View Article : Google Scholar : PubMed/NCBI | |
Sanjmyatav J, Steiner T, Wunderlich H, Diegmann J, Gajda M and Junker K: A specific gene expression signature characterizes metastatic potential in clear cell renal cell carcinoma. J Urol. 186:289–294. 2011. View Article : Google Scholar : PubMed/NCBI | |
Tokuhara T, Hasegawa H, Hattori N, Ishida H, Taki T, Tachibana S, Sasaki S and Miyake M: Clinical significance of CD151 gene expression in non-small cell lung cancer. Clin Cancer Res. 7:4109–4114. 2001.PubMed/NCBI | |
Devbhandari RP, Shi GM, Ke AW, Wu FZ, Huang XY, Wang XY, Shi YH, Ding ZB, Xu Y, Dai Z, et al: Profiling of the tetraspanin CD151 web and conspiracy of CD151/integrin β1 complex in the progression of hepatocellular carcinoma. PLoS One. 6:e249012011. View Article : Google Scholar : PubMed/NCBI | |
Shi GM, Ke AW, Zhou J, Wang XY, Xu Y, Ding ZB, Devbhandari RP, Huang XY, Qiu SJ, Shi YH, et al: CD151 modulates expression of matrix metalloproteinase 9 and promotes neoangiogenesis and progression of hepatocellular carcinoma. Hepatology. 52:183–196. 2010. View Article : Google Scholar : PubMed/NCBI | |
Zhang PF, Wang F, Wu J, Wu Y, Huang W, Liu D, Huang XY, Zhang XM and Ke AW: LncRNA SNHG3 induces EMT and sorafenib resistance by modulating the miR-128/CD151 pathway in hepatocellular carcinoma. J Cell Physiol. 234:2788–2794. 2019. View Article : Google Scholar : PubMed/NCBI | |
Liu T, Zu CH, Wang SS, Song HL, Wang ZL, Xu XN, Liu HS, Wang YL and Shen ZY: PIK3C2A mRNA functions as a miR-124 sponge to facilitate CD151 expression and enhance malignancy of hepatocellular carcinoma cells. Oncotarget. 7:43376–43389. 2016. View Article : Google Scholar : PubMed/NCBI | |
Kim JH, Badawi M, Park JK, Jiang J, Mo X, Roberts LR and Schmittgen TD: Anti-invasion and anti-migration effects of miR-199a-3p in hepatocellular carcinoma are due in part to targeting CD151. Int J Oncol. 49:2037–2045. 2016. View Article : Google Scholar : PubMed/NCBI | |
Schreyer L, Mittermeier C, Franz MJ, Meier MA, Martin DE, Maier KC, Huebner K, Schneider-Stock R, Singer S, Holzer K, et al: Tetraspanin 5 (TSPAN5), a novel gatekeeper of the tumor suppressor DLC1 and myocardin-related transcription factors (MRTFs), controls HCC growth and senescence. Cancers (Basel). 13:53732021. View Article : Google Scholar : PubMed/NCBI | |
Guo XZ, Friess H, Di Mola FF, Heinicke JM, Abou-Shady M, Graber HU, Baer HU, Zimmermann A, Korc M and Büchler MW: KAI1, a new metastasis suppressor gene, is reduced in metastatic hepatocellular carcinoma. Hepatology. 28:1481–1488. 1998. View Article : Google Scholar : PubMed/NCBI | |
Yu G, Bing Y, Li W, Xia L and Liu Z: Hepatitis B virus inhibits the expression of CD82 through hypermethylation of its promoter in hepatoma cells. Mol Med Rep. 10:2580–2586. 2014. View Article : Google Scholar : PubMed/NCBI | |
Gilsanz A, Sánchez-Martín L, Gutiérrez-López MD, Ovalle S, Machado-Pineda Y, Reyes R, Swart GW, Figdor CG, Lafuente EM and Cabañas C: ALCAM/CD166 adhesive function is regulated by the tetraspanin CD9. Cell Mol Life Sci. 70:475–493. 2013. View Article : Google Scholar : PubMed/NCBI | |
Wang J, Ma L, Weng W, Qiao Y, Zhang Y, He J, Wang H, Xiao W, Li L, Chu Q, et al: Mutual interaction between YAP and CREB promotes tumorigenesis in liver cancer. Hepatology. 58:1011–1120. 2013. View Article : Google Scholar : PubMed/NCBI | |
Ma L, Wang J, Lin J, Pan Q, Yu Y and Sun F: Cluster of differentiation 166 (CD166) regulated by phosphatidylinositide 3-Kinase (PI3K)/AKT signaling to exert its anti-apoptotic role via yes-associated protein (YAP) in liver cancer. J Biol Chem. 289:6921–6933. 2014. View Article : Google Scholar : PubMed/NCBI | |
Jentzsch V, Davis JAA and Djamgoz MBA: Pancreatic cancer (PDAC): Introduction of evidence-based complementary measures into integrative clinical management. Cancers (Basel). 12:30962020. View Article : Google Scholar : PubMed/NCBI | |
Siegel RL, Miller KD and Jemal A: Cancer statistics, 2016. CA Cancer J Clin. 66:7–30. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zeitouni D, Pylayeva-Gupta Y, Der CJ and Bryant KL: KRAS mutant pancreatic cancer: No lone path to an effective treatment. Cancers (Basel). 8:452016. View Article : Google Scholar : PubMed/NCBI | |
Ye H, Li T, Wang H, Wu J, Yi C, Shi J, Wang P, Song C, Dai L, Jiang G, et al: TSPAN1, TMPRSS4, SDR16C5, and CTSE as novel panel for pancreatic cancer: A bioinformatics analysis and experiments validation. Front Immunol. 12:6495512021. View Article : Google Scholar : PubMed/NCBI | |
Zhou C, Liang Y, Zhou L, Yan Y, Liu N, Zhang R, Huang Y, Wang M, Tang Y, Ali DW, et al: TSPAN1 promotes autophagy flux and mediates cooperation between WNT-CTNNB1 signaling and autophagy via the MIR454-FAM83A-TSPAN1 axis in pancreatic cancer. Autophagy. 17:3175–3195. 2021. View Article : Google Scholar : PubMed/NCBI | |
Liu S, Cai Y, Changyong E, Sheng J and Zhang X: Screening and validation of independent predictors of poor survival in pancreatic cancer. Pathol Oncol Res. 27:16098682021. View Article : Google Scholar : PubMed/NCBI | |
Wang L, Gao P, Yuan P, Zhou P, Fan H, Lin X, Yuan X, Zhu M, Fan X, Lu Y and Wang Z: miR-573 suppresses pancreatic cancer cell proliferation, migration, and invasion through targeting TSPAN1. Strahlenther Onkol. 197:438–448. 2021. View Article : Google Scholar : PubMed/NCBI | |
Ma C, Cui Z, Wang Y, Zhang L, Wen J, Guo H, Li N and Zhang W: Bioinformatics analysis reveals TSPAN1 as a candidate biomarker of progression and prognosis in pancreatic cancer. Bosn J Basic Med Sci. 21:47–60. 2021.PubMed/NCBI | |
Wang S, Liu X, Khan AA, Li H, Tahir M, Yan X, Wang J and Huang H: miR-216a-mediated upregulation of TSPAN1 contributes to pancreatic cancer progression via transcriptional regulation of ITGA2. Am J Cancer Res. 10:1115–1129. 2020.PubMed/NCBI | |
Zhang X, Shi G, Gao F, Liu P, Wang H and Tan X: TSPAN1 upregulates MMP2 to promote pancreatic cancer cell migration and invasion via PLCγ. Oncol Rep. 41:2117–2125. 2019.PubMed/NCBI | |
Mayado A, Orfao A, Mentink A, Gutierrez ML, Muñoz-Bellvis L and Terstappen LWMM: Detection of circulating tumor cells in blood of pancreatic ductal adenocarcinoma patients. Cancer Drug Resist. 3:83–97. 2020.PubMed/NCBI | |
Wang H, Rana S, Giese N, Büchler MW and Zöller M: Tspan8, CD44v6 and alpha6beta4 are biomarkers of migrating pancreatic cancer-initiating cells. Int J Cancer. 133:416–426. 2013. View Article : Google Scholar : PubMed/NCBI | |
Yue S, Mu W and Zöller M: Tspan8 and CD151 promote metastasis by distinct mechanisms. Eur J Cancer. 49:2934–2948. 2013. View Article : Google Scholar : PubMed/NCBI | |
Yue S, Mu W, Erb U and Zöller M: The tetraspanins CD151 and Tspan8 are essential exosome components for the crosstalk between cancer initiating cells and their surrounding. Oncotarget. 6:2366–2384. 2015. View Article : Google Scholar : PubMed/NCBI | |
Greenow K and Clarke AR: Controlling the stem cell compartment and regeneration in vivo: The role of pluripotency pathways. Physiol Rev. 92:75–99. 2012. View Article : Google Scholar : PubMed/NCBI | |
Sales KM, Winslet MC and Seifalian AM: Stem cells and cancer: An overview. Stem Cell Rev. 3:249–255. 2007. View Article : Google Scholar : PubMed/NCBI | |
Heiler S, Wang Z and Zöller M: Pancreatic cancer stem cell markers and exosomes-the incentive push. World J Gastroenterol. 22:5971–6007. 2016. View Article : Google Scholar : PubMed/NCBI | |
Wu M, Li X, Liu R, Yuan H, Liu W and Liu Z: Development and validation of a metastasis-related gene signature for predicting the overall survival in patients with pancreatic ductal adenocarcinoma. J Cancer. 11:6299–6318. 2020. View Article : Google Scholar : PubMed/NCBI | |
Luo L, Li Y, Huang C, Lin Y, Su Y, Cen H, Chen Y, Peng S, Ren T, Xie R and Zeng L: A new 7-gene survival score assay for pancreatic cancer patient prognosis prediction. Am J Cancer Res. 11:495–512. 2021.PubMed/NCBI | |
Crnogorac-Jurcevic T, Efthimiou E, Capelli P, Blaveri E, Baron A, Terris B, Jones M, Tyson K, Bassi C, Scarpa A and Lemoine NR: Gene expression profiles of pancreatic cancer and stromal desmoplasia. Oncogene. 20:7437–7446. 2001. View Article : Google Scholar : PubMed/NCBI | |
Feng J, Huang C, Wren JD, Wang DW, Yan J, Zhang J, Sun Y, Han X and Zhang XA: Tetraspanin CD82: A suppressor of solid tumors and a modulator of membrane heterogeneity. Cancer Metastasis Rev. 34:619–633. 2015. View Article : Google Scholar : PubMed/NCBI | |
Liu WM and Zhang XA: KAI1/CD82, a tumor metastasis suppressor. Cancer Lett. 240:183–194. 2006. View Article : Google Scholar : PubMed/NCBI | |
Yan W, Huang J, Zhang Q and Zhang J: Role of metastasis suppressor KAI1/CD82 in different cancers. J Oncol. 2021:99244732021. View Article : Google Scholar : PubMed/NCBI | |
Liu X, Guo XZ, Zhang WW, Lu ZZ, Zhang QW, Duan HF and Wang LS: KAI1 inhibits HGF-induced invasion of pancreatic cancer by sphingosine kinase activity. Hepatobiliary Pancreat Dis Int. 10:201–208. 2011. View Article : Google Scholar : PubMed/NCBI | |
Siegel RL, Miller KD, Wagle NS and Jemal A: Cancer statistics, 2023. CA Cancer J Clin. 73:17–48. 2023. View Article : Google Scholar : PubMed/NCBI | |
Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A and Bray F: Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 71:209–249. 2021. View Article : Google Scholar : PubMed/NCBI | |
Miller KD, Nogueira L, Devasia T, Mariotto AB, Yabroff KR, Jemal A, Kramer J and Siegel RL: Cancer treatment and survivorship statistics, 2022. CA Cancer J Clin. 72:409–436. 2022. View Article : Google Scholar : PubMed/NCBI | |
Lee CH, Im EJ, Moon PG and Baek MC: Discovery of a diagnostic biomarker for colon cancer through proteomic profiling of small extracellular vesicles. BMC Cancer. 18:10582018. View Article : Google Scholar : PubMed/NCBI | |
Guo JN, Chen D, Deng SH, Huang JR, Song JX, Li XY, Cui BB and Liu YL: Identification and quantification of immune infiltration landscape on therapy and prognosis in left- and right-sided colon cancer. Cancer Immunol Immunother. 71:1313–1330. 2022. View Article : Google Scholar : PubMed/NCBI | |
Min J, Yang S, Cai Y, Vanderwall DR, Wu Z, Li S, Liu S, Liu B, Wang J, Ding Y, et al: Tetraspanin Tspan8 restrains interferon signaling to stabilize intestinal epithelium by directing endocytosis of interferon receptor. Cell Mol Life Sci. 80:1542023. View Article : Google Scholar : PubMed/NCBI | |
Kuhn S, Koch M, Nübel T, Ladwein M, Antolovic D, Klingbeil P, Hildebrand D, Moldenhauer G, Langbein L, Franke WW, et al: A complex of EpCAM, claudin-7, CD44 variant isoforms, and tetraspanins promotes colorectal cancer progression. Mol Cancer Res. 5:553–567. 2007. View Article : Google Scholar : PubMed/NCBI | |
Visvader JE: Cells of origin in cancer. Nature. 469:314–322. 2011. View Article : Google Scholar : PubMed/NCBI | |
Wang Z and Zöller M: Exosomes, metastases, and the miracle of cancer stem cell markers. Cancer Metastasis Rev. 38:259–295. 2019. View Article : Google Scholar : PubMed/NCBI | |
Greco C, Bralet MP, Ailane N, Dubart-Kupperschmitt A, Rubinstein E, Le Naour F and Boucheix C: E-cadherin/p120-catenin and tetraspanin Co-029 cooperate for cell motility control in human colon carcinoma. Cancer Res. 70:7674–7583. 2010. View Article : Google Scholar : PubMed/NCBI | |
Knoblich K, Wang HX, Sharma C, Fletcher AL, Turley SJ and Hemler ME: Tetraspanin TSPAN12 regulates tumor growth and metastasis and inhibits β-catenin degradation. Cell Mol Life Sci. 71:1305–1314. 2014. View Article : Google Scholar : PubMed/NCBI | |
Chiang SF, Kan CY, Hsiao YC, Tang R, Hsieh LL, Chiang JM, Tsai WS, Yeh CY, Hsieh PS, Liang Y, et al: Bone marrow stromal antigen 2 is a novel plasma biomarker and prognosticator for colorectal carcinoma: A secretome-based verification study. Dis Markers. 2015:8740542015. View Article : Google Scholar : PubMed/NCBI | |
Hashida H, Takabayashi A, Tokuhara T, Hattori N, Taki T, Hasegawa H, Satoh S, Kobayashi N, Yamaoka Y and Miyake M: Clinical significance of transmembrane 4 superfamily in colon cancer. Br J Cancer. 89:158–167. 2003. View Article : Google Scholar : PubMed/NCBI | |
Mori M, Mimori K, Shiraishi T, Haraguchi M, Ueo H, Barnard GF and Akiyoshi T: Motility related protein 1 (MRP1/CD9) expression in colon cancer. Clin Cancer Res. 4:1507–1510. 1998.PubMed/NCBI | |
Wu DH, Liu L, Chen LH and Ding YQ: KAI1 gene expression in colonic carcinoma and its clinical significances. World J Gastroenterol. 10:2245–2249. 2004. View Article : Google Scholar : PubMed/NCBI | |
Lee JH, Bae JA, Lee JH, Seo YW, Kho DH, Sun EG, Lee SE, Cho SH, Joo YE, Ahn KY, et al: Glycoprotein 90K, downregulated in advanced colorectal cancer tissues, interacts with CD9/CD82 and suppresses the Wnt/beta-catenin signal via ISGylation of beta-catenin. Gut. 59:907–917. 2010. View Article : Google Scholar : PubMed/NCBI | |
Morgan E, Soerjomataram I, Rumgay H, Coleman HG, Thrift AP, Vignat J, Laversanne M, Ferlay J and Arnold M: The Global landscape of esophageal squamous cell carcinoma and esophageal adenocarcinoma incidence and mortality in 2020 and projections to 2040: New estimates from GLOBOCAN 2020. Gastroenterology. 163:649–658.e2. 2022. View Article : Google Scholar : PubMed/NCBI | |
van den Brandt PA: The impact of a healthy lifestyle on the risk of esophageal and gastric cancer subtypes. Eur J Epidemiol. 37:931–945. 2022. View Article : Google Scholar : PubMed/NCBI | |
Botelho NK, Schneiders FI, Lord SJ, Freeman AK, Tyagi S, Nancarrow DJ, Hayward NK, Whiteman DC and Lord RV: Gene expression alterations in formalin-fixed, paraffin-embedded Barrett esophagus and esophageal adenocarcinoma tissues. Cancer Biol Ther. 10:172–179. 2010. View Article : Google Scholar : PubMed/NCBI | |
Zhao WS, Yan WP, Chen DB, Dai L, Yang YB, Kang XZ, Fu H, Chen P, Deng KJ, Wang XY, et al: Genome-scale CRISPR activation screening identifies a role of ELAVL2-CDKN1A axis in paclitaxel resistance in esophageal squamous cell carcinoma. Am J Cancer Res. 9:1183–1200. 2019.PubMed/NCBI | |
Fisher OM, Levert-Mignon AJ, Lehane CW, Botelho NK, Maag JL, Thomas ML, Edwards M, Lord SJ, Bobryshev YV, Whiteman DC and Lord RV: CD151 Gene and protein expression provides independent prognostic information for patients with adenocarcinoma of the esophagus and gastroesophageal junction treated by esophagectomy. Ann Surg Oncol. 23 (Suppl 5):S746–S754. 2016. View Article : Google Scholar | |
Scully C and Porter S: ABC of oral health. Oral cancer. BMJ. 321:97–100. 2000. View Article : Google Scholar : PubMed/NCBI | |
Scully C and Bedi R: Ethnicity and oral cancer. Lancet Oncol. 1:37–42. 2000. View Article : Google Scholar : PubMed/NCBI | |
D'souza S and Addepalli V: Preventive measures in oral cancer: An overview. Biomed Pharmacother. 107:72–80. 2018. View Article : Google Scholar : PubMed/NCBI | |
Hiroshima K, Shiiba M, Oka N, Hayashi F, Ishida S, Fukushima R, Koike K, Iyoda M, Nakashima D, Tanzawa H and Uzawa K: Tspan15 plays a crucial role in metastasis in oral squamous cell carcinoma. Exp Cell Res. 384:1116222019. View Article : Google Scholar : PubMed/NCBI | |
Nankivell P, Williams H, McConkey C, Webster K, High A, MacLennan K, Senguven B, Rabbitts P and Mehanna H: Tetraspanins CD9 and CD151, epidermal growth factor receptor and cyclooxygenase-2 expression predict malignant progression in oral epithelial dysplasia. Br J Cancer. 109:2864–2874. 2013. View Article : Google Scholar : PubMed/NCBI | |
Imai Y, Sasaki T, Shinagawa Y, Akimoto K and Fujibayashi T: Expression of metastasis suppressor gene (KAI1/CD82) in oral squamous cell carcinoma and its clinico-pathological significance. Oral Oncol. 38:557–561. 2002. View Article : Google Scholar : PubMed/NCBI | |
Farhadieh RD, Smee R, Ow K, Yang JL, Russell PJ, Crouch R, Jackson P and Jacobson IV: Down-regulation of KAI1/CD82 protein expression in oral cancer correlates with reduced disease free survival and overall patient survival. Cancer Lett. 213:91–98. 2004. View Article : Google Scholar : PubMed/NCBI | |
Matsumura N, Zembutsu H, Yamaguchi K, Sasaki K, Tsuruma T, Nishidate T, Denno R and Hirata K: Identification of novel molecular markers for detection of gastric cancer cells in the peripheral blood circulation using genome-wide microarray analysis. Exp Ther Med. 2:705–713. 2011. View Article : Google Scholar : PubMed/NCBI | |
Lin H, Zhou AJ, Zhang JY, Liu SF and Gu JX: MiR-324-5p reduces viability and induces apoptosis in gastric cancer cells through modulating TSPAN8. J Pharm Pharmacol. 70:1513–1520. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zhai R, Kan X, Wang B, Du H, Long Y, Wu H, Tao K, Wang G, Bao L, Li F and Zhang W: miR-152 suppresses gastric cancer cell proliferation and motility by targeting CD151. Tumour Biol. 35:11367–11373. 2014. View Article : Google Scholar : PubMed/NCBI | |
Blanco E, Hsiao A, Ruiz-Esparza GU, Landry MG, Meric-Bernstam F and Ferrari M: Molecular-targeted nanotherapies in cancer: Enabling treatment specificity. Mol Oncol. 5:492–503. 2011. View Article : Google Scholar : PubMed/NCBI | |
Kim TK, Park CS, Jeoung MH, Lee WR, Go NK, Choi JR, Lee TS, Shim H and Lee S: Generation of a human antibody that inhibits TSPAN8-mediated invasion of metastatic colorectal cancer cells. Biochem Biophys Res Commun. 468:774–780. 2015. View Article : Google Scholar : PubMed/NCBI | |
Park CS, Kim TK, Kim HG, Kim YJ, Jeoung MH, Lee WR, Go NK, Heo K and Lee S: Therapeutic targeting of tetraspanin8 in epithelial ovarian cancer invasion and metastasis. Oncogene. 35:4540–4548. 2016. View Article : Google Scholar : PubMed/NCBI | |
Ke AW, Zhang PF, Shen YH, Gao PT, Dong ZR, Zhang C, Cai JB, Huang XY, Wu C, Zhang L, et al: Generation and characterization of a tetraspanin CD151/integrin α6β1-binding domain competitively binding monoclonal antibody for inhibition of tumor progression in HCC. Oncotarget. 7:6314–6322. 2016. View Article : Google Scholar : PubMed/NCBI | |
Jin L and Cambier JC: SMIP-016 in action: CD37 as a death receptor. Cancer Cell. 21:597–598. 2012. View Article : Google Scholar : PubMed/NCBI | |
Hwang JR, Jo K, Lee Y, Sung BJ, Park YW and Lee JH: Upregulation of CD9 in ovarian cancer is related to the induction of TNF-α gene expression and constitutive NF-κB activation. Carcinogenesis. 33:77–83. 2012. View Article : Google Scholar : PubMed/NCBI | |
Longo N, Yáñez-Mó M, Mittelbrunn M, de la Rosa G, Muñoz ML, Sánchez-Madrid F and Sánchez-Mateos P: Regulatory role of tetraspanin CD9 in tumor-endothelial cell interaction during transendothelial invasion of melanoma cells. Blood. 98:3717–3726. 2001. View Article : Google Scholar : PubMed/NCBI | |
Rock KL, Farfán-Arribas DJ, Colbert JD and Goldberg AL: Re-examining class-I presentation and the DRiP hypothesis. Trends Immunol. 35:144–152. 2014. View Article : Google Scholar : PubMed/NCBI | |
Unternaehrer JJ, Chow A, Pypaert M, Inaba K and Mellman I: The tetraspanin CD9 mediates lateral association of MHC class II molecules on the dendritic cell surface. Proc Natl Acad Sci USA. 104:234–239. 2007. View Article : Google Scholar : PubMed/NCBI | |
Suzuki M, Tachibana I, Takeda Y, He P, Minami S, Iwasaki T, Kida H, Goya S, Kijima T, Yoshida M, et al: Tetraspanin CD9 negatively regulates lipopolysaccharide-induced macrophage activation and lung inflammation. J Immunol. 182:6485–6493. 2009. View Article : Google Scholar : PubMed/NCBI | |
Rocha-Perugini V, Martínez Del Hoyo G, González-Granado JM, Ramírez-Huesca M, Zorita V, Rubinstein E, Boucheix C and Sánchez-Madrid F: CD9 regulates major histocompatibility complex class II trafficking in monocyte-derived dendritic cells. Mol Cell Biol. 37:e00202–17. 2017. View Article : Google Scholar : PubMed/NCBI | |
Jones EL, Wee JL, Demaria MC, Blakeley J, Ho PK, Vega-Ramos J, Villadangos JA, van Spriel AB, Hickey MJ, Hämmerling GJ and Wright MD: Dendritic cell migration and antigen presentation are coordinated by the opposing functions of the tetraspanins CD82 and CD37. J Immunol. 196:978–987. 2016. View Article : Google Scholar : PubMed/NCBI | |
Gartlan KH, Wee JL, Demaria MC, Nastovska R, Chang TM, Jones EL, Apostolopoulos V, Pietersz GA, Hickey MJ, van Spriel AB and Wright MD: Tetraspanin CD37 contributes to the initiation of cellular immunity by promoting dendritic cell migration. Eur J Immunol. 43:1208–1219. 2013. View Article : Google Scholar : PubMed/NCBI | |
Todros-Dawda I, Kveberg L, Vaage JT and Inngjerdingen M: The tetraspanin CD53 modulates responses from activating NK cell receptors, promoting LFA-1 activation and dampening NK cell effector functions. PLoS One. 9:e978442014. View Article : Google Scholar : PubMed/NCBI | |
Petersen SH, Odintsova E, Haigh TA, Rickinson AB, Taylor GS and Berditchevski F: The role of tetraspanin CD63 in antigen presentation via MHC class II. Eur J Immunol. 41:2556–2561. 2011. View Article : Google Scholar : PubMed/NCBI | |
Sheng KC, van Spriel AB, Gartlan KH, Sofi M, Apostolopoulos V, Ashman L and Wright MD: Tetraspanins CD37 and CD151 differentially regulate Ag presentation and T-cell co-stimulation by DC. Eur J Immunol. 39:50–55. 2009. View Article : Google Scholar : PubMed/NCBI | |
Colbert JD, Cruz FM, Baer CE and Rock KL: Tetraspanin-5-mediated MHC class I clustering is required for optimal CD8 T cell activation. Proc Natl Acad Sci USA. 119:e21221881192022. View Article : Google Scholar : PubMed/NCBI | |
Schäfer D, Tomiuk S, Küster LN, Rawashdeh WA, Henze J, Tischler-Höhle G, Agorku DJ, Brauner J, Linnartz C, Lock D, et al: Identification of CD318, TSPAN8 and CD66c as target candidates for CAR T cell based immunotherapy of pancreatic adenocarcinoma. Nat Commun. 12:14532021. View Article : Google Scholar : PubMed/NCBI | |
Kohmo S, Kijima T, Otani Y, Mori M, Minami T, Takahashi R, Nagatomo I, Takeda Y, Kida H, Goya S, et al: Cell surface tetraspanin CD9 mediates chemoresistance in small cell lung cancer. Cancer Res. 70:8025–8035. 2010. View Article : Google Scholar : PubMed/NCBI | |
Ullah M, Akbar A, Ng NN, Concepcion W and Thakor AS: Mesenchymal stem cells confer chemoresistance in breast cancer via a CD9 dependent mechanism. Oncotarget. 10:3435–3450. 2019. View Article : Google Scholar : PubMed/NCBI | |
Pan SJ, Wu YB, Cai S, Pan YX, Liu W, Bian LG, Sun B and Sun QF: Over-expression of tetraspanin 8 in malignant glioma regulates tumor cell progression. Biochem Biophys Res Commun. 458:476–482. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zhu R, Gires O, Zhu L, Liu J, Li J, Yang H, Ju G, Huang J, Ge W, Chen Y, et al: TSPAN8 promotes cancer cell stemness via activation of sonic Hedgehog signaling. Nat Commun. 10:28632019. View Article : Google Scholar : PubMed/NCBI | |
Tominaga N, Hagiwara K, Kosaka N, Honma K, Nakagama H and Ochiya T: RPN2-mediated glycosylation of tetraspanin CD63 regulates breast cancer cell malignancy. Mol Cancer. 13:1342014. View Article : Google Scholar : PubMed/NCBI | |
Ye M, Wei T, Wang Q, Sun Y, Tang R, Guo L and Zhu W: TSPAN12 promotes chemoresistance and proliferation of SCLC under the regulation of miR-495. Biochem Biophys Res Commun. 486:349–356. 2017. View Article : Google Scholar : PubMed/NCBI | |
Floren M, Restrepo Cruz S, Termini CM, Marjon KD, Lidke KA and Gillette JM: Tetraspanin CD82 drives acute myeloid leukemia chemoresistance by modulating protein kinase C alpha and β1 integrin activation. Oncogene. 39:3910–3925. 2020. View Article : Google Scholar : PubMed/NCBI | |
Quagliano A, Gopalakrishnapillai A, Kolb EA and Barwe SP: CD81 knockout promotes chemosensitivity and disrupts in vivo homing and engraftment in acute lymphoblastic leukemia. Blood Adv. 4:4393–4405. 2020. View Article : Google Scholar : PubMed/NCBI | |
Li L, Yang D, Cui D, Li Y, Nie Z, Wang J and Liang L: Quantitative proteomics analysis of the role of tetraspanin-8 in the drug resistance of gastric cancer. Int J Oncol. 52:473–484. 2018.PubMed/NCBI | |
Gao X, Ran N, Dong X, Zuo B, Yang R, Zhou Q, Moulton HM, Seow Y and Yin H: Anchor peptide captures, targets, and loads exosomes of diverse origins for diagnostics and therapy. Sci Transl Med. 10:eaat01952018. View Article : Google Scholar : PubMed/NCBI | |
Huang Y, Zucker B, Zhang S, Elias S, Zhu Y, Chen H, Ding T, Li Y, Sun Y, Lou J, et al: Migrasome formation is mediated by assembly of micron-scale tetraspanin macrodomains. Nat Cell Biol. 21:991–1002. 2019. View Article : Google Scholar : PubMed/NCBI | |
Jiao H, Jiang D, Hu X, Du W, Ji L, Yang Y, Li X, Sho T, Wang X, Li Y, et al: Mitocytosis, a migrasome-mediated mitochondrial quality-control process. Cell. 184:2896–2910.e13. 2021. View Article : Google Scholar : PubMed/NCBI | |
Yu S and Yu L: Migrasome biogenesis and functions. FEBS J. 289:7246–7254. 2022. View Article : Google Scholar : PubMed/NCBI | |
Schmidt-Pogoda A, Strecker JK, Liebmann M, Massoth C, Beuker C, Hansen U, König S, Albrecht S, Bock S, Breuer J, et al: Dietary salt promotes ischemic brain injury and is associated with parenchymal migrasome formation. PLoS One. 13:e02098712018. View Article : Google Scholar : PubMed/NCBI | |
Chen L, Ma L and Yu L: WGA is a probe for migrasomes. Cell Discov. 5:132019. View Article : Google Scholar : PubMed/NCBI | |
Zheng Y, Lang Y, Qi B, Wang Y, Gao W and Li T: TSPAN4 is a prognostic and immune target in Glioblastoma multiforme. Front Mol Biosci. 9:10300572023. View Article : Google Scholar : PubMed/NCBI | |
Zhang K, Zhu Z, Jia R, Wang NA, Shi M, Wang Y, Xiang S, Zhang Q and Xu L: CD151-enriched migrasomes mediate hepatocellular carcinoma invasion by conditioning cancer cells and promoting angiogenesis. J Exp Clin Cancer Res. 43:1602024. View Article : Google Scholar : PubMed/NCBI | |
Qin Y, Yang J, Liang C, Liu J, Deng Z, Yan B, Fu Y, Luo Y, Li X, Wei X and Li W: Pan-cancer analysis identifies migrasome-related genes as a potential immunotherapeutic target: A bulk omics research and single cell sequencing validation. Front Immunol. 13:9948282022. View Article : Google Scholar : PubMed/NCBI |