Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
November-2024 Volume 30 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
November-2024 Volume 30 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Roles of small GTPases in cardiac hypertrophy (Review)

  • Authors:
    • Xin Wang
    • Xinwen Nie
    • Hao Wang
    • Zhanhong Ren
  • View Affiliations / Copyright

    Affiliations: School of Mathematics and Statistics, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China, Hubei Key Laboratory of Diabetes and Angiopathy, Medicine Research Institute, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
    Copyright: © Wang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 208
    |
    Published online on: September 19, 2024
       https://doi.org/10.3892/mmr.2024.13332
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Cardiac hypertrophy results from the heart reacting and adapting to various pathological stimuli and its persistent development is a major contributing factor to heart failure. However, the molecular mechanisms of cardiac hypertrophy remain unclear. Small GTPases in the Ras, Rho, Rab, Arf and Ran subfamilies exhibit GTPase activity and play crucial roles in regulating various cellular responses. Previous studies have shown that Ras, Rho and Rab are closely linked to cardiac hypertrophy and that their overexpression can induce cardiac hypertrophy. Here, we review the functions of small GTPases in cardiac hypertrophy and provide additional insights and references for the prevention and treatment of cardiac hypertrophy.
View Figures

Figure 1

Figure 2

Figure 3

View References

1 

Shimizu I and Minamino T: Physiological and pathological cardiac hypertrophy. J Mol Cell Cardiol. 97:245–262. 2016. View Article : Google Scholar : PubMed/NCBI

2 

Tham YK, Bernardo BC, Ooi JY, Weeks KL and McMullen JR: Pathophysiology of cardiac hypertrophy and heart failure: Signaling pathways and novel therapeutic targets. Arch Toxicol. 89:1401–1438. 2015. View Article : Google Scholar : PubMed/NCBI

3 

Nakamura M and Sadoshima J: Mechanisms of physiological and pathological cardiac hypertrophy. Nat Rev Cardiol. 15:387–407. 2018. View Article : Google Scholar : PubMed/NCBI

4 

Samak M, Fatullayev J, Sabashnikov A, Zeriouh M, Schmack B, Farag M, Popov AF, Dohmen PM, Choi YH, Wahlers T and Weymann A: Cardiac Hypertrophy: An introduction to molecular and cellular basis. Med Sci Monit Basic Res. 22:75–79. 2016. View Article : Google Scholar : PubMed/NCBI

5 

Gallo S, Vitacolonna A, Bonzano A, Comoglio P and Crepaldi T: ERK: A key player in the pathophysiology of cardiac hypertrophy. Int J Mol Sci. 20:21642019. View Article : Google Scholar : PubMed/NCBI

6 

Oka T, Akazawa H, Naito AT and Komuro I: Angiogenesis and cardiac hypertrophy: Maintenance of cardiac function and causative roles in heart failure. Circ Res. 114:565–571. 2014. View Article : Google Scholar : PubMed/NCBI

7 

Lezoualc'h F, Métrich M, Hmitou I, Duquesnes N and Morel E: Small GTP-binding proteins and their regulators in cardiac hypertrophy. J Mol Cell Cardiol. 44:623–632. 2008. View Article : Google Scholar : PubMed/NCBI

8 

Clerk A and Sugden PH: Small guanine nucleotide-binding proteins and myocardial hypertrophy. Circ Res. 86:1019–1023. 2000. View Article : Google Scholar : PubMed/NCBI

9 

Matozaki T, Nakanishi H and Takai Y: Small G-protein networks: Their crosstalk and signal cascades. Cell Signal. 12:515–524. 2000. View Article : Google Scholar : PubMed/NCBI

10 

Lundquist EA: Small GTPases. Greenwald I: WormBook; pp. 1–18. 2006, PubMed/NCBI

11 

Wennerberg K, Rossman KL and Der CJ: The Ras superfamily at a glance. J Cell Sci. 118:843–846. 2005. View Article : Google Scholar : PubMed/NCBI

12 

Reiner DJ and Lundquist EA: Small GTPases. WormBook. 2018:1–65. 2018. View Article : Google Scholar : PubMed/NCBI

13 

Karnoub AE and Weinberg RA: Ras oncogenes: Split personalities. Nat Rev Mol Cell Biol. 9:517–531. 2008. View Article : Google Scholar : PubMed/NCBI

14 

Ramos-Kuri M, Meka SH, Salamanca-Buentello F, Hajjar RJ, Lipskaia L and Chemaly ER: Molecules linked to Ras signaling as therapeutic targets in cardiac pathologies. Biol Res. 54:232021. View Article : Google Scholar : PubMed/NCBI

15 

Ramirez MT, Sah VP, Zhao XL, Hunter JJ, Chien KR and Brown JH: The MEKK-JNK pathway is stimulated by alpha1-adrenergic receptor and ras activation and is associated with in vitro and in vivo cardiac hypertrophy. J Biol Chem. 272:14057–14061. 1997. View Article : Google Scholar : PubMed/NCBI

16 

Matsuda T, Jeong JI, Ikeda S, Yamamoto T, Gao S, Babu GJ, Zhai P and Del Re DP: H-Ras isoform mediates protection against pressure overload-induced cardiac dysfunction in part through activation of AKT. Circ Heart Fail. 10:e0036582017. View Article : Google Scholar : PubMed/NCBI

17 

Aikawa R, Nagai T, Kudoh S, Zou Y, Tanaka M, Tamura M, Akazawa H, Takano H, Nagai R and Komuro I: Integrins play a critical role in mechanical stress-induced p38 MAPK activation. Hypertension. 39:233–238. 2022. View Article : Google Scholar

18 

Heasman SJ and Ridley AJ: Mammalian Rho GTPases: New insights into their functions from in vivo studies. Nat Rev Mol Cell Biol. 9:690–701. 2008. View Article : Google Scholar : PubMed/NCBI

19 

Schlessinger K, Hall A and Tolwinski N: Wnt signaling pathways meet Rho GTPases. Genes Dev. 23:265–277. 2009. View Article : Google Scholar : PubMed/NCBI

20 

Mosaddeghzadeh N and Ahmadian MR: The RHO Family GTPases: Mechanisms of regulation and signaling. Cells. 10:18312021. View Article : Google Scholar : PubMed/NCBI

21 

Mackay DJ and Hall A: Rho GTPases. J Biol Chem. 273:20685–20688. 1998. View Article : Google Scholar : PubMed/NCBI

22 

Schwartz SL, Cao C, Pylypenko O, Rak A and Wandinger-Ness A: Rab GTPases at a glance. J Cell Sci. 120:3905–3910. 2007. View Article : Google Scholar : PubMed/NCBI

23 

Jackson CL and Bouvet S: Arfs at a glance. J Cell Sci. 127:4103–4109. 2014.PubMed/NCBI

24 

Yoneda Y, Hieda M, Nagoshi E and Miyamoto Y: Nucleocytoplasmic protein transport and recycling of Ran. Cell Struct Funct. 24:425–433. 1999. View Article : Google Scholar : PubMed/NCBI

25 

Na W, Peng G, Jianping Z, Yanzhong C, Shengjiang G and Li C: RhoA/ROCK may involve in cardiac hypertrophy induced by experimental hyperthyroidism. Toxicol Ind Health. 28:831–839. 2012. View Article : Google Scholar : PubMed/NCBI

26 

Sun Y, Xu C, Jiang Z and Jiang X: DEF6(differentially exprehomolog) exacerbates pathological cardiac hypertrophy via RAC1. Cell Death Dis. 14:4832023. View Article : Google Scholar : PubMed/NCBI

27 

Lin KH, Kumar VB, Shanmugam T, Shibu MA, Chen RJ, Kuo CH, Ho TJ, Padma VV, Yeh YL and Huang CY: miR-145-5p targets paxillin to attenuate angiotensin II-induced pathological cardiac hypertrophy via downregulation of Rac 1, pJNK, p-c-Jun, NFATc3, ANP and by Sirt-1 upregulation. Mol Cell Biochem. 476:3253–3260. 2021. View Article : Google Scholar : PubMed/NCBI

28 

Higuchi Y, Otsu K, Nishida K, Hirotani S, Nakayama H, Yamaguchi O, Hikoso S, Kashiwase K, Takeda T, Watanabe T, et al: The small GTP-binding protein Rac1 induces cardiac myocyte hypertrophy through the activation of apoptosis signal-regulating kinase 1 and nuclear factor-kappa B. J Biol Chem. 278:20770–20777. 2003. View Article : Google Scholar : PubMed/NCBI

29 

Satoh M, Ogita H, Takeshita K, Mukai Y, Kwiatkowski DJ and Liao JK: Requirement of Rac1 in the development of cardiac hypertrophy. Proc Natl Acad Sci USA. 103:7432–7437. 2006. View Article : Google Scholar : PubMed/NCBI

30 

Aikawa R, Nagai T, Tanaka M, Zou Y, Ishihara T, Takano H, Hasegawa H, Akazawa H, Mizukami M, Nagai R and Komuro I: Reactive oxygen species in mechanical stress-induced cardiac hypertrophy. Biochem Biophys Res Commun. 289:901–907. 2001. View Article : Google Scholar : PubMed/NCBI

31 

Maillet M, Lynch JM, Sanna B, York AJ, Zheng Y and Molkentin JD: Cdc42 is an antihypertrophic molecular switch in the mouse heart. J Clin Invest. 119:3079–3088. 2009. View Article : Google Scholar : PubMed/NCBI

32 

Liu J, Zheng X and Wu X: The Rab GTPase in the heart: Pivotal roles in development and disease. Life Sci. 306:1208062022. View Article : Google Scholar : PubMed/NCBI

33 

Tomazini A and Shifman JM: Targeting Ras with protein engineering. Oncotarget. 14:672–687. 2023. View Article : Google Scholar : PubMed/NCBI

34 

Apken LH and Oeckinghaus A: The RAL signaling network: Cancer and beyond. Int Rev Cell Mol Biol. 361:21–105. 2021. View Article : Google Scholar : PubMed/NCBI

35 

Shi GX, Cai W and Andres DA: Rit subfamily small GTPases: Regulators in neuronal differentiation and survival. Cell Signal. 25:2060–2068. 2013. View Article : Google Scholar : PubMed/NCBI

36 

Minato N: Rap G protein signal in normal and disordered lymphohematopoiesis. Exp Cell Res. 319:2323–2328. 2013. View Article : Google Scholar : PubMed/NCBI

37 

Zhong Y, Zhou X, Guan KL and Zhang J: Rheb regulates nuclear mTORC1 activity independent of farnesylation. Cell Chem Biol. 29:1037–1045.e4. 2022. View Article : Google Scholar : PubMed/NCBI

38 

Yang W, Pang D, Chen M, Du C, Jia L, Wang L, He Y, Jiang W, Luo L, Yu Z, et al: Rheb mediates neuronal-activity-induced mitochondrial energetics through mTORC1-independent PDH activation. Dev Cell. 56:811–825.e6. 2021. View Article : Google Scholar : PubMed/NCBI

39 

Li Y, Chang Y, Li X, Li X, Gao J, Zhou Y, Wu F, Bai R, Dong T, Ma S, et al: RAD-Deficient human cardiomyocytes develop hypertrophic cardiomyopathy phenotypes due to calcium dysregulation. Front Cell Dev Biol. 8:5858792020. View Article : Google Scholar : PubMed/NCBI

40 

Chang L, Zhang J, Tseng YH, Xie CQ, Ilany J, Brüning JC, Sun Z, Zhu X, Cui T, Youker KA, et al: Rad GTPase deficiency leads to cardiac hypertrophy. Circulation. 116:2976–2983. 2007. View Article : Google Scholar : PubMed/NCBI

41 

Thorburn A, Thorburn J, Chen SY, Powers S, Shubeita HE, Feramisco JR and Chien KR: HRas-dependent pathways can activate morphological and genetic markers of cardiac muscle cell hypertrophy. J Biol Chem. 268:2244–2249. 1993. View Article : Google Scholar : PubMed/NCBI

42 

Ramos-Kuri M, Rapti K, Mehel H, Zhang S, Dhandapany PS, Liang L, García-Carrancá A, Bobe R, Fischmeister R, Adnot S, et al: Dominant negative Ras attenuates pathological ventricular remodeling in pressure overload cardiac hypertrophy. Biochim Biophys Acta. 1853:2870–2884. 2015. View Article : Google Scholar : PubMed/NCBI

43 

Petrich BG and Wang Y: Stress-activated MAP kinases in cardiac remodeling and heart failure; new insights from transgenic studies. Trends Cardiovasc Med. 14:50–55. 2004. View Article : Google Scholar : PubMed/NCBI

44 

Ichida M and Finkel T: Ras regulates NFAT3 activity in cardiac myocytes. J Biol Chem. 276:3524–3530. 2001. View Article : Google Scholar : PubMed/NCBI

45 

Lange-Carter CA and Johnson GL: Ras-dependent growth factor regulation of MEK kinase in PC12 cells. Science. 265:1458–1461. 1994. View Article : Google Scholar : PubMed/NCBI

46 

Russell M, Lange-Carter CA and Johnson GL: Direct interaction between Ras and the kinase domain of mitogen-activated protein kinase kinase kinase (MEKK1). J Biol Chem. 270:11757–11760. 1995. View Article : Google Scholar : PubMed/NCBI

47 

Reynet C and Kahn CR: Rad: A member of the Ras family overexpressed in muscle of type II diabetic humans. Science. 262:1441–1444. 1993. View Article : Google Scholar : PubMed/NCBI

48 

Cho KJ, Hill MM, Chigurupati S, Du G, Parton RG and Hancock JF: Therapeutic levels of the hydroxmethylglutaryl-coenzyme A reductase inhibitor lovastatin activate ras signaling via phospholipase D2. Mol Cell Biol. 31:1110–1120. 2011. View Article : Google Scholar : PubMed/NCBI

49 

Ding J, Chen YX, Chen Y, Mou Y, Sun XT, Dai DP, Zhao CZ, Yang J, Hu SJ and Guo X: Overexpression of FNTB and the activation of Ras induce hypertrophy and promote apoptosis and autophagic cell death in cardiomyocytes. J Cell Mol Med. 24:8998–9011. 2020. View Article : Google Scholar : PubMed/NCBI

50 

Li X, Han J, Li L, Wang KJ and Hu SJ: Effect of farnesyltransferase inhibition on cardiac remodeling in spontaneously hypertensive rats. Int J Cardiol. 168:3340–3347. 2013. View Article : Google Scholar : PubMed/NCBI

51 

Cai T, Abel L, Langford O, Monaghan G, Aronson JK, Stevens RJ, Lay-Flurrie S, Koshiaris C, McManus RJ, Hobbs FDR and Sheppard JP: Associations between statins and adverse events in primary prevention of cardiovascular disease: Systematic review with pairwise, network and dose-response meta-analyses. BMJ. 374:n15372021. View Article : Google Scholar : PubMed/NCBI

52 

Jaiswal M, Dvorsky R and Ahmadian MR: Deciphering the molecular and functional basis of Dbl family proteins: A novel systematic approach toward classification of selective activation of the Rho family proteins. J Biol Chem. 288:4486–4500. 2013. View Article : Google Scholar : PubMed/NCBI

53 

Strassheim D, Gerasimovskaya E, Irwin D, Dempsey EC, Stenmark K and Karoor V: RhoGTPase in vascular disease. Cells. 8:5512019. View Article : Google Scholar : PubMed/NCBI

54 

Lee CF, Carley RE, Butler CA and Morrison AR: Rac GTPase signaling in immune-mediated mechanisms of atherosclerosis. Cells. 10:28082021. View Article : Google Scholar : PubMed/NCBI

55 

Nguyen DT, Gao L, Wong A and Chen CS: Cdc42 regulates branching in angiogenic sprouting in vitro. Microcirculation. 24:10.1111/micc.12372. 2017. View Article : Google Scholar : PubMed/NCBI

56 

Lv J, Zeng J, Guo F, Li Y, Xu M, Cheng Y, Zhang L, Cai S, Chen Y, Zheng Y and Hu G: Endothelial Cdc42 deficiency impairs endothelial regeneration and vascular repair after inflammatory vascular injury. Respir Res. 19:272018. View Article : Google Scholar : PubMed/NCBI

57 

Basbous S, Azzarelli R, Pacary E and Moreau V: Pathophysiological functions of Rnd proteins. Small GTPases. 12:336–357. 2021. View Article : Google Scholar : PubMed/NCBI

58 

Blom M, Reis K and Aspenström P: RhoD localization and function is dependent on its GTP/GDP-bound state and unique N-terminal motif. Eur J Cell Biol. 97:393–401. 2018. View Article : Google Scholar : PubMed/NCBI

59 

Ahmad Mokhtar AM, Hashim IF, Mohd Zaini Makhtar M, Salikin NH and Amin-Nordin S: The Role of RhoH in TCR signalling and its involvement in diseases. Cells. 10:9502021. View Article : Google Scholar : PubMed/NCBI

60 

Kilian LS, Voran J, Frank D and Rangrez AY: RhoA: A dubious molecule in cardiac pathophysiology. J Biomed Sci. 28:332021. View Article : Google Scholar : PubMed/NCBI

61 

Miyamoto S, Del Re DP, Xiang SY, Zhao X, Florholmen G and Brown JH: Revisited and revised: is RhoA always a villain in cardiac pathophysiology? J Cardiovasc Transl Res. 3:330–343. 2010. View Article : Google Scholar : PubMed/NCBI

62 

Zhou Q, Wei SS, Wang H, Wang Q, Li W, Li G, Hou JW, Chen XM, Chen J, Xu WP, et al: Crucial Role of ROCK2-Mediated phosphorylation and upregulation of FHOD3 in the pathogenesis of angiotensin II-induced cardiac hypertrophy. Hypertension. 69:1070–1083. 2017. View Article : Google Scholar : PubMed/NCBI

63 

Sakaguchi T, Takefuji M, Wettschureck N, Hamaguchi T, Amano M, Kato K, Tsuda T, Eguchi S, Ishihama S, Mori Y, et al: Protein Kinase N promotes stress-induced cardiac dysfunction through phosphorylation of myocardin-related transcription factor A and disruption of its interaction with actin. Circulation. 140:1737–1752. 2019. View Article : Google Scholar : PubMed/NCBI

64 

Huang J, Qu Q, Dai Y, Ren D, Qian J and Ge J: Detrimental Role of PDZ-RhoGEF in pathological cardiac hypertrophy. Hypertension. 80:403–415. 2023. View Article : Google Scholar : PubMed/NCBI

65 

Aoki H, Izumo S and Sadoshima J: Angiotensin II activates RhoA in cardiac myocytes: A critical role of RhoA in angiotensin II-induced premyofibril formation. Circ Res. 82:666–676. 1998. View Article : Google Scholar : PubMed/NCBI

66 

Nakagawa O, Fujisawa K, Ishizaki T, Saito Y, Nakao K and Narumiya S: ROCK-I and ROCK-II, two isoforms of Rho-associated coiled-coil forming protein serine/threonine kinase in mice. FEBS Lett. 392:189–193. 1996. View Article : Google Scholar : PubMed/NCBI

67 

Zhang YM, Bo J, Taffet GE, Chang J, Shi J, Reddy AK, Michael LH, Schneider MD, Entman ML, Schwartz RJ and Wei L: Targeted deletion of ROCK1 protects the heart against pressure overload by inhibiting reactive fibrosis. FASEB J. 20:916–925. 2006. View Article : Google Scholar : PubMed/NCBI

68 

Okamoto R, Li Y, Noma K, Hiroi Y, Liu PY, Taniguchi M, Ito M and Liao JK: FHL2 prevents cardiac hypertrophy in mice with cardiac-specific deletion of ROCK2. FASEB J. 27:1439–1449. 2013. View Article : Google Scholar : PubMed/NCBI

69 

Shimizu T, Narang N, Chen P, Yu B, Knapp M, Janardanan J, Blair J and Liao JK: Fibroblast deletion of ROCK2 attenuates cardiac hypertrophy, fibrosis and diastolic dysfunction. JCI Insight. 2:e931872017. View Article : Google Scholar : PubMed/NCBI

70 

Ikeda S, Satoh K, Kikuchi N, Miyata S, Suzuki K, Omura J, Shimizu T, Kobayashi K, Kobayashi K, Fukumoto Y, et al: Crucial role of rho-kinase in pressure overload-induced right ventricular hypertrophy and dysfunction in mice. Arterioscler Thromb Vasc Biol. 34:1260–1271. 2014. View Article : Google Scholar : PubMed/NCBI

71 

Pracyk JB, Tanaka K, Hegland DD, Kim KS, Sethi R, Rovira II, Blazina DR, Lee L, Bruder JT, Kovesdi I, et al: A requirement for the rac1 GTPase in the signal transduction pathway leading to cardiac myocyte hypertrophy. J Clin Invest. 102:929–937. 1998. View Article : Google Scholar : PubMed/NCBI

72 

Elnakish MT, Moldovan L, Khan M, Hassanain HH and Janssen PM: Myocardial Rac1 exhibits partial involvement in thyroxin-induced cardiomyocyte hypertrophy and its inhibition is not sufficient to improve cardiac dysfunction or contractile abnormalities in mouse papillary muscles. J Cardiovasc Pharmacol. 61:536–544. 2013. View Article : Google Scholar : PubMed/NCBI

73 

Li PL, Liu H, Chen GP, Li L, Shi HJ, Nie HY, Liu Z, Hu YF, Yang J, Zhang P, et al: STEAP3 (Six-Transmembrane Epithelial Antigen of Prostate 3) Inhibits Pathological Cardiac Hypertrophy. Hypertension. 76:1219–1230. 2020. View Article : Google Scholar : PubMed/NCBI

74 

Clerk A, Pham FH, Fuller SJ, Sahai E, Aktories K, Marais R, Marshall C and Sugden PH: Regulation of mitogen-activated protein kinases in cardiac myocytes through the small G protein Rac1. Mol Cell Biol. 21:1173–1184. 2001. View Article : Google Scholar : PubMed/NCBI

75 

Sawada N, Li Y and Liao JK: Novel aspects of the roles of Rac1 GTPase in the cardiovascular system. Curr Opin Pharmacol. 10:116–121. 2010. View Article : Google Scholar : PubMed/NCBI

76 

Cacciapuoti F: Molecular mechanisms of left ventricular hypertrophy (LVH) in systemic hypertension (SH)-possible therapeutic perspectives. J Am Soc Hypertens. 5:449–455. 2011. View Article : Google Scholar : PubMed/NCBI

77 

Hauck L, Harms C, Grothe D, An J, Gertz K, Kronenberg G, Dietz R, Endres M and von Harsdorf R: Critical role for FoxO3a-dependent regulation of p21CIP1/WAF1 in response to statin signaling in cardiac myocytes. Circ Res. 100:50–60. 2007. View Article : Google Scholar : PubMed/NCBI

78 

Moradi A, Maroofi A, Hemati M, Hashemzade T, Alborzi N and Safari F: Inhibition of GTPase Rac1 expression by vitamin D mitigates pressure overload-induced cardiac hypertrophy. Int J Cardiol Heart Vasc. 37:1009222021.PubMed/NCBI

79 

Zhang C, Jin DD, Wang XY, Lou L and Yang J: Key enzymes for the mevalonate pathway in the cardiovascular system. J Cardiovasc Pharmacol. 77:142–152. 2021. View Article : Google Scholar : PubMed/NCBI

80 

Zeidan A, Gan XT, Thomas A and Karmazyn M: Prevention of RhoA activation and cofilin-mediated actin polymerization mediates the antihypertrophic effect of adenosine receptor agonists in angiotensin II- and endothelin-1-treated cardiomyocytes. Mol Cell Biochem. 385:239–248. 2014. View Article : Google Scholar : PubMed/NCBI

81 

Fan S, Xiong Q, Zhang X, Zhang L and Shi Y: Glucagon-like peptide 1 reverses myocardial hypertrophy through cAMP/PKA/RhoA/ROCK2 signaling. Acta Biochim Biophys Sin (Shanghai). 52:612–619. 2020. View Article : Google Scholar : PubMed/NCBI

82 

Tawara S and Shimokawa H: Progress of the study of rho-kinase and future perspective of the inhibitor. Yakugaku Zasshi. 127:501–514. 2007. View Article : Google Scholar : PubMed/NCBI

83 

Zhang Y and Wu S: Effects of fasudil on pulmonary hypertension in clinical practice. Pulm Pharmacol Ther. 46:54–63. 2017. View Article : Google Scholar : PubMed/NCBI

84 

Bock JB, Matern HT, Peden AA and Scheller RH: A genomic perspective on membrane compartment organization. Nature. 409:839–841. 2001. View Article : Google Scholar : PubMed/NCBI

85 

Stenmark H and Olkkonen VM: The Rab GTPase family. Genome Biol. 2:REVIEWS30072001. View Article : Google Scholar : PubMed/NCBI

86 

Pereira-Leal JB and Seabra MC: The mammalian Rab family of small GTPases: Definition of family and subfamily sequence motifs suggests a mechanism for functional specificity in the Ras superfamily. J Mol Biol. 301:1077–1087. 2000. View Article : Google Scholar : PubMed/NCBI

87 

Yang XZ, Li XX, Zhang YJ, Rodriguez-Rodriguez L, Xiang MQ, Wang HY and Zheng XF: Rab1 in cell signaling, cancer and other diseases. Oncogene. 35:5699–5704. 2016. View Article : Google Scholar : PubMed/NCBI

88 

Schonn JS, van Weering JR, Mohrmann R, Schlüter OM, Südhof TC, de Wit H, Verhage M and Sørensen JB: Rab3 proteins involved in vesicle biogenesis and priming in embryonic mouse chromaffin cells. Traffic. 11:1415–1428. 2010. View Article : Google Scholar : PubMed/NCBI

89 

Filipeanu CM, Zhou F, Lam ML, Kerut KE, Claycomb WC and Wu G: Enhancement of the recycling and activation of beta-adrenergic receptor by Rab4 GTPase in cardiac myocytes. J Biol Chem. 281:11097–11103. 2006. View Article : Google Scholar : PubMed/NCBI

90 

Xu W, Fang F, Ding J and Wu C: Dysregulation of Rab5-mediated endocytic pathways in Alzheimer's disease. Traffic. 19:253–262. 2018. View Article : Google Scholar : PubMed/NCBI

91 

Dornan LG and Simpson JC: Rab6-mediated retrograde trafficking from the Golgi: The trouble with tubules. Small GTPases. 14:26–44. 2023. View Article : Google Scholar : PubMed/NCBI

92 

Stypulkowski E, Feng Q, Joseph I, Farrell V, Flores J, Yu S, Sakamori R, Sun J, Bandyopadhyay S, Das S, et al: Rab8 attenuates Wnt signaling and is required for mesenchymal differentiation into adipocytes. J Biol Chem. 296:1004882021. View Article : Google Scholar : PubMed/NCBI

93 

Wilson B, Flett C, Gemperle J, Lawless C, Hartshorn M, Hinde E, Harrison T, Chastney M, Taylor S, Allen J, et al: Proximity labelling identifies pro-migratory endocytic recycling cargo and machinery of the Rab4 and Rab11 families. J Cell Sci. 136:jcs2604682023. View Article : Google Scholar : PubMed/NCBI

94 

Banworth MJ and Li G: Consequences of Rab GTPase dysfunction in genetic or acquired human diseases. Small GTPases. 9:158–181. 2018. View Article : Google Scholar : PubMed/NCBI

95 

Banworth MJ, Liang Z and Li G: A novel membrane targeting domain mediates the endosomal or Golgi localization specificity of small GTPases Rab22 and Rab31. J Biol Chem. 298:1022812022. View Article : Google Scholar : PubMed/NCBI

96 

Izumi T: In vivo Roles of Rab27 and its effectors in exocytosis. Cell Struct Funct. 46:79–94. 2021. View Article : Google Scholar : PubMed/NCBI

97 

Neumann AJ and Prekeris R: A Rab-bit hole: Rab40 GTPases as new regulators of the actin cytoskeleton and cell migration. Front Cell Dev Biol. 11:12689222023. View Article : Google Scholar : PubMed/NCBI

98 

Moore I, Schell J and Palme K: Subclass-specific sequence motifs identified in Rab GTPases. Trends Biochem Sci. 20:10–12. 1995. View Article : Google Scholar : PubMed/NCBI

99 

Filipeanu CM, Zhou F and Wu G: Analysis of Rab1 function in cardiomyocyte growth. Methods Enzymol. 438:217–226. 2008. View Article : Google Scholar : PubMed/NCBI

100 

Etzion S, Etzion Y, DeBosch B, Crawford PA and Muslin AJ: Akt2 deficiency promotes cardiac induction of Rab4a and myocardial β-adrenergic hypersensitivity. J Mol Cell Cardiol. 49:931–940. 2010. View Article : Google Scholar : PubMed/NCBI

101 

Seachrist JL and Ferguson SS: Regulation of G protein-coupled receptor endocytosis and trafficking by Rab GTPases. Life Sci. 74:225–235. 2003. View Article : Google Scholar : PubMed/NCBI

102 

Del Calvo G, Baggio Lopez T and Lymperopoulos A: The therapeutic potential of targeting cardiac RGS4. Ther Adv Cardiovasc Dis. 17:175394472311993502023. View Article : Google Scholar : PubMed/NCBI

103 

Lymperopoulos A, Borges JI and Stoicovy RA: RGS proteins and cardiovascular Angiotensin II Signaling: Novel opportunities for therapeutic targeting. Biochem Pharmacol. 218:1159042023. View Article : Google Scholar : PubMed/NCBI

104 

Magalhaes AC, Dunn H and Ferguson SS: Regulation of GPCR activity, trafficking and localization by GPCR-interacting proteins. Br J Pharmacol. 165:1717–1736. 2012. View Article : Google Scholar : PubMed/NCBI

105 

Rogers JH, Tamirisa P, Kovacs A, Weinheimer C, Courtois M, Blumer KJ, Kelly DP and Muslin AJ: RGS4 causes increased mortality and reduced cardiac hypertrophy in response to pressure overload. J Clin Invest. 104:567–576. 1999. View Article : Google Scholar : PubMed/NCBI

106 

Chidiac P, Sobiesiak AJ, Lee KN, Gros R and Nguyen CH: The eIF2B-interacting domain of RGS2 protects against GPCR agonist-induced hypertrophy in neonatal rat cardiomyocytes. Cell Signal. 26:1226–1234. 2014. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Wang X, Nie X, Wang H and Ren Z: Roles of small GTPases in cardiac hypertrophy (Review). Mol Med Rep 30: 208, 2024.
APA
Wang, X., Nie, X., Wang, H., & Ren, Z. (2024). Roles of small GTPases in cardiac hypertrophy (Review). Molecular Medicine Reports, 30, 208. https://doi.org/10.3892/mmr.2024.13332
MLA
Wang, X., Nie, X., Wang, H., Ren, Z."Roles of small GTPases in cardiac hypertrophy (Review)". Molecular Medicine Reports 30.5 (2024): 208.
Chicago
Wang, X., Nie, X., Wang, H., Ren, Z."Roles of small GTPases in cardiac hypertrophy (Review)". Molecular Medicine Reports 30, no. 5 (2024): 208. https://doi.org/10.3892/mmr.2024.13332
Copy and paste a formatted citation
x
Spandidos Publications style
Wang X, Nie X, Wang H and Ren Z: Roles of small GTPases in cardiac hypertrophy (Review). Mol Med Rep 30: 208, 2024.
APA
Wang, X., Nie, X., Wang, H., & Ren, Z. (2024). Roles of small GTPases in cardiac hypertrophy (Review). Molecular Medicine Reports, 30, 208. https://doi.org/10.3892/mmr.2024.13332
MLA
Wang, X., Nie, X., Wang, H., Ren, Z."Roles of small GTPases in cardiac hypertrophy (Review)". Molecular Medicine Reports 30.5 (2024): 208.
Chicago
Wang, X., Nie, X., Wang, H., Ren, Z."Roles of small GTPases in cardiac hypertrophy (Review)". Molecular Medicine Reports 30, no. 5 (2024): 208. https://doi.org/10.3892/mmr.2024.13332
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team