|
1
|
Shimizu I and Minamino T: Physiological
and pathological cardiac hypertrophy. J Mol Cell Cardiol.
97:245–262. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Tham YK, Bernardo BC, Ooi JY, Weeks KL and
McMullen JR: Pathophysiology of cardiac hypertrophy and heart
failure: Signaling pathways and novel therapeutic targets. Arch
Toxicol. 89:1401–1438. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Nakamura M and Sadoshima J: Mechanisms of
physiological and pathological cardiac hypertrophy. Nat Rev
Cardiol. 15:387–407. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Samak M, Fatullayev J, Sabashnikov A,
Zeriouh M, Schmack B, Farag M, Popov AF, Dohmen PM, Choi YH,
Wahlers T and Weymann A: Cardiac Hypertrophy: An introduction to
molecular and cellular basis. Med Sci Monit Basic Res. 22:75–79.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Gallo S, Vitacolonna A, Bonzano A,
Comoglio P and Crepaldi T: ERK: A key player in the pathophysiology
of cardiac hypertrophy. Int J Mol Sci. 20:21642019. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Oka T, Akazawa H, Naito AT and Komuro I:
Angiogenesis and cardiac hypertrophy: Maintenance of cardiac
function and causative roles in heart failure. Circ Res.
114:565–571. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Lezoualc'h F, Métrich M, Hmitou I,
Duquesnes N and Morel E: Small GTP-binding proteins and their
regulators in cardiac hypertrophy. J Mol Cell Cardiol. 44:623–632.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Clerk A and Sugden PH: Small guanine
nucleotide-binding proteins and myocardial hypertrophy. Circ Res.
86:1019–1023. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Matozaki T, Nakanishi H and Takai Y: Small
G-protein networks: Their crosstalk and signal cascades. Cell
Signal. 12:515–524. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Lundquist EA: Small GTPases. Greenwald I:
WormBook; pp. 1–18. 2006, PubMed/NCBI
|
|
11
|
Wennerberg K, Rossman KL and Der CJ: The
Ras superfamily at a glance. J Cell Sci. 118:843–846. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Reiner DJ and Lundquist EA: Small GTPases.
WormBook. 2018:1–65. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Karnoub AE and Weinberg RA: Ras oncogenes:
Split personalities. Nat Rev Mol Cell Biol. 9:517–531. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Ramos-Kuri M, Meka SH, Salamanca-Buentello
F, Hajjar RJ, Lipskaia L and Chemaly ER: Molecules linked to Ras
signaling as therapeutic targets in cardiac pathologies. Biol Res.
54:232021. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Ramirez MT, Sah VP, Zhao XL, Hunter JJ,
Chien KR and Brown JH: The MEKK-JNK pathway is stimulated by
alpha1-adrenergic receptor and ras activation and is associated
with in vitro and in vivo cardiac hypertrophy. J Biol Chem.
272:14057–14061. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Matsuda T, Jeong JI, Ikeda S, Yamamoto T,
Gao S, Babu GJ, Zhai P and Del Re DP: H-Ras isoform mediates
protection against pressure overload-induced cardiac dysfunction in
part through activation of AKT. Circ Heart Fail. 10:e0036582017.
View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Aikawa R, Nagai T, Kudoh S, Zou Y, Tanaka
M, Tamura M, Akazawa H, Takano H, Nagai R and Komuro I: Integrins
play a critical role in mechanical stress-induced p38 MAPK
activation. Hypertension. 39:233–238. 2022. View Article : Google Scholar
|
|
18
|
Heasman SJ and Ridley AJ: Mammalian Rho
GTPases: New insights into their functions from in vivo studies.
Nat Rev Mol Cell Biol. 9:690–701. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Schlessinger K, Hall A and Tolwinski N:
Wnt signaling pathways meet Rho GTPases. Genes Dev. 23:265–277.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Mosaddeghzadeh N and Ahmadian MR: The RHO
Family GTPases: Mechanisms of regulation and signaling. Cells.
10:18312021. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Mackay DJ and Hall A: Rho GTPases. J Biol
Chem. 273:20685–20688. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Schwartz SL, Cao C, Pylypenko O, Rak A and
Wandinger-Ness A: Rab GTPases at a glance. J Cell Sci.
120:3905–3910. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Jackson CL and Bouvet S: Arfs at a glance.
J Cell Sci. 127:4103–4109. 2014.PubMed/NCBI
|
|
24
|
Yoneda Y, Hieda M, Nagoshi E and Miyamoto
Y: Nucleocytoplasmic protein transport and recycling of Ran. Cell
Struct Funct. 24:425–433. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Na W, Peng G, Jianping Z, Yanzhong C,
Shengjiang G and Li C: RhoA/ROCK may involve in cardiac hypertrophy
induced by experimental hyperthyroidism. Toxicol Ind Health.
28:831–839. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Sun Y, Xu C, Jiang Z and Jiang X:
DEF6(differentially exprehomolog) exacerbates pathological cardiac
hypertrophy via RAC1. Cell Death Dis. 14:4832023. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Lin KH, Kumar VB, Shanmugam T, Shibu MA,
Chen RJ, Kuo CH, Ho TJ, Padma VV, Yeh YL and Huang CY: miR-145-5p
targets paxillin to attenuate angiotensin II-induced pathological
cardiac hypertrophy via downregulation of Rac 1, pJNK, p-c-Jun,
NFATc3, ANP and by Sirt-1 upregulation. Mol Cell Biochem.
476:3253–3260. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Higuchi Y, Otsu K, Nishida K, Hirotani S,
Nakayama H, Yamaguchi O, Hikoso S, Kashiwase K, Takeda T, Watanabe
T, et al: The small GTP-binding protein Rac1 induces cardiac
myocyte hypertrophy through the activation of apoptosis
signal-regulating kinase 1 and nuclear factor-kappa B. J Biol Chem.
278:20770–20777. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Satoh M, Ogita H, Takeshita K, Mukai Y,
Kwiatkowski DJ and Liao JK: Requirement of Rac1 in the development
of cardiac hypertrophy. Proc Natl Acad Sci USA. 103:7432–7437.
2006. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Aikawa R, Nagai T, Tanaka M, Zou Y,
Ishihara T, Takano H, Hasegawa H, Akazawa H, Mizukami M, Nagai R
and Komuro I: Reactive oxygen species in mechanical stress-induced
cardiac hypertrophy. Biochem Biophys Res Commun. 289:901–907. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Maillet M, Lynch JM, Sanna B, York AJ,
Zheng Y and Molkentin JD: Cdc42 is an antihypertrophic molecular
switch in the mouse heart. J Clin Invest. 119:3079–3088. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Liu J, Zheng X and Wu X: The Rab GTPase in
the heart: Pivotal roles in development and disease. Life Sci.
306:1208062022. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Tomazini A and Shifman JM: Targeting Ras
with protein engineering. Oncotarget. 14:672–687. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Apken LH and Oeckinghaus A: The RAL
signaling network: Cancer and beyond. Int Rev Cell Mol Biol.
361:21–105. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Shi GX, Cai W and Andres DA: Rit subfamily
small GTPases: Regulators in neuronal differentiation and survival.
Cell Signal. 25:2060–2068. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Minato N: Rap G protein signal in normal
and disordered lymphohematopoiesis. Exp Cell Res. 319:2323–2328.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Zhong Y, Zhou X, Guan KL and Zhang J: Rheb
regulates nuclear mTORC1 activity independent of farnesylation.
Cell Chem Biol. 29:1037–1045.e4. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Yang W, Pang D, Chen M, Du C, Jia L, Wang
L, He Y, Jiang W, Luo L, Yu Z, et al: Rheb mediates
neuronal-activity-induced mitochondrial energetics through
mTORC1-independent PDH activation. Dev Cell. 56:811–825.e6. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Li Y, Chang Y, Li X, Li X, Gao J, Zhou Y,
Wu F, Bai R, Dong T, Ma S, et al: RAD-Deficient human
cardiomyocytes develop hypertrophic cardiomyopathy phenotypes due
to calcium dysregulation. Front Cell Dev Biol. 8:5858792020.
View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Chang L, Zhang J, Tseng YH, Xie CQ, Ilany
J, Brüning JC, Sun Z, Zhu X, Cui T, Youker KA, et al: Rad GTPase
deficiency leads to cardiac hypertrophy. Circulation.
116:2976–2983. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Thorburn A, Thorburn J, Chen SY, Powers S,
Shubeita HE, Feramisco JR and Chien KR: HRas-dependent pathways can
activate morphological and genetic markers of cardiac muscle cell
hypertrophy. J Biol Chem. 268:2244–2249. 1993. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Ramos-Kuri M, Rapti K, Mehel H, Zhang S,
Dhandapany PS, Liang L, García-Carrancá A, Bobe R, Fischmeister R,
Adnot S, et al: Dominant negative Ras attenuates pathological
ventricular remodeling in pressure overload cardiac hypertrophy.
Biochim Biophys Acta. 1853:2870–2884. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Petrich BG and Wang Y: Stress-activated
MAP kinases in cardiac remodeling and heart failure; new insights
from transgenic studies. Trends Cardiovasc Med. 14:50–55. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Ichida M and Finkel T: Ras regulates NFAT3
activity in cardiac myocytes. J Biol Chem. 276:3524–3530. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Lange-Carter CA and Johnson GL:
Ras-dependent growth factor regulation of MEK kinase in PC12 cells.
Science. 265:1458–1461. 1994. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Russell M, Lange-Carter CA and Johnson GL:
Direct interaction between Ras and the kinase domain of
mitogen-activated protein kinase kinase kinase (MEKK1). J Biol
Chem. 270:11757–11760. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Reynet C and Kahn CR: Rad: A member of the
Ras family overexpressed in muscle of type II diabetic humans.
Science. 262:1441–1444. 1993. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Cho KJ, Hill MM, Chigurupati S, Du G,
Parton RG and Hancock JF: Therapeutic levels of the
hydroxmethylglutaryl-coenzyme A reductase inhibitor lovastatin
activate ras signaling via phospholipase D2. Mol Cell Biol.
31:1110–1120. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Ding J, Chen YX, Chen Y, Mou Y, Sun XT,
Dai DP, Zhao CZ, Yang J, Hu SJ and Guo X: Overexpression of FNTB
and the activation of Ras induce hypertrophy and promote apoptosis
and autophagic cell death in cardiomyocytes. J Cell Mol Med.
24:8998–9011. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Li X, Han J, Li L, Wang KJ and Hu SJ:
Effect of farnesyltransferase inhibition on cardiac remodeling in
spontaneously hypertensive rats. Int J Cardiol. 168:3340–3347.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Cai T, Abel L, Langford O, Monaghan G,
Aronson JK, Stevens RJ, Lay-Flurrie S, Koshiaris C, McManus RJ,
Hobbs FDR and Sheppard JP: Associations between statins and adverse
events in primary prevention of cardiovascular disease: Systematic
review with pairwise, network and dose-response meta-analyses. BMJ.
374:n15372021. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Jaiswal M, Dvorsky R and Ahmadian MR:
Deciphering the molecular and functional basis of Dbl family
proteins: A novel systematic approach toward classification of
selective activation of the Rho family proteins. J Biol Chem.
288:4486–4500. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Strassheim D, Gerasimovskaya E, Irwin D,
Dempsey EC, Stenmark K and Karoor V: RhoGTPase in vascular disease.
Cells. 8:5512019. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Lee CF, Carley RE, Butler CA and Morrison
AR: Rac GTPase signaling in immune-mediated mechanisms of
atherosclerosis. Cells. 10:28082021. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Nguyen DT, Gao L, Wong A and Chen CS:
Cdc42 regulates branching in angiogenic sprouting in vitro.
Microcirculation. 24:10.1111/micc.12372. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Lv J, Zeng J, Guo F, Li Y, Xu M, Cheng Y,
Zhang L, Cai S, Chen Y, Zheng Y and Hu G: Endothelial Cdc42
deficiency impairs endothelial regeneration and vascular repair
after inflammatory vascular injury. Respir Res. 19:272018.
View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Basbous S, Azzarelli R, Pacary E and
Moreau V: Pathophysiological functions of Rnd proteins. Small
GTPases. 12:336–357. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Blom M, Reis K and Aspenström P: RhoD
localization and function is dependent on its GTP/GDP-bound state
and unique N-terminal motif. Eur J Cell Biol. 97:393–401. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Ahmad Mokhtar AM, Hashim IF, Mohd Zaini
Makhtar M, Salikin NH and Amin-Nordin S: The Role of RhoH in TCR
signalling and its involvement in diseases. Cells. 10:9502021.
View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Kilian LS, Voran J, Frank D and Rangrez
AY: RhoA: A dubious molecule in cardiac pathophysiology. J Biomed
Sci. 28:332021. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Miyamoto S, Del Re DP, Xiang SY, Zhao X,
Florholmen G and Brown JH: Revisited and revised: is RhoA always a
villain in cardiac pathophysiology? J Cardiovasc Transl Res.
3:330–343. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Zhou Q, Wei SS, Wang H, Wang Q, Li W, Li
G, Hou JW, Chen XM, Chen J, Xu WP, et al: Crucial Role of
ROCK2-Mediated phosphorylation and upregulation of FHOD3 in the
pathogenesis of angiotensin II-induced cardiac hypertrophy.
Hypertension. 69:1070–1083. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Sakaguchi T, Takefuji M, Wettschureck N,
Hamaguchi T, Amano M, Kato K, Tsuda T, Eguchi S, Ishihama S, Mori
Y, et al: Protein Kinase N promotes stress-induced cardiac
dysfunction through phosphorylation of myocardin-related
transcription factor A and disruption of its interaction with
actin. Circulation. 140:1737–1752. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Huang J, Qu Q, Dai Y, Ren D, Qian J and Ge
J: Detrimental Role of PDZ-RhoGEF in pathological cardiac
hypertrophy. Hypertension. 80:403–415. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Aoki H, Izumo S and Sadoshima J:
Angiotensin II activates RhoA in cardiac myocytes: A critical role
of RhoA in angiotensin II-induced premyofibril formation. Circ Res.
82:666–676. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Nakagawa O, Fujisawa K, Ishizaki T, Saito
Y, Nakao K and Narumiya S: ROCK-I and ROCK-II, two isoforms of
Rho-associated coiled-coil forming protein serine/threonine kinase
in mice. FEBS Lett. 392:189–193. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Zhang YM, Bo J, Taffet GE, Chang J, Shi J,
Reddy AK, Michael LH, Schneider MD, Entman ML, Schwartz RJ and Wei
L: Targeted deletion of ROCK1 protects the heart against pressure
overload by inhibiting reactive fibrosis. FASEB J. 20:916–925.
2006. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Okamoto R, Li Y, Noma K, Hiroi Y, Liu PY,
Taniguchi M, Ito M and Liao JK: FHL2 prevents cardiac hypertrophy
in mice with cardiac-specific deletion of ROCK2. FASEB J.
27:1439–1449. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Shimizu T, Narang N, Chen P, Yu B, Knapp
M, Janardanan J, Blair J and Liao JK: Fibroblast deletion of ROCK2
attenuates cardiac hypertrophy, fibrosis and diastolic dysfunction.
JCI Insight. 2:e931872017. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Ikeda S, Satoh K, Kikuchi N, Miyata S,
Suzuki K, Omura J, Shimizu T, Kobayashi K, Kobayashi K, Fukumoto Y,
et al: Crucial role of rho-kinase in pressure overload-induced
right ventricular hypertrophy and dysfunction in mice. Arterioscler
Thromb Vasc Biol. 34:1260–1271. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Pracyk JB, Tanaka K, Hegland DD, Kim KS,
Sethi R, Rovira II, Blazina DR, Lee L, Bruder JT, Kovesdi I, et al:
A requirement for the rac1 GTPase in the signal transduction
pathway leading to cardiac myocyte hypertrophy. J Clin Invest.
102:929–937. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Elnakish MT, Moldovan L, Khan M, Hassanain
HH and Janssen PM: Myocardial Rac1 exhibits partial involvement in
thyroxin-induced cardiomyocyte hypertrophy and its inhibition is
not sufficient to improve cardiac dysfunction or contractile
abnormalities in mouse papillary muscles. J Cardiovasc Pharmacol.
61:536–544. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Li PL, Liu H, Chen GP, Li L, Shi HJ, Nie
HY, Liu Z, Hu YF, Yang J, Zhang P, et al: STEAP3 (Six-Transmembrane
Epithelial Antigen of Prostate 3) Inhibits Pathological Cardiac
Hypertrophy. Hypertension. 76:1219–1230. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Clerk A, Pham FH, Fuller SJ, Sahai E,
Aktories K, Marais R, Marshall C and Sugden PH: Regulation of
mitogen-activated protein kinases in cardiac myocytes through the
small G protein Rac1. Mol Cell Biol. 21:1173–1184. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Sawada N, Li Y and Liao JK: Novel aspects
of the roles of Rac1 GTPase in the cardiovascular system. Curr Opin
Pharmacol. 10:116–121. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Cacciapuoti F: Molecular mechanisms of
left ventricular hypertrophy (LVH) in systemic hypertension
(SH)-possible therapeutic perspectives. J Am Soc Hypertens.
5:449–455. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Hauck L, Harms C, Grothe D, An J, Gertz K,
Kronenberg G, Dietz R, Endres M and von Harsdorf R: Critical role
for FoxO3a-dependent regulation of p21CIP1/WAF1 in response to
statin signaling in cardiac myocytes. Circ Res. 100:50–60. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Moradi A, Maroofi A, Hemati M, Hashemzade
T, Alborzi N and Safari F: Inhibition of GTPase Rac1 expression by
vitamin D mitigates pressure overload-induced cardiac hypertrophy.
Int J Cardiol Heart Vasc. 37:1009222021.PubMed/NCBI
|
|
79
|
Zhang C, Jin DD, Wang XY, Lou L and Yang
J: Key enzymes for the mevalonate pathway in the cardiovascular
system. J Cardiovasc Pharmacol. 77:142–152. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Zeidan A, Gan XT, Thomas A and Karmazyn M:
Prevention of RhoA activation and cofilin-mediated actin
polymerization mediates the antihypertrophic effect of adenosine
receptor agonists in angiotensin II- and endothelin-1-treated
cardiomyocytes. Mol Cell Biochem. 385:239–248. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Fan S, Xiong Q, Zhang X, Zhang L and Shi
Y: Glucagon-like peptide 1 reverses myocardial hypertrophy through
cAMP/PKA/RhoA/ROCK2 signaling. Acta Biochim Biophys Sin (Shanghai).
52:612–619. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Tawara S and Shimokawa H: Progress of the
study of rho-kinase and future perspective of the inhibitor.
Yakugaku Zasshi. 127:501–514. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Zhang Y and Wu S: Effects of fasudil on
pulmonary hypertension in clinical practice. Pulm Pharmacol Ther.
46:54–63. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Bock JB, Matern HT, Peden AA and Scheller
RH: A genomic perspective on membrane compartment organization.
Nature. 409:839–841. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Stenmark H and Olkkonen VM: The Rab GTPase
family. Genome Biol. 2:REVIEWS30072001. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Pereira-Leal JB and Seabra MC: The
mammalian Rab family of small GTPases: Definition of family and
subfamily sequence motifs suggests a mechanism for functional
specificity in the Ras superfamily. J Mol Biol. 301:1077–1087.
2000. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Yang XZ, Li XX, Zhang YJ,
Rodriguez-Rodriguez L, Xiang MQ, Wang HY and Zheng XF: Rab1 in cell
signaling, cancer and other diseases. Oncogene. 35:5699–5704. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Schonn JS, van Weering JR, Mohrmann R,
Schlüter OM, Südhof TC, de Wit H, Verhage M and Sørensen JB: Rab3
proteins involved in vesicle biogenesis and priming in embryonic
mouse chromaffin cells. Traffic. 11:1415–1428. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Filipeanu CM, Zhou F, Lam ML, Kerut KE,
Claycomb WC and Wu G: Enhancement of the recycling and activation
of beta-adrenergic receptor by Rab4 GTPase in cardiac myocytes. J
Biol Chem. 281:11097–11103. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Xu W, Fang F, Ding J and Wu C:
Dysregulation of Rab5-mediated endocytic pathways in Alzheimer's
disease. Traffic. 19:253–262. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Dornan LG and Simpson JC: Rab6-mediated
retrograde trafficking from the Golgi: The trouble with tubules.
Small GTPases. 14:26–44. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Stypulkowski E, Feng Q, Joseph I, Farrell
V, Flores J, Yu S, Sakamori R, Sun J, Bandyopadhyay S, Das S, et
al: Rab8 attenuates Wnt signaling and is required for mesenchymal
differentiation into adipocytes. J Biol Chem. 296:1004882021.
View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Wilson B, Flett C, Gemperle J, Lawless C,
Hartshorn M, Hinde E, Harrison T, Chastney M, Taylor S, Allen J, et
al: Proximity labelling identifies pro-migratory endocytic
recycling cargo and machinery of the Rab4 and Rab11 families. J
Cell Sci. 136:jcs2604682023. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Banworth MJ and Li G: Consequences of Rab
GTPase dysfunction in genetic or acquired human diseases. Small
GTPases. 9:158–181. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Banworth MJ, Liang Z and Li G: A novel
membrane targeting domain mediates the endosomal or Golgi
localization specificity of small GTPases Rab22 and Rab31. J Biol
Chem. 298:1022812022. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Izumi T: In vivo Roles of Rab27 and its
effectors in exocytosis. Cell Struct Funct. 46:79–94. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Neumann AJ and Prekeris R: A Rab-bit hole:
Rab40 GTPases as new regulators of the actin cytoskeleton and cell
migration. Front Cell Dev Biol. 11:12689222023. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Moore I, Schell J and Palme K:
Subclass-specific sequence motifs identified in Rab GTPases. Trends
Biochem Sci. 20:10–12. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Filipeanu CM, Zhou F and Wu G: Analysis of
Rab1 function in cardiomyocyte growth. Methods Enzymol.
438:217–226. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Etzion S, Etzion Y, DeBosch B, Crawford PA
and Muslin AJ: Akt2 deficiency promotes cardiac induction of Rab4a
and myocardial β-adrenergic hypersensitivity. J Mol Cell Cardiol.
49:931–940. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Seachrist JL and Ferguson SS: Regulation
of G protein-coupled receptor endocytosis and trafficking by Rab
GTPases. Life Sci. 74:225–235. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Del Calvo G, Baggio Lopez T and
Lymperopoulos A: The therapeutic potential of targeting cardiac
RGS4. Ther Adv Cardiovasc Dis. 17:175394472311993502023. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Lymperopoulos A, Borges JI and Stoicovy
RA: RGS proteins and cardiovascular Angiotensin II Signaling: Novel
opportunities for therapeutic targeting. Biochem Pharmacol.
218:1159042023. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Magalhaes AC, Dunn H and Ferguson SS:
Regulation of GPCR activity, trafficking and localization by
GPCR-interacting proteins. Br J Pharmacol. 165:1717–1736. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Rogers JH, Tamirisa P, Kovacs A,
Weinheimer C, Courtois M, Blumer KJ, Kelly DP and Muslin AJ: RGS4
causes increased mortality and reduced cardiac hypertrophy in
response to pressure overload. J Clin Invest. 104:567–576. 1999.
View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Chidiac P, Sobiesiak AJ, Lee KN, Gros R
and Nguyen CH: The eIF2B-interacting domain of RGS2 protects
against GPCR agonist-induced hypertrophy in neonatal rat
cardiomyocytes. Cell Signal. 26:1226–1234. 2014. View Article : Google Scholar : PubMed/NCBI
|