Copper ions: The invisible killer of cardiovascular disease (Review)
- Authors:
- Yi-Ming Wang
- Lan-Shuan Feng
- Ao Xu
- Xiao-Han Ma
- Miao-Tiao Zhang
- Jie Zhang
-
Affiliations: First Clinical Medical College, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712000, P.R. China, Cardiovascular Department, Xi'an Fifth Hospital, Xi'an, Shaanxi 710000, P.R. China - Published online on: September 19, 2024 https://doi.org/10.3892/mmr.2024.13334
- Article Number: 210
-
Copyright: © Wang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Tang C, Zhou K, Wu D and Zhu H: Nanoparticles as a novel platform for cardiovascular disease diagnosis and therapy. Int J Nanomedicine. 19:8831–8846. 2024. View Article : Google Scholar : PubMed/NCBI | |
Ayob R, Vally M, Khan R and Orchard A: Disparities in patients' understanding of cardiovascular disease management. Cardiovasc J Afr. 34:1–7. 2024.PubMed/NCBI | |
Frumuzachi O, Babotă M, Tanase C and Mocan A: A systematic review of randomized controlled trials on the health effects of chocolate enriched/fortified/supplemented with functional components. Food Funct. 15:6883–6899. 2024. View Article : Google Scholar : PubMed/NCBI | |
Ding D, Lawson KD, Kolbe-Alexander TL, Finkelstein EA, Katzmarzyk PT, van Mechelen W and Pratt M; Lancet Physical Activity Series 2 Executive Committee, : The economic burden of physical inactivity: A global analysis of major non-communicable diseases. Lancet. 388:1311–1324. 2016. View Article : Google Scholar : PubMed/NCBI | |
Kazi DS, Katznelson E, Liu CL, Al-Roub NM, Chaudhary RS, Young DE, McNichol M, Mickley LJ, Kramer DB, Cascio WE, et al: Climate change and cardiovascular health: A systematic review. JAMA Cardiol. 9:748–757. 2024. View Article : Google Scholar : PubMed/NCBI | |
Hundley WG: Fifty years of cardiovascular magnetic resonance: Continuing evolution toward the ‘One-Stop Shop’ for cardiovascular diagnosis. Circulation. 149:1859–1861. 2024. View Article : Google Scholar : PubMed/NCBI | |
Zeng X, Zhou L, Zeng Q, Zhu H and Luo J: High serum copper as a risk factor of all-cause and cause-specific mortality among US adults, NHANES 2011–2014. Front Cardiovasc Med. 11:13409682024. View Article : Google Scholar : PubMed/NCBI | |
Mazur T, Malik M and Bieńko DC: The impact of chelating compounds on Cu2+, Fe2+/3+, and Zn2+ ions in Alzheimer's disease treatment. J Inorg Biochem. 257:1126012024. View Article : Google Scholar : PubMed/NCBI | |
Einhorn V, Haase H and Maares M: Interaction and competition for intestinal absorption by zinc, iron, copper, and manganese at the intestinal mucus layer. J Trace Elem Med Biol. 84:1274592024. View Article : Google Scholar : PubMed/NCBI | |
Xue Q, Kang R, Klionsky DJ, Tang D, Liu J and Chen X: Copper metabolism in cell death and autophagy. Autophagy. 19:2175–2195. 2023. View Article : Google Scholar : PubMed/NCBI | |
Tsymbal SA, Refeld AG and Kuchur OA: The p53 tumor suppressor and copper metabolism: An unrevealed but important link. Mol Biol (Mosk). 56:1057–1071. 2022.(In Russian). View Article : Google Scholar : PubMed/NCBI | |
Chen J, Jiang Y, Shi H, Peng Y, Fan X and Li C: The molecular mechanisms of copper metabolism and its roles in human diseases. Pflugers Arch. 472:1415–1429. 2020. View Article : Google Scholar : PubMed/NCBI | |
Ruiz LM, Libedinsky A and Elorza AA: Role of copper on mitochondrial function and metabolism. Front Mol Biosci. 8:7112272021. View Article : Google Scholar : PubMed/NCBI | |
Kerkadi A, Raïq H, Prince MS, Bader L, Soltani A and Agouni A: A cross-sectional analysis of zinc and copper levels and their relationship to cardiovascular disease risk markers in Qatar biobank participants. Front Cardiovasc Med. 10:13055882024. View Article : Google Scholar : PubMed/NCBI | |
Zhang Z, Weichenthal S, Kwong JC, Burnett RT, Hatzopoulou M, Jerrett M, van Donkelaar A, Bai L, Martin RV, Copes R, et al: A Population-based cohort study of respiratory disease and long-term exposure to Iron and copper in fine particulate air pollution and their combined impact on reactive oxygen species generation in human lungs. Environ Sci Technol. 55:3807–3818. 2021. View Article : Google Scholar : PubMed/NCBI | |
Rashidmayvan M, Mansoori A, Aghasizadeh M, Dianati M, Barati S, Sahranavard T, Darroudi S, Ahari RK, Esmaily H, Ferns G, et al: Prediction of cardiovascular disease risk by serum zinc and copper concentrations and anthropometric measurements. J Trace Elem Med Biol. 83:1273852024. View Article : Google Scholar : PubMed/NCBI | |
Lan L, Feng Z, Liu X and Zhang B: The roles of essential trace elements in T cell biology. J Cell Mol Med. 28:e183902024. View Article : Google Scholar : PubMed/NCBI | |
Dyla M, Kjærgaard M, Poulsen H and Nissen P: Structure and mechanism of P-type ATPase Ion pumps. Annu Rev Biochem. 89:583–603. 2020. View Article : Google Scholar : PubMed/NCBI | |
Xu C, Liu Y, Zhang Y and Gao L: The role of a cuproptosis-related prognostic signature in colon cancer tumor microenvironment and immune responses. Front Genet. 13:9281052022. View Article : Google Scholar : PubMed/NCBI | |
Shan J, Geng R, Zhang Y, Wei J, Liu J and Bai J: Identification of cuproptosis-related subtypes, establishment of a prognostic model and tumor immune landscape in endometrial carcinoma. Comput Biol Med. 149:1059882022. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Wang D, Wu C, Wang B, He S, Wang H, Liang G and Zhang Y: MMP 9-instructed assembly of bFGF nanofibers in ischemic myocardium to promote heart repair. Theranostics. 12:7237–7249. 2022. View Article : Google Scholar : PubMed/NCBI | |
Liu X, Xu X, Zhang T, Xu L, Tao H, Liu Y, Zhang Y and Meng X: Fatty acid metabolism disorders and potential therapeutic traditional Chinese medicines in cardiovascular diseases. Phytother Res. 37:4976–4998. 2023. View Article : Google Scholar : PubMed/NCBI | |
Mazaheri-Tehrani S, Haghighatpanah MA, Abhari AP, Fakhrolmobasheri M, Shekarian A and Kieliszek M: Dynamic changes of serum trace elements following cardiac surgery: A systematic review and meta-analysis. J Trace Elem Med Biol. 81:1273312023. View Article : Google Scholar : PubMed/NCBI | |
Teschke R and Eickhoff A: Wilson disease: Copper-mediated Cuproptosis, Iron-related Ferroptosis, and clinical highlights, with comprehensive and critical analysis update. Int J Mol Sci. 25:47532024. View Article : Google Scholar : PubMed/NCBI | |
Jiang L, Garrick MD, Garrick LM, Zhao L and Collins JF: Divalentmetal transporter 1 (Dmt1) mediates copper transport in the duodenum of iron-deficient rats and when overexpressed in iron-deprived HEK-293 cells. J Nutr. 143:1927–1933. 2013. View Article : Google Scholar : PubMed/NCBI | |
Cui X and Wang Y, Liu H, Shi M, Wang J and Wang Y: The molecular mechanisms of defective copper metabolism in diabetic cardiomyopathy. Oxid Med Cell Longev. 2022:54183762022. View Article : Google Scholar : PubMed/NCBI | |
Nývltová E, Dietz JV, Seravalli J, Khalimonchuk O and Barrientos A: Coordination of metal center biogenesis in human cytochrome c oxidase. Nat Commun. 13:36152022. View Article : Google Scholar : PubMed/NCBI | |
Pagnotta S, Tramutola A, Barone E, Di Domenico F, Pittalà V, Salerno L, Folgiero V, Caforio M, Locatelli F, Petrini S, et al: CAPE and its synthetic derivative VP961 restore BACH1/NRF2 axis in Down syndrome. Free Radic Biol Med. 183:1–13. 2022. View Article : Google Scholar : PubMed/NCBI | |
Matson Dzebo M, Ariöz C and Wittung-Stafshede P: Extended functional repertoire for human copper chaperones. Biomol Concepts. 7:29–39. 2016. View Article : Google Scholar : PubMed/NCBI | |
Tadini-Buoninsegni F and Smeazzetto S: Mechanisms of charge transfer in human copper ATPases ATP7A and ATP7B. IUBMB Life. 69:218–225. 2017. View Article : Google Scholar : PubMed/NCBI | |
Pierson H, Muchenditsi A, Kim BE, Ralle M, Zachos N, Huster D and Lutsenko S: The function of ATPase copper transporter ATP7B in intestine. Gastroenterology. 154:168–180.e5. 2018. View Article : Google Scholar : PubMed/NCBI | |
Ovchinnikova EV, Garbuz MM, Ovchinnikova AA and Kumeiko VV: Epidemiology of Wilson's disease and pathogenic variants of the ATP7B gene leading to diversified protein disfunctions. Int J Mol Sci. 25:24022024. View Article : Google Scholar : PubMed/NCBI | |
Yang L, Yang P, Lip GYH and Ren J: Copper homeostasis and cuproptosis in cardiovascular disease therapeutics. Trends Pharmacol Sci. 44:573–585. 2023. View Article : Google Scholar : PubMed/NCBI | |
Li X, Ling J, Hu Q, Fang C, Mei K, Wu Y, Huang J, Ling Q, Chen Y, Yu P, et al: Association of serum copper (Cu) with cardiovascular mortality and all-cause mortality in a general population: A prospective cohort study. BMC Public Health. 23:21382023. View Article : Google Scholar : PubMed/NCBI | |
Dascalu AM, Anghelache A, Stana D, Costea AC, Nicolae VA, Tanasescu D, Costea DO, Tribus LC, Zgura A, Serban D, et al: Serum levels of copper and zinc in diabetic retinopathy: Potential new therapeutic targets (Review). Exp Ther Med. 23:3242022. View Article : Google Scholar : PubMed/NCBI | |
Lutsenko S, Roy S and Tsvetkov P: Mammalian copper homeostasis: Physiologic roles and molecular mechanisms. Physiol Rev. Aug 22–2024.doi: 10.1152/physrev.00011.2024 (Epub ahead of print). View Article : Google Scholar : PubMed/NCBI | |
Forman HJ and Zhang H: Targeting oxidative stress in disease: Promise and limitations of antioxidant therapy. Nat Rev Drug Discov. 20:689–709. 2021. View Article : Google Scholar : PubMed/NCBI | |
Husain N and Mahmood R: Copper(II) generates ROS and RNS, impairs antioxidant system and damages membrane and DNA in human blood cells. Environ Sci Pollut Res Int. 26:20654–20668. 2019. View Article : Google Scholar : PubMed/NCBI | |
Jomova K, Alomar SY, Alwasel SH, Nepovimova E, Kuca K and Valko M: Several lines of antioxidant defense against oxidative stress: Antioxidant enzymes, nanomaterials with multiple enzyme-mimicking activities, and low-molecular-weight antioxidants. Arch Toxicol. 98:1323–1367. 2024. View Article : Google Scholar : PubMed/NCBI | |
Sun D, Sun X, Zhang X, Wu J, Shi X, Sun J, Luo C, He Z and Zhang S: Emerging chemodynamic nanotherapeutics for cancer treatment. Adv Healthc Mater. 16:e24008092024. View Article : Google Scholar : PubMed/NCBI | |
Liang R, Zhu L, Huang Y, Chen J and Tang Q: Mitochondria: Fundamental characteristics, challenges, and impact on aging. Biogerontology. Aug 28–2024.doi: 10.1007/s10522-024-10132-8 (Epub ahead of print). View Article : Google Scholar | |
Zhu SY, Liu J and Yu C: Research progress on mitochondrial copper homeostasis imbalance and fibrosis diseases. Sheng Li Xue Bao. 76:597–604. 2024.(In Chinese). PubMed/NCBI | |
Bomer N, Pavez-Giani MG, Grote Beverborg N, Cleland JGF, van Veldhuisen DJ and van der Meer P: Micronutrient deficiencies in heart failure: Mitochondrial dysfunction as a common pathophysiological mechanism? J Intern Med. 291:713–731. 2022. View Article : Google Scholar : PubMed/NCBI | |
Swaminathan AB and Gohil VM: The role of COA6 in the mitochondrial copper delivery pathway to cytochrome c oxidase. Biomolecules. 12:1252022. View Article : Google Scholar : PubMed/NCBI | |
Qian L, Zhu Y, Deng C, Liang Z, Chen J, Chen Y, Wang X, Liu Y, Tian Y and Yang Y: Peroxisome proliferator-activated receptor gamma coactivator-1 (PGC-1) family in physiological and pathophysiological process and diseases. Signal Transduct Target Ther. 9:502024. View Article : Google Scholar : PubMed/NCBI | |
Xiao Y, Wang T, Song X, Yang D, Chu Q and Kang YJ: Copper promotion of myocardial regeneration. Exp Biol Med (Maywood). 245:911–921. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wan JJ, Yi J, Wang FY, Zhang C and Dai AG: Expression and regulation of HIF-1a in hypoxic pulmonary hypertension: Focus on pathological mechanism and Pharmacological Treatment. Int J Med Sci. 21:45–60. 2024. View Article : Google Scholar : PubMed/NCBI | |
Li D, Li D, Wang Z, Li J, Shahzad KA, Wang Y and Tan F: Signaling pathways activated and regulated by stem cell-derived exosome therapy. Cell Biosci. 14:1052024. View Article : Google Scholar : PubMed/NCBI | |
Himoto T, Fujita K, Nomura T, Tani J, Miyoshi H, Morishita A, Yoneyama H, Kubota S, Haba R, Suzuki Y and Masaki T: Roles of copper in Hepatocarcinogenesis via the activation of Hypoxia-inducible factor-1α. Biol Trace Elem Res. 174:58–64. 2016. View Article : Google Scholar : PubMed/NCBI | |
Martínez-González J, Varona S, Cañes L, Galán M, Briones AM, Cachofeiro V and Rodríguez C: Emerging roles of Lysyl oxidases in the cardiovascular system: New concepts and therapeutic challenges. Biomolecules. 9:6102019. View Article : Google Scholar : PubMed/NCBI | |
Ashino T, Kohno T, Sudhahar V, Ash D, Ushio-Fukai M and Fukai T: Copper transporter ATP7A interacts with IQGAP1, a Rac1 binding scaffolding protein: Role in PDGF-induced VSMC migration and vascular remodeling. Am J Physiol Cell Physiol. 315:C850–C862. 2018. View Article : Google Scholar : PubMed/NCBI | |
Viskin S, Chorin E, Schwartz AL, Kukla P and Rosso R: Arrhythmogenic effects of cardiac memory. Circulation. 146:1170–1181. 2022. View Article : Google Scholar : PubMed/NCBI | |
Hsiao CD, Wu HH, Malhotra N, Liu YC, Wu YH, Lin YN, Saputra F, Santoso F and Chen KH: Expression and purification of recombinant GHK Tripeptides are able to protect against acute cardiotoxicity from exposure to waterborne-copper in Zebrafish. Biomolecules. 10:12022020. View Article : Google Scholar : PubMed/NCBI | |
Shen H and Nugegoda D: Real-time automated behavioural monitoring of mussels during contaminant exposures using an improved microcontroller-based device. Sci Total Environ. 806:1505672022. View Article : Google Scholar : PubMed/NCBI | |
Bobbio E, Forsgard N, Oldfors A, Szamlewski P, Bollano E, Andersson B, Lingbrant M, Bergh N, Karason K and Polte CL: Cardiac arrest in Wilson's disease after curative liver transplantation: A life-threatening complication of myocardial copper excess? ESC Heart Fail. 6:228–231. 2019. View Article : Google Scholar : PubMed/NCBI | |
Bagheri B, Akbari N, Tabiban S, Habibi V and Mokhberi V: Serum level of copper in patients with coronary artery disease. Niger Med J. 56:39–42. 2015. View Article : Google Scholar : PubMed/NCBI | |
Kciuk M, Gielecińska A, Kałuzińska-Kołat Ż, Yahya EB and Kontek R: Ferroptosis and cuproptosis: Metal-dependent cell death pathways activated in response to classical chemotherapy-Significance for cancer treatment? Biochim Biophys Acta Rev Cancer. 1879:1891242024. View Article : Google Scholar : PubMed/NCBI | |
Chen Z, Li YY and Liu X: Copper homeostasis and copper-induced cell death: Novel targeting for intervention in the pathogenesis of vascular aging. Biomed Pharmacother. 169:1158392023. View Article : Google Scholar : PubMed/NCBI | |
Begum S, Sultana I, Faysal MR, Alam S, Tasnim J, Akter T, Hossain MS, Banu M, Jenea AT, Hasan M, et al: Study of changes in serum copper level in patients with acute myocardial infarction. Mymensingh Med J. 32:39–43. 2023.PubMed/NCBI | |
El-Hajjar L, Hindieh J, Andraos R, El-Sabban M and Daher J: Myeloperoxidase-oxidized LDL activates human aortic endothelial cells through the LOX-1 scavenger receptor. Int J Mol Sci. 23:28372022. View Article : Google Scholar : PubMed/NCBI | |
Gao L and Zhang A: Copper-instigated modulatory cell mortality mechanisms and progress in oncological treatment investigations. Front Immunol. 14:12360632023. View Article : Google Scholar : PubMed/NCBI | |
He Y, Huang W, Zhang C, Chen L, Xu R, Li N, Wang F, Han L, Yang M and Zhang D: Energy metabolism disorders and potential therapeutic drugs in heart failure. Acta Pharm Sin B. 11:1098–1116. 2021. View Article : Google Scholar : PubMed/NCBI | |
Xing L, Liu Y, Wang J, Tian P and Liu P: High-density lipoprotein and heart failure. Rev Cardiovasc Med. 24:3212023. View Article : Google Scholar : PubMed/NCBI | |
Yuan HJ, Xue YT and Liu Y: Cuproptosis, the novel therapeutic mechanism for heart failure: A narrative review. Cardiovasc Diagn Ther. 12:681–692. 2022. View Article : Google Scholar : PubMed/NCBI | |
Huang L, Shen R, Huang L, Yu J and Rong H: Association between serum copper and heart failure: A meta-analysis. Asia Pac J Clin Nutr. 28:761–769. 2019.PubMed/NCBI | |
Zhang S, Liu H, Amarsingh GV, Cheung CCH, Wu D, Narayanan U, Zhang L and Cooper GJS: Restoration of myocellular copper-trafficking proteins and mitochondrial copper enzymes repairs cardiac function in rats with diabetes-evoked heart failure. Metallomics. 12:259–272. 2020. View Article : Google Scholar : PubMed/NCBI | |
Liu Y and Miao J: An emerging role of defective copper metabolism in heart disease. Nutrients. 4:7002019. | |
Qi W, Liu L, Zeng Q, Zhou Z, Chen D, He B, Gong S, Gao L, Wang X, Xiong J, et al: Contribution of cuproptosis and Cu metabolism-associated genes to chronic obstructive pulmonary disease. J Cell Mol Med. 27:4034–4044. 2023. View Article : Google Scholar : PubMed/NCBI | |
Bost M, Houdart S, Oberli M, Kalonji E, Huneau JF and Margaritis I: Dietary copper and healthy: Current evidence and unresolved issues. J Trace Elem Med Biol. 35:107–115. 2016. View Article : Google Scholar : PubMed/NCBI | |
Gelpi Acevedo LM, Salinas AL, Polanco JS, Nizami H, Marsh D, Patel M, Parikh K and Jain R and Jain R: A narrative review of the pathophysiology and treatment of hypertrophic cardiomyopathy. South Med J. 115:926–929. 2022. View Article : Google Scholar : PubMed/NCBI | |
Butzner M, Aronitz E, Cameron H, Tantakoun K, Shreay S and Drudge C: An evidence review and gap analysis for obstructive hypertrophic cardiomyopathy. BMC Cardiovasc Disord. 24:4162024. View Article : Google Scholar : PubMed/NCBI | |
Reid A, Miller C, Farrant JP, Polturi R, Clark D, Ray S, Cooper G and Schmitt M: Copper chelation in patients with hypertrophic cardiomyopathy. Open Heart. 9:e0018032022. View Article : Google Scholar : PubMed/NCBI | |
Cinato M, Andersson L, Miljanovic A, Laudette M, Kunduzova O, Borén J and Levin MC: Role of perilipins in oxidative Stress-implications for cardiovascular disease. Antioxidants (Basel). 13:2092024. View Article : Google Scholar : PubMed/NCBI | |
Ali SA, Bommaraju S, Patwa J, Khare P, Rachamalla M, Niyogi S and Datusalia AK: Melatonin attenuates extracellular matrix accumulation and cardiac injury manifested by copper. Biol Trace Elem Res. 201:4456–4471. 2023. View Article : Google Scholar : PubMed/NCBI | |
Tsvetkov P, Coy S, Petrova B, Dreishpoon M, Verma A, Abdusamad M, Rossen J, Joesch-Cohen L, Humeidi R, Spangler RD, et al: Copper induces cell death by targeting lipoylated TCA cycle proteins. Science. 375:1254–1261. 2022. View Article : Google Scholar : PubMed/NCBI | |
Van Den Heuvel LJF, Peeters S, Meester JAN, Coucke PJ and Loeys BL: An exploration of alternative therapeutic targets for aortic disease in Marfan syndrome. Drug Discov Today. 29:1040232024. View Article : Google Scholar : PubMed/NCBI | |
Liu B, Yang H, Song YS, Sorenson CM and Sheibani N: Thrombospondin-1 in vascular development, vascular function, and vascular disease. Semin Cell Dev Biol. 155:32–44. 2024. View Article : Google Scholar : PubMed/NCBI | |
Tsui KH, Hsiao JH, Lin LT, Tsang YL, Shao AN, Kuo CH, Chang R, Wen ZH and Li CJ: The Cross-communication of Cuproptosis and regulated cell death in human pathophysiology. Int J Biol Sci. 20:218–230. 2024. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Qi P, Song SY and Wang Y, Wang H, Cao P, Liu Y and Wang Y: Elucidating cuproptosis in metabolic dysfunction-associated steatotic liver disease. Biomed Pharmacother. 174:1165852024. View Article : Google Scholar : PubMed/NCBI | |
Rucklidge JJ, Eggleston MJF, Darling KA, Stevens AJ, Kennedy MA and Frampton CM: Can we predict treatment response in children with ADHD to a vitamin-mineral supplement? An investigation into pre-treatment nutrient serum levels, MTHFR status, clinical correlates and demographic variables. Prog Neuropsychopharmacol Biol Psychiatry. 89:181–192. 2019. View Article : Google Scholar : PubMed/NCBI | |
Kunutsor SK, Dey RS and Laukkanen JA: Circulating serum copper is associated with atherosclerotic cardiovascular disease, but not venous thromboembolism: A prospective cohort study. Pulse (Basel). 9:109–115. 2021. View Article : Google Scholar : PubMed/NCBI | |
Zhu C, Wang B, Xiao L, Guo Y, Zhou Y, Cao L, Yang S and Chen W: Mean platelet volume mediated the relationships between heavy metals exposure and atherosclerotic cardiovascular disease risk: A community-based study. Eur J Prev Cardiol. 27:830–839. 2020. View Article : Google Scholar : PubMed/NCBI | |
Alexanian I, Parissis J, Farmakis D, Athanaselis S, Pappas L, Gavrielatos G, Mihas C, Paraskevaidis I, Sideris A, Kremastinos D, et al: Clinical and echocardiographic correlates of serum copper and zinc in acute and chronic heart failure. Clin Res Cardiol. 103:938–949. 2014. View Article : Google Scholar : PubMed/NCBI | |
Malek F, Jiresova E, Dohnalova A, Koprivova H and Spacek R: Serum copper as a marker of inflammation in prediction of short term outcome in high risk patients with chronic heart failure. Int J Cardiol. 113:e51–e53. 2006. View Article : Google Scholar : PubMed/NCBI | |
Nyström-Rosander C, Frisk P, Edvinsson M, Hjelm E, Thelin S, Friman G and Ilbäck NG: Thoracic aortic aneurysm patients with Chlamydophila pneumoniae infection showed a shift in trace element levels in serum and diseased aortic tissue. J Trace Elem Med Biol. 23:100–106. 2009. View Article : Google Scholar : PubMed/NCBI | |
Koksal C, Ercan M, Bozkurt AK, Cortelekoglu T and Konukoglu D: Abdominal aortic aneurysm or aortic occlusive disease: Role of trace element imbalance. Angiology. 58:191–195. 2007. View Article : Google Scholar : PubMed/NCBI | |
Qin Z, Konaniah ES, Neltner B, Nemenoff RA, Hui DY and Weintraub NL: Participation of ATP7A in macrophage mediated oxidation of LDL. J Lipid Res. 51:1471–1477. 2010. View Article : Google Scholar : PubMed/NCBI | |
Ploplis VA, Cornelissen I, Sandoval-Cooper MJ, Weeks L, Noria FA and Castellino FJ: Remodeling of the vessel wall after copper-induced injury is highly attenuated in mice with a total deficiency of plasminogen activator inhibitor-1. Am J Pathol. 158:107–117. 2001. View Article : Google Scholar : PubMed/NCBI | |
Bini G, Santini G and Chelazzi G: Pre-exposure to cadmium or zinc alters the heart rate response of the crayfish Procambarus clarkii towards copper. Bull Environ Contam Toxicol. 95:12–17. 2015. View Article : Google Scholar : PubMed/NCBI | |
Li Q, Liao J, Lei C, Shi J, Zhang H, Han Q, Guo J, Hu L, Li Y, Pan J and Tang Z: Metabolomics analysis reveals the effect of copper on autophagy in myocardia of pigs. Ecotoxicol Environ Saf. 213:1120402021. View Article : Google Scholar : PubMed/NCBI | |
Li S, Zhao H, Wang Y, Shao Y, Wang B, Wang Y and Xing M: Regulation of autophagy factors by oxidative stress and cardiac enzymes imbalance during arsenic or/and copper induced cardiotoxicity in Gallus gallus. Ecotoxicol Environ Saf. 148:125–134. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zheng L, Han P, Liu J, Li R, Yin W, Wang T, Zhang W and Kang YJ: Role of copper in regression of cardiac hypertrophy. Pharmacol Ther. 148:66–84. 2015. View Article : Google Scholar : PubMed/NCBI | |
Charkiewicz AE: Is copper still safe for us? What do we know and what are the latest literature statements? Curr Issues Mol Biol. 46:8441–8463. 2024.PubMed/NCBI | |
Milanković V, Tasić T, Leskovac A, Petrović S, Mitić M, Lazarević-Pašti T, Novković M and Potkonjak N: Metals on the Menu-analyzing the presence, importance, and consequences. Foods. 13:18902024. View Article : Google Scholar : PubMed/NCBI | |
Klevay LM: Is the Western diet adequate in copper? J Trace Elem Med Biol. 25:204–212. 2011. View Article : Google Scholar : PubMed/NCBI | |
Klevay LM: Lack of a recommended dietary allowance for copper may be hazardous to your health. J Am Coll Nutr. 17:322–326. 1998. View Article : Google Scholar : PubMed/NCBI | |
Saari JT: Copper deficiency and cardiovascular disease: Role of peroxidation, glycation, and nitration. Can J Physiol Pharmacol. 78:848–855. 2000. View Article : Google Scholar : PubMed/NCBI | |
Yamane R, Tanaka M, Kikugawa N, Yasui H, Takei K, Harada M and Kaneda S: Mesh-like vascular changes in copper deficiency-induced rat cardiomyopathy. J Toxicol Pathol. 34:127–133. 2021. View Article : Google Scholar : PubMed/NCBI | |
Liu ZY, Liu ZY, Lin LC, Song K, Tu B, Zhang Y, Yang JJ, Zhao JY and Tao H: Redox homeostasis in cardiac fibrosis: Focus on metal ion metabolism. Redox Biol. 71:1031092024. View Article : Google Scholar : PubMed/NCBI | |
Ramani PK and Parayil Sankaran B: Menkes disease. 2023 Nov 14. StatPearls [Internet] Treasure Island (FL): StatPearls Publishing; Jan. 2024 | |
Parsanathan R: Copper's dual role: Unravelling the link between copper homeostasis, cuproptosis, and cardiovascular diseases. Hypertens Res. 47:1440–1442. 2024. View Article : Google Scholar : PubMed/NCBI | |
Yang S, Li Y, Zhou L, Wang X, Liu L and Wu M: Copper homeostasis and cuproptosis in atherosclerosis: Metabolism, mechanisms and potential therapeutic strategies. Cell Death Discov. 10:252024. View Article : Google Scholar : PubMed/NCBI | |
Al-Bayati MA, Jamil DA and Al-Aubaidy HA: Cardiovascular effects of copper deficiency on activity of superoxide dismutase in diabetic nephropathy. N Am J Med Sci. 7:41–46. 2015. View Article : Google Scholar : PubMed/NCBI | |
Wang Z, Jin D, Zhou S, Dong N, Ji Y, An P, Wang J, Luo Y and Luo J: Regulatory roles of copper metabolism and cuproptosis in human cancers. Front Oncol. 13:11234202023. View Article : Google Scholar : PubMed/NCBI | |
Habas K and Shang L: Alterations in intercellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion molecule 1 (VCAM-1) in human endothelial cells. Tissue Cell. 54:139–143. 2018. View Article : Google Scholar : PubMed/NCBI | |
Chen L, Min J and Wang F: Copper homeostasis and cuproptosis in health and disease. Signal Transduct Target Ther. 7:3782022. View Article : Google Scholar : PubMed/NCBI | |
Jeney V, Itoh S, Wendt M, Gradek Q, Ushio-Fukai M, Harrison DG and Fukai T: Role of antioxidant-1 in extracellular superoxide dismutase function and expression. Circ Res. 96:723–729. 2005. View Article : Google Scholar : PubMed/NCBI | |
Tural K, Ozden O, Bilgi Z, Kubat E, Ermutlu CS, Merhan O, Findik Guvendi K and Kucuker SA: The protective effect of betanin and copper on heart and lung in end-organ ischemia reperfusion injury. Bratisl Lek Listy. 121:211–217. 2020.PubMed/NCBI | |
Srinivasan S and Avadhani NG: Cytochrome c oxidase dysfunction in oxidative stress. Free Radic Biol Med. 53:1252–1263. 2012. View Article : Google Scholar : PubMed/NCBI | |
Johnson WT and Newman SM Jr: Hearts in adult offspring of copper-deficient dams exhibit decreased cytochrome c oxidase activity, increased mitochondrial hydrogen peroxide generation and enhanced formation of intracellular residual bodies. J Nutr Biochem. 18:97–104. 2007. View Article : Google Scholar : PubMed/NCBI | |
Medeiros DM and Wildman RE: Newer findings on a unified perspective of copper restriction and cardiomyopathy. Proc Soc Exp Biol Med. 215:299–313. 1997. View Article : Google Scholar : PubMed/NCBI | |
Zhou Z, Johnson WT and Kang YJ: Regression of copper-deficient heart hypertrophy: Reduction in the size of hypertrophic cardiomyocytes. J Nutr Biochem. 20:621–628. 2009. View Article : Google Scholar : PubMed/NCBI | |
Gu J, Huang W, Duanmu Z, Zhuang R and Yang X: Cuproptosis and copper deficiency in ischemic vascular injury and repair. Apoptosis. 29:1007–1018. 2024. View Article : Google Scholar : PubMed/NCBI | |
Klevay LM: IHD from copper deficiency: A unified theory. Nutr Res Rev. 29:172–179. 2016. View Article : Google Scholar : PubMed/NCBI | |
Klevay LM and Viestenz KE: Abnormal electrocardiograms in rats deficient in copper. Am J Physiol. 240:H185–H189. 1981.PubMed/NCBI | |
Viestenz KE and Klevay LM: A randomized trial of copper therapy in rats with electrocardiographic abnormalities due to copper deficiency. Am J Clin Nutr. 35:258–266. 1982. View Article : Google Scholar : PubMed/NCBI | |
Bevan R and Levy L: Biomonitoring for workplace exposure to copper and its compounds is currently not interpretable. Int J Hyg Environ Health. 258:1143582024. View Article : Google Scholar : PubMed/NCBI | |
WHO. World Health Organization, . Copper in Drinking-Water. Background document for development of WHO Guidelines for Drinking-water Quality. 2004. | |
Taylor AA, Tsuji JS, McArdle ME, Adams WJ and Goodfellow WL Jr: Recommended reference values for risk assessment of oral exposure to copper. Risk Anal. 43:211–218. 2023. View Article : Google Scholar : PubMed/NCBI | |
Toscano CM, Filetti FM, Almenara CCP, Fioresi M and Vassallo DV: Copper exposure for 30 days at a daily dose twice the recommended increases blood pressure and cardiac contractility. Life Sci. 300:1205792022. View Article : Google Scholar : PubMed/NCBI | |
Filetti FM, Schereider IRG, Wiggers GA, Miguel M, Vassallo DV and Simões MR: Cardiovascular harmful effects of recommended daily doses (13 µg/kg/day), tolerable upper intake doses (0.14 mg/kg/day) and twice the tolerable doses (0.28 mg/kg/day) of copper. Cardiovasc Toxicol. 23:218–229. 2023. View Article : Google Scholar : PubMed/NCBI | |
Abbasi H, Khoshdooz S, Abbasi MM, Pasand M and Eslamian G: Shining a light on trace elements: A systematic review and Meta-analysis of serum concentrations in febrile seizure. Biol Trace Elem Res. May 8–2024.doi: 10.1007/s12011-024-04221-5 (Epub ahead of print). View Article : Google Scholar | |
Gucký A and Hamuľaková S: Targeting biometals in Alzheimer's disease with metal chelating agents including coumarin derivatives. CNS Drugs. 38:507–532. 2024. View Article : Google Scholar : PubMed/NCBI | |
Kannan S, Gillespie SW, Picking WL, Picking WD, Lorson CL and Singh K: Inhibitors against DNA polymerase I family of enzymes: Novel targets and opportunities. Biology (Basel). 13:2042024.PubMed/NCBI | |
Yang D, Wang T, Liu J, Wang H and Kang YJ: Reverse regulation of hepatic ceruloplasmin production in rat model of myocardial ischemia. J Trace Elem Med Biol. 64:1266862021. View Article : Google Scholar : PubMed/NCBI | |
Zou Y, Wu S, Xu X, Tan X, Yang S, Chen T, Zhang J, Li S, Li W and Wang F: Cope with copper: From molecular mechanisms of cuproptosis to copper-related kidney diseases. Int Immunopharmacol. 133:1120752024. View Article : Google Scholar : PubMed/NCBI | |
Gromadzka G, Grycan M and Przybyłkowski AM: Monitoring of copper in wilson disease. Diagnostics (Basel). 13:18302023. View Article : Google Scholar : PubMed/NCBI | |
Wei H, Zhang WJ, McMillen TS, Leboeuf RC and Frei B: Copper chelation by tetrathiomolybdate inhibits vascular inflammation and atherosclerotic lesion development in apolipoprotein E-deficient mice. Atherosclerosis. 223:306–313. 2012. View Article : Google Scholar : PubMed/NCBI | |
Ferrero ME: Neuron protection by EDTA may explain the successful outcomes of toxic metal chelation therapy in neurodegenerative diseases. Biomedicines. 10:24762022. View Article : Google Scholar : PubMed/NCBI | |
Fulgenzi A and Ferrero ME: EDTA chelation therapy for the treatment of neurotoxicity. Int J Mol Sci. 20:10192019. View Article : Google Scholar : PubMed/NCBI | |
Litwin T, Antos A, Bembenek J and Cz Onkowska A: Neurological deterioration in Wilson's disease-types, etiology, course, and management. Discov Med. 36:646–654. 2024. View Article : Google Scholar : PubMed/NCBI | |
Ramli FF, Hashim SAS, Raman B, Mahmod M and Kamisah Y: Role of Trientine in hypertrophic cardiomyopathy: A review of mechanistic angles. Pharmaceuticals (Basel). 15:11452022. View Article : Google Scholar : PubMed/NCBI | |
Amadi CN, Offor SJ, Frazzoli C and Orisakwe OE: Natural antidotes and management of metal toxicity. Environ Sci Pollut Res Int. 26:18032–18052. 2019. View Article : Google Scholar : PubMed/NCBI | |
Karginova O, Weekley CM, Raoul A, Alsayed A, Wu T, Lee SS, He C and Olopade OI: Inhibition of copper transport induces apoptosis in Triple-negative breast cancer cells and suppresses tumor angiogenesis. Mol Cancer Ther. 18:873–885. 2019. View Article : Google Scholar : PubMed/NCBI | |
Leitch JM, Jensen LT, Bouldin SD, Outten CE, Hart PJ and Culotta VC: Activation of Cu, Zn-superoxide dismutase in the absence of oxygen and the copper chaperone CCS. J Biol Chem. 284:21863–21871. 2009. View Article : Google Scholar : PubMed/NCBI | |
Yang Y, Feng Q, Luan Y, Liu H, Jiao Y, Hao H, Yu B, Luan Y and Ren K: Exploring cuproptosis as a mechanism and potential intervention target in cardiovascular diseases. Front Pharmacol. 14:12292972023. View Article : Google Scholar : PubMed/NCBI | |
Hinshaw DC and Shevde LA: The Tumor microenvironment innately modulates cancer progression. Cancer Res. 79:4557–4566. 2019. View Article : Google Scholar : PubMed/NCBI | |
Tardito S, Bassanetti I, Bignardi C, Elviri L, Tegoni M, Mucchino C, Bussolati O, Franchi-Gazzola R and Marchiò L: Copper binding agents acting as copper ionophores lead to caspase inhibition and paraptotic cell death in human cancer cells. J Am Chem Soc. 133:6235–6242. 2011. View Article : Google Scholar : PubMed/NCBI | |
Krasnovskaya O, Naumov A, Guk D, Gorelkin P, Erofeev A, Beloglazkina E and Majouga A: Copper coordination compounds as biologically active agents. Int J Mol Sci. 21:39652020. View Article : Google Scholar : PubMed/NCBI | |
Zheng P, Zhou C, Lu L, Liu B and Ding Y: Elesclomol: A copper ionophore targeting mitochondrial metabolism for cancer therapy. J Exp Clin Cancer Res. 41:2712022. View Article : Google Scholar : PubMed/NCBI | |
Zhang HA and Kitts DD: Turmeric and its bioactive constituents trigger cell signaling mechanisms that protect against diabetes and cardiovascular diseases. Mol Cell Biochem. 476:3785–3814. 2021. View Article : Google Scholar : PubMed/NCBI | |
Banfi G, Salvagno GL and Lippi G: The role of ethylenediamine tetraacetic acid (EDTA) as in vitro anticoagulant for diagnostic purposes. Clin Chem Lab Med. 45:565–576. 2007. View Article : Google Scholar : PubMed/NCBI | |
Alvarez HM, Xue Y, Robinson CD, Canalizo-Hernández MA, Marvin RG, Kelly RA, Mondragón A, Penner-Hahn JE and O'Halloran TV: Tetrathiomolybdate inhibits copper trafficking proteins through metal cluster formation. Science. 327:331–334. 2010. View Article : Google Scholar : PubMed/NCBI | |
Zhang S, Liu H, Amarsingh GV, Cheung CC, Hogl S, Narayanan U, Zhang L, McHarg S, Xu J, Gong D, et al: Diabetic cardiomyopathy is associated with defective myocellular copper regulation and both defects are rectified by divalent copper chelation. Cardiovasc Diabetol. 13:1002014. View Article : Google Scholar : PubMed/NCBI | |
Zhang L, Ward ML, Phillips AR, Zhang S, Kennedy J, Barry B, Cannell MB and Cooper GJ: Protection of the heart by treatment with a divalent-copper-selective chelator reveals a novel mechanism underlying cardiomyopathy in diabetic rats. Cardiovasc Diabetol. 12:1232013. View Article : Google Scholar : PubMed/NCBI | |
Lu J, Gong D, Choong SY, Xu H, Chan YK, Chen X, Fitzpatrick S, Glyn-Jones S, Zhang S, Nakamura T, et al: Copper(II)-selective chelation improves function and antioxidant defences in cardiovascular tissues of rats as a model of diabetes: Comparisons between triethylenetetramine and three less copper-selective transition-metal-targeted treatments. Diabetologia. 53:1217–1226. 2010. View Article : Google Scholar : PubMed/NCBI | |
Gong D, Lu J, Chen X, Choong SY, Zhang S, Chan YK, Glyn-Jones S, Gamble GD, Phillips AR and Cooper GJ: Molecular changes evoked by triethylenetetramine treatment in the extracellular matrix of the heart and aorta in diabetic rats. Mol Pharmacol. 70:2045–2051. 2006. View Article : Google Scholar : PubMed/NCBI | |
Pan Q, Bao LW and Merajver SD: Tetrathiomolybdate inhibits angiogenesis and metastasis through suppression of the NFkappaB signaling cascade. Mol Cancer Res. 1:701–706. 2003.PubMed/NCBI | |
Ouyang P, Gottlieb SH, Culotta VL and Navas-Acien A: EDTA chelation therapy to reduce cardiovascular events in persons with diabetes. Curr Cardiol Rep. 17:962015. View Article : Google Scholar : PubMed/NCBI | |
Lamas GA, Goertz C, Boineau R, Mark DB, Rozema T, Nahin RL, Lindblad L, Lewis EF, Drisko J and Lee KL; TACT Investigators, : Effect of disodium EDTA chelation regimen on cardiovascular events in patients with previous myocardial infarction: The TACT randomized trial. JAMA. 309:1241–1250. 2013. View Article : Google Scholar : PubMed/NCBI | |
Ujueta F, Arenas IA, Escolar E, Diaz D, Boineau R, Mark DB, Golden P, Lindblad L, Kim H, Lee KL and Lamas GA: The effect of EDTA-based chelation on patients with diabetes and peripheral artery disease in the Trial to Assess Chelation Therapy (TACT). J Diabetes Complications. 33:490–494. 2019. View Article : Google Scholar : PubMed/NCBI | |
Jomova K, Makova M, Alomar SY, Alwasel SH, Nepovimova E, Kuca K, Rhodes CJ and Valko M: Essential metals in health and disease. Chem Biol Interact. 367:1101732022. View Article : Google Scholar : PubMed/NCBI | |
Stiles LI, Ferrao K and Mehta KJ: Role of zinc in health and disease. Clin Exp Med. 24:382024. View Article : Google Scholar : PubMed/NCBI | |
Pajarillo EAB, Lee E and Kang DK: Trace metals and animal health: Interplay of the gut microbiota with iron, manganese, zinc, and copper. Anim Nutr. 7:750–761. 2021. View Article : Google Scholar : PubMed/NCBI | |
Qiu Y, Li C, Huang Y, Wu C, Li F, Zhang X and Xia D: Exploring the causal associations of micronutrients on Urate levels and the risk of gout: A Mendelian randomization study. Clin Nutr. 43:1001–1012. 2024. View Article : Google Scholar : PubMed/NCBI | |
Salehifar E, Shokrzadeh M, Ghaemian A, Aliakbari S and Saeedi Saravi SS: The study of Cu and Zn serum levels in idiopathic dilated cardiomyopathy (IDCMP) patients and its comparison with healthy volunteers. Biol Trace Elem Res. 125:97–108. 2008. View Article : Google Scholar : PubMed/NCBI | |
Wacewicz M, Socha K, Soroczyńska J, Niczyporuk M, Aleksiejczuk P, Ostrowska J and Borawska MH: Concentration of selenium, zinc, copper, Cu/Zn ratio, total antioxidant status and c-reactive protein in the serum of patients with psoriasis treated by narrow-band ultraviolet B phototherapy: A case-control study. J Trace Elem Med Biol. 44:109–114. 2017. View Article : Google Scholar : PubMed/NCBI | |
Ghaemian A, Salehifar E, Jalalian R, Ghasemi F, Azizi S, Masoumi S, Shiraj H, Mohammadpour RA and Bagheri GA: Zinc and copper levels in severe heart failure and the effects of atrial fibrillation on the zinc and copper status. Biol Trace Elem Res. 143:1239–1246. 2011. View Article : Google Scholar : PubMed/NCBI | |
Luo Z, Yin F, Wang X and Kong L: Progress in approved drugs from natural product resources. Chin J Nat Med. 22:195–211. 2024.PubMed/NCBI | |
Han Y, Zhu J, Yang L, Nilsson-Payant BE, Hurtado R, Lacko LA, Sun X, Gade AR, Higgins CA, Sisso WJ, et al: SARS-CoV-2 infection induces ferroptosis of sinoatrial node pacemaker cells. Circ Res. 130:963–977. 2022. View Article : Google Scholar : PubMed/NCBI | |
Del Re DP, Amgalan D, Linkermann A, Liu Q and Kitsis RN: Fundamental mechanisms of regulated cell death and implications for heart disease. Physiol Rev. 99:1765–1817. 2019. View Article : Google Scholar : PubMed/NCBI | |
Jiang X, Stockwell BR and Conrad M: Ferroptosis: Mechanisms, biology and role in disease. Nat Rev Mol Cell Biol. 22:266–282. 2021. View Article : Google Scholar : PubMed/NCBI | |
Corradini E, Buzzetti E and Pietrangelo A: Genetic iron overload disorders. Mol Angles Med. 75:1008962020.PubMed/NCBI | |
Müller T, Dewitz C, Schmitz J, Schröder AS, Bräsen JH, Stockwell BR, Murphy JM, Kunzendorf U and Krautwald S: Necroptosis and ferroptosis are alternative cell death pathways that operate in acute kidney failure. Cell Mol Life Sci. 74:3631–3645. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhao Y, Li Y, Zhang R, Wang F, Wang T and Jiao Y: The role of Erastin in Ferroptosis and its prospects in cancer therapy. Onco Targets Ther. 13:5429–5441. 2020. View Article : Google Scholar : PubMed/NCBI | |
Kunutsor SK, Voutilainen A, Kurl S and Laukkanen JA: Serum copper-to-zinc ratio is associated with heart failure and improves risk prediction in middle-aged and older Caucasian men: A prospective study. Nutr Metab Cardiovasc Dis. 32:1924–1935. 2022. View Article : Google Scholar : PubMed/NCBI | |
Wang D, Tian Z, Zhang P, Zhen L, Meng Q, Sun B, Xu X, Jia T and Li S: The molecular mechanisms of cuproptosis and its relevance to cardiovascular disease. Biomed Pharmacother. 163:1148302023. View Article : Google Scholar : PubMed/NCBI | |
Majewski M, Ognik K and Juśkiewicz J: Copper nanoparticles enhance vascular contraction induced by prostaglandin F2-alpha and decrease the blood plasma cu-zn ratio in wistar rats. J Elem. 24:911–922. 2019. | |
Tousson E and El-Gharbawy DM: Impact of Saussurea lappa root extract against copper oxide nanoparticles induced oxidative stress and toxicity in rat cardiac tissues. Environ Toxicol. 38:415–421. 2023. View Article : Google Scholar : PubMed/NCBI | |
Huo S, Wang Q, Shi W, Peng L, Jiang Y, Zhu M, Guo J, Peng D, Wang M, Men L, et al: ATF3/SPI1/SLC31A1 signaling promotes cuproptosis induced by advanced glycosylation end products in diabetic myocardial injury. Int J Mol Sci. 24:16672023. View Article : Google Scholar : PubMed/NCBI | |
Piavchenko G, Alekseev A, Stelmashchuk O, Seryogina E, Zherebtsov E, Kuznetsova E, Dunaev A, Volkov Y and Kuznetsov S: A complex morphofunctional approach for zinc toxicity evaluation in rats. Heliyon. 6:e037682020. View Article : Google Scholar : PubMed/NCBI | |
Karagulova G, Yue Y, Moreyra A, Boutjdir M and Korichneva I: Protective role of intracellular zinc in myocardial ischemia/reperfusion is associated with preservation of protein kinase C isoforms. J Pharmacol Exp Ther. 321:517–525. 2007. View Article : Google Scholar : PubMed/NCBI | |
Yang HJ, Kong B, Shuai W, Zhang JJ and Huang H: Shensong Yangxin attenuates metabolic syndrome-induced atrial fibrillation via inhibition of ferroportin-mediated intracellular iron overload. Phytomedicine. 101:1540862022. View Article : Google Scholar : PubMed/NCBI | |
Fang J, Kong B, Shuai W, Xiao Z, Dai C, Qin T, Gong Y, Zhu J, Liu Q and Huang H: Ferroportin-mediated ferroptosis involved in new-onset atrial fibrillation with LPS-induced endotoxemia. Eur J Pharmacol. 913:1746222021. View Article : Google Scholar : PubMed/NCBI | |
Kitala K, Tanski D, Godlewski J, Krajewska-Włodarczyk M, Gromadziński L and Majewski M: Copper and zinc particles as regulators of cardiovascular system function-a review. Nutrients. 15:30402023. View Article : Google Scholar : PubMed/NCBI | |
Jomova K, Vondrakova D, Lawson M and Valko M: Metals, oxidative stress and neurodegenerative disorders. Mol Cell Biochem. 345:91–104. 2010. View Article : Google Scholar : PubMed/NCBI | |
Li JW, Mao YM, Chen SL, Ye R, Fei YR, Li Y, Tong SY, Yang HW and He YB: The interplay between metal ions and immune cells in glioma: Pathways to immune escape. Discov Oncol. 15:3482024. View Article : Google Scholar : PubMed/NCBI | |
Yuan S, Chen S, Xi Z and Liu Y: Copper-finger protein of Sp1: The molecular basis of copper sensing. Metallomics. 9:1169–1175. 2017. View Article : Google Scholar : PubMed/NCBI | |
Su TA, Bruemmer KJ and Chang CJ: Caged luciferins for bioluminescent activity-based sensing. Curr Opin Biotechnol. 60:198–204. 2019. View Article : Google Scholar : PubMed/NCBI | |
Guo B, Yang F, Zhang L, Zhao Q, Wang W, Yin L, Chen D, Wang M, Han S, Xiao H and Xing N: Cuproptosis induced by ROS responsive nanoparticles with elesclomol and copper combined with αPD-L1 for enhanced cancer immunotherapy. Adv Mater. 35:e22122672023. View Article : Google Scholar : PubMed/NCBI | |
Liu S, Zhao Y, Shen M, Hao Y, Wu X, Yao Y, Li Y and Yang Q: Hyaluronic acid targeted and pH-responsive multifunctional nanoparticles for chemo-photothermal synergistic therapy of atherosclerosis. J Mater Chem B. 10:562–570. 2022. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Yang J, Zhang Q, Xu S, Sun W, Ge S, Xu X, Jager MJ, Jia R, Zhang J and Fan X: Copper ionophore elesclomol selectively targets GNAQ/11-mutant uveal melanoma. Oncogene. 41:3539–3553. 2022. View Article : Google Scholar : PubMed/NCBI |