You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.
I agree
International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.
International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.
Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.
Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.
Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.
Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.
Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.
International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.
Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.
Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.
Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.
An International Open Access Journal Devoted to General Medicine.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
|
Tang C, Zhou K, Wu D and Zhu H: Nanoparticles as a novel platform for cardiovascular disease diagnosis and therapy. Int J Nanomedicine. 19:8831–8846. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Ayob R, Vally M, Khan R and Orchard A: Disparities in patients' understanding of cardiovascular disease management. Cardiovasc J Afr. 34:1–7. 2024.PubMed/NCBI | |
|
Frumuzachi O, Babotă M, Tanase C and Mocan A: A systematic review of randomized controlled trials on the health effects of chocolate enriched/fortified/supplemented with functional components. Food Funct. 15:6883–6899. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Ding D, Lawson KD, Kolbe-Alexander TL, Finkelstein EA, Katzmarzyk PT, van Mechelen W and Pratt M; Lancet Physical Activity Series 2 Executive Committee, : The economic burden of physical inactivity: A global analysis of major non-communicable diseases. Lancet. 388:1311–1324. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Kazi DS, Katznelson E, Liu CL, Al-Roub NM, Chaudhary RS, Young DE, McNichol M, Mickley LJ, Kramer DB, Cascio WE, et al: Climate change and cardiovascular health: A systematic review. JAMA Cardiol. 9:748–757. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Hundley WG: Fifty years of cardiovascular magnetic resonance: Continuing evolution toward the ‘One-Stop Shop’ for cardiovascular diagnosis. Circulation. 149:1859–1861. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Zeng X, Zhou L, Zeng Q, Zhu H and Luo J: High serum copper as a risk factor of all-cause and cause-specific mortality among US adults, NHANES 2011–2014. Front Cardiovasc Med. 11:13409682024. View Article : Google Scholar : PubMed/NCBI | |
|
Mazur T, Malik M and Bieńko DC: The impact of chelating compounds on Cu2+, Fe2+/3+, and Zn2+ ions in Alzheimer's disease treatment. J Inorg Biochem. 257:1126012024. View Article : Google Scholar : PubMed/NCBI | |
|
Einhorn V, Haase H and Maares M: Interaction and competition for intestinal absorption by zinc, iron, copper, and manganese at the intestinal mucus layer. J Trace Elem Med Biol. 84:1274592024. View Article : Google Scholar : PubMed/NCBI | |
|
Xue Q, Kang R, Klionsky DJ, Tang D, Liu J and Chen X: Copper metabolism in cell death and autophagy. Autophagy. 19:2175–2195. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Tsymbal SA, Refeld AG and Kuchur OA: The p53 tumor suppressor and copper metabolism: An unrevealed but important link. Mol Biol (Mosk). 56:1057–1071. 2022.(In Russian). View Article : Google Scholar : PubMed/NCBI | |
|
Chen J, Jiang Y, Shi H, Peng Y, Fan X and Li C: The molecular mechanisms of copper metabolism and its roles in human diseases. Pflugers Arch. 472:1415–1429. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Ruiz LM, Libedinsky A and Elorza AA: Role of copper on mitochondrial function and metabolism. Front Mol Biosci. 8:7112272021. View Article : Google Scholar : PubMed/NCBI | |
|
Kerkadi A, Raïq H, Prince MS, Bader L, Soltani A and Agouni A: A cross-sectional analysis of zinc and copper levels and their relationship to cardiovascular disease risk markers in Qatar biobank participants. Front Cardiovasc Med. 10:13055882024. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang Z, Weichenthal S, Kwong JC, Burnett RT, Hatzopoulou M, Jerrett M, van Donkelaar A, Bai L, Martin RV, Copes R, et al: A Population-based cohort study of respiratory disease and long-term exposure to Iron and copper in fine particulate air pollution and their combined impact on reactive oxygen species generation in human lungs. Environ Sci Technol. 55:3807–3818. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Rashidmayvan M, Mansoori A, Aghasizadeh M, Dianati M, Barati S, Sahranavard T, Darroudi S, Ahari RK, Esmaily H, Ferns G, et al: Prediction of cardiovascular disease risk by serum zinc and copper concentrations and anthropometric measurements. J Trace Elem Med Biol. 83:1273852024. View Article : Google Scholar : PubMed/NCBI | |
|
Lan L, Feng Z, Liu X and Zhang B: The roles of essential trace elements in T cell biology. J Cell Mol Med. 28:e183902024. View Article : Google Scholar : PubMed/NCBI | |
|
Dyla M, Kjærgaard M, Poulsen H and Nissen P: Structure and mechanism of P-type ATPase Ion pumps. Annu Rev Biochem. 89:583–603. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Xu C, Liu Y, Zhang Y and Gao L: The role of a cuproptosis-related prognostic signature in colon cancer tumor microenvironment and immune responses. Front Genet. 13:9281052022. View Article : Google Scholar : PubMed/NCBI | |
|
Shan J, Geng R, Zhang Y, Wei J, Liu J and Bai J: Identification of cuproptosis-related subtypes, establishment of a prognostic model and tumor immune landscape in endometrial carcinoma. Comput Biol Med. 149:1059882022. View Article : Google Scholar : PubMed/NCBI | |
|
Wang Y, Wang D, Wu C, Wang B, He S, Wang H, Liang G and Zhang Y: MMP 9-instructed assembly of bFGF nanofibers in ischemic myocardium to promote heart repair. Theranostics. 12:7237–7249. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Liu X, Xu X, Zhang T, Xu L, Tao H, Liu Y, Zhang Y and Meng X: Fatty acid metabolism disorders and potential therapeutic traditional Chinese medicines in cardiovascular diseases. Phytother Res. 37:4976–4998. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Mazaheri-Tehrani S, Haghighatpanah MA, Abhari AP, Fakhrolmobasheri M, Shekarian A and Kieliszek M: Dynamic changes of serum trace elements following cardiac surgery: A systematic review and meta-analysis. J Trace Elem Med Biol. 81:1273312023. View Article : Google Scholar : PubMed/NCBI | |
|
Teschke R and Eickhoff A: Wilson disease: Copper-mediated Cuproptosis, Iron-related Ferroptosis, and clinical highlights, with comprehensive and critical analysis update. Int J Mol Sci. 25:47532024. View Article : Google Scholar : PubMed/NCBI | |
|
Jiang L, Garrick MD, Garrick LM, Zhao L and Collins JF: Divalentmetal transporter 1 (Dmt1) mediates copper transport in the duodenum of iron-deficient rats and when overexpressed in iron-deprived HEK-293 cells. J Nutr. 143:1927–1933. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Cui X and Wang Y, Liu H, Shi M, Wang J and Wang Y: The molecular mechanisms of defective copper metabolism in diabetic cardiomyopathy. Oxid Med Cell Longev. 2022:54183762022. View Article : Google Scholar : PubMed/NCBI | |
|
Nývltová E, Dietz JV, Seravalli J, Khalimonchuk O and Barrientos A: Coordination of metal center biogenesis in human cytochrome c oxidase. Nat Commun. 13:36152022. View Article : Google Scholar : PubMed/NCBI | |
|
Pagnotta S, Tramutola A, Barone E, Di Domenico F, Pittalà V, Salerno L, Folgiero V, Caforio M, Locatelli F, Petrini S, et al: CAPE and its synthetic derivative VP961 restore BACH1/NRF2 axis in Down syndrome. Free Radic Biol Med. 183:1–13. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Matson Dzebo M, Ariöz C and Wittung-Stafshede P: Extended functional repertoire for human copper chaperones. Biomol Concepts. 7:29–39. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Tadini-Buoninsegni F and Smeazzetto S: Mechanisms of charge transfer in human copper ATPases ATP7A and ATP7B. IUBMB Life. 69:218–225. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Pierson H, Muchenditsi A, Kim BE, Ralle M, Zachos N, Huster D and Lutsenko S: The function of ATPase copper transporter ATP7B in intestine. Gastroenterology. 154:168–180.e5. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Ovchinnikova EV, Garbuz MM, Ovchinnikova AA and Kumeiko VV: Epidemiology of Wilson's disease and pathogenic variants of the ATP7B gene leading to diversified protein disfunctions. Int J Mol Sci. 25:24022024. View Article : Google Scholar : PubMed/NCBI | |
|
Yang L, Yang P, Lip GYH and Ren J: Copper homeostasis and cuproptosis in cardiovascular disease therapeutics. Trends Pharmacol Sci. 44:573–585. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Li X, Ling J, Hu Q, Fang C, Mei K, Wu Y, Huang J, Ling Q, Chen Y, Yu P, et al: Association of serum copper (Cu) with cardiovascular mortality and all-cause mortality in a general population: A prospective cohort study. BMC Public Health. 23:21382023. View Article : Google Scholar : PubMed/NCBI | |
|
Dascalu AM, Anghelache A, Stana D, Costea AC, Nicolae VA, Tanasescu D, Costea DO, Tribus LC, Zgura A, Serban D, et al: Serum levels of copper and zinc in diabetic retinopathy: Potential new therapeutic targets (Review). Exp Ther Med. 23:3242022. View Article : Google Scholar : PubMed/NCBI | |
|
Lutsenko S, Roy S and Tsvetkov P: Mammalian copper homeostasis: Physiologic roles and molecular mechanisms. Physiol Rev. Aug 22–2024.doi: 10.1152/physrev.00011.2024 (Epub ahead of print). View Article : Google Scholar : PubMed/NCBI | |
|
Forman HJ and Zhang H: Targeting oxidative stress in disease: Promise and limitations of antioxidant therapy. Nat Rev Drug Discov. 20:689–709. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Husain N and Mahmood R: Copper(II) generates ROS and RNS, impairs antioxidant system and damages membrane and DNA in human blood cells. Environ Sci Pollut Res Int. 26:20654–20668. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Jomova K, Alomar SY, Alwasel SH, Nepovimova E, Kuca K and Valko M: Several lines of antioxidant defense against oxidative stress: Antioxidant enzymes, nanomaterials with multiple enzyme-mimicking activities, and low-molecular-weight antioxidants. Arch Toxicol. 98:1323–1367. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Sun D, Sun X, Zhang X, Wu J, Shi X, Sun J, Luo C, He Z and Zhang S: Emerging chemodynamic nanotherapeutics for cancer treatment. Adv Healthc Mater. 16:e24008092024. View Article : Google Scholar : PubMed/NCBI | |
|
Liang R, Zhu L, Huang Y, Chen J and Tang Q: Mitochondria: Fundamental characteristics, challenges, and impact on aging. Biogerontology. Aug 28–2024.doi: 10.1007/s10522-024-10132-8 (Epub ahead of print). View Article : Google Scholar | |
|
Zhu SY, Liu J and Yu C: Research progress on mitochondrial copper homeostasis imbalance and fibrosis diseases. Sheng Li Xue Bao. 76:597–604. 2024.(In Chinese). PubMed/NCBI | |
|
Bomer N, Pavez-Giani MG, Grote Beverborg N, Cleland JGF, van Veldhuisen DJ and van der Meer P: Micronutrient deficiencies in heart failure: Mitochondrial dysfunction as a common pathophysiological mechanism? J Intern Med. 291:713–731. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Swaminathan AB and Gohil VM: The role of COA6 in the mitochondrial copper delivery pathway to cytochrome c oxidase. Biomolecules. 12:1252022. View Article : Google Scholar : PubMed/NCBI | |
|
Qian L, Zhu Y, Deng C, Liang Z, Chen J, Chen Y, Wang X, Liu Y, Tian Y and Yang Y: Peroxisome proliferator-activated receptor gamma coactivator-1 (PGC-1) family in physiological and pathophysiological process and diseases. Signal Transduct Target Ther. 9:502024. View Article : Google Scholar : PubMed/NCBI | |
|
Xiao Y, Wang T, Song X, Yang D, Chu Q and Kang YJ: Copper promotion of myocardial regeneration. Exp Biol Med (Maywood). 245:911–921. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Wan JJ, Yi J, Wang FY, Zhang C and Dai AG: Expression and regulation of HIF-1a in hypoxic pulmonary hypertension: Focus on pathological mechanism and Pharmacological Treatment. Int J Med Sci. 21:45–60. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Li D, Li D, Wang Z, Li J, Shahzad KA, Wang Y and Tan F: Signaling pathways activated and regulated by stem cell-derived exosome therapy. Cell Biosci. 14:1052024. View Article : Google Scholar : PubMed/NCBI | |
|
Himoto T, Fujita K, Nomura T, Tani J, Miyoshi H, Morishita A, Yoneyama H, Kubota S, Haba R, Suzuki Y and Masaki T: Roles of copper in Hepatocarcinogenesis via the activation of Hypoxia-inducible factor-1α. Biol Trace Elem Res. 174:58–64. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Martínez-González J, Varona S, Cañes L, Galán M, Briones AM, Cachofeiro V and Rodríguez C: Emerging roles of Lysyl oxidases in the cardiovascular system: New concepts and therapeutic challenges. Biomolecules. 9:6102019. View Article : Google Scholar : PubMed/NCBI | |
|
Ashino T, Kohno T, Sudhahar V, Ash D, Ushio-Fukai M and Fukai T: Copper transporter ATP7A interacts with IQGAP1, a Rac1 binding scaffolding protein: Role in PDGF-induced VSMC migration and vascular remodeling. Am J Physiol Cell Physiol. 315:C850–C862. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Viskin S, Chorin E, Schwartz AL, Kukla P and Rosso R: Arrhythmogenic effects of cardiac memory. Circulation. 146:1170–1181. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Hsiao CD, Wu HH, Malhotra N, Liu YC, Wu YH, Lin YN, Saputra F, Santoso F and Chen KH: Expression and purification of recombinant GHK Tripeptides are able to protect against acute cardiotoxicity from exposure to waterborne-copper in Zebrafish. Biomolecules. 10:12022020. View Article : Google Scholar : PubMed/NCBI | |
|
Shen H and Nugegoda D: Real-time automated behavioural monitoring of mussels during contaminant exposures using an improved microcontroller-based device. Sci Total Environ. 806:1505672022. View Article : Google Scholar : PubMed/NCBI | |
|
Bobbio E, Forsgard N, Oldfors A, Szamlewski P, Bollano E, Andersson B, Lingbrant M, Bergh N, Karason K and Polte CL: Cardiac arrest in Wilson's disease after curative liver transplantation: A life-threatening complication of myocardial copper excess? ESC Heart Fail. 6:228–231. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Bagheri B, Akbari N, Tabiban S, Habibi V and Mokhberi V: Serum level of copper in patients with coronary artery disease. Niger Med J. 56:39–42. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Kciuk M, Gielecińska A, Kałuzińska-Kołat Ż, Yahya EB and Kontek R: Ferroptosis and cuproptosis: Metal-dependent cell death pathways activated in response to classical chemotherapy-Significance for cancer treatment? Biochim Biophys Acta Rev Cancer. 1879:1891242024. View Article : Google Scholar : PubMed/NCBI | |
|
Chen Z, Li YY and Liu X: Copper homeostasis and copper-induced cell death: Novel targeting for intervention in the pathogenesis of vascular aging. Biomed Pharmacother. 169:1158392023. View Article : Google Scholar : PubMed/NCBI | |
|
Begum S, Sultana I, Faysal MR, Alam S, Tasnim J, Akter T, Hossain MS, Banu M, Jenea AT, Hasan M, et al: Study of changes in serum copper level in patients with acute myocardial infarction. Mymensingh Med J. 32:39–43. 2023.PubMed/NCBI | |
|
El-Hajjar L, Hindieh J, Andraos R, El-Sabban M and Daher J: Myeloperoxidase-oxidized LDL activates human aortic endothelial cells through the LOX-1 scavenger receptor. Int J Mol Sci. 23:28372022. View Article : Google Scholar : PubMed/NCBI | |
|
Gao L and Zhang A: Copper-instigated modulatory cell mortality mechanisms and progress in oncological treatment investigations. Front Immunol. 14:12360632023. View Article : Google Scholar : PubMed/NCBI | |
|
He Y, Huang W, Zhang C, Chen L, Xu R, Li N, Wang F, Han L, Yang M and Zhang D: Energy metabolism disorders and potential therapeutic drugs in heart failure. Acta Pharm Sin B. 11:1098–1116. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Xing L, Liu Y, Wang J, Tian P and Liu P: High-density lipoprotein and heart failure. Rev Cardiovasc Med. 24:3212023. View Article : Google Scholar : PubMed/NCBI | |
|
Yuan HJ, Xue YT and Liu Y: Cuproptosis, the novel therapeutic mechanism for heart failure: A narrative review. Cardiovasc Diagn Ther. 12:681–692. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Huang L, Shen R, Huang L, Yu J and Rong H: Association between serum copper and heart failure: A meta-analysis. Asia Pac J Clin Nutr. 28:761–769. 2019.PubMed/NCBI | |
|
Zhang S, Liu H, Amarsingh GV, Cheung CCH, Wu D, Narayanan U, Zhang L and Cooper GJS: Restoration of myocellular copper-trafficking proteins and mitochondrial copper enzymes repairs cardiac function in rats with diabetes-evoked heart failure. Metallomics. 12:259–272. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Liu Y and Miao J: An emerging role of defective copper metabolism in heart disease. Nutrients. 4:7002019. | |
|
Qi W, Liu L, Zeng Q, Zhou Z, Chen D, He B, Gong S, Gao L, Wang X, Xiong J, et al: Contribution of cuproptosis and Cu metabolism-associated genes to chronic obstructive pulmonary disease. J Cell Mol Med. 27:4034–4044. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Bost M, Houdart S, Oberli M, Kalonji E, Huneau JF and Margaritis I: Dietary copper and healthy: Current evidence and unresolved issues. J Trace Elem Med Biol. 35:107–115. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Gelpi Acevedo LM, Salinas AL, Polanco JS, Nizami H, Marsh D, Patel M, Parikh K and Jain R and Jain R: A narrative review of the pathophysiology and treatment of hypertrophic cardiomyopathy. South Med J. 115:926–929. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Butzner M, Aronitz E, Cameron H, Tantakoun K, Shreay S and Drudge C: An evidence review and gap analysis for obstructive hypertrophic cardiomyopathy. BMC Cardiovasc Disord. 24:4162024. View Article : Google Scholar : PubMed/NCBI | |
|
Reid A, Miller C, Farrant JP, Polturi R, Clark D, Ray S, Cooper G and Schmitt M: Copper chelation in patients with hypertrophic cardiomyopathy. Open Heart. 9:e0018032022. View Article : Google Scholar : PubMed/NCBI | |
|
Cinato M, Andersson L, Miljanovic A, Laudette M, Kunduzova O, Borén J and Levin MC: Role of perilipins in oxidative Stress-implications for cardiovascular disease. Antioxidants (Basel). 13:2092024. View Article : Google Scholar : PubMed/NCBI | |
|
Ali SA, Bommaraju S, Patwa J, Khare P, Rachamalla M, Niyogi S and Datusalia AK: Melatonin attenuates extracellular matrix accumulation and cardiac injury manifested by copper. Biol Trace Elem Res. 201:4456–4471. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Tsvetkov P, Coy S, Petrova B, Dreishpoon M, Verma A, Abdusamad M, Rossen J, Joesch-Cohen L, Humeidi R, Spangler RD, et al: Copper induces cell death by targeting lipoylated TCA cycle proteins. Science. 375:1254–1261. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Van Den Heuvel LJF, Peeters S, Meester JAN, Coucke PJ and Loeys BL: An exploration of alternative therapeutic targets for aortic disease in Marfan syndrome. Drug Discov Today. 29:1040232024. View Article : Google Scholar : PubMed/NCBI | |
|
Liu B, Yang H, Song YS, Sorenson CM and Sheibani N: Thrombospondin-1 in vascular development, vascular function, and vascular disease. Semin Cell Dev Biol. 155:32–44. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Tsui KH, Hsiao JH, Lin LT, Tsang YL, Shao AN, Kuo CH, Chang R, Wen ZH and Li CJ: The Cross-communication of Cuproptosis and regulated cell death in human pathophysiology. Int J Biol Sci. 20:218–230. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Li Y, Qi P, Song SY and Wang Y, Wang H, Cao P, Liu Y and Wang Y: Elucidating cuproptosis in metabolic dysfunction-associated steatotic liver disease. Biomed Pharmacother. 174:1165852024. View Article : Google Scholar : PubMed/NCBI | |
|
Rucklidge JJ, Eggleston MJF, Darling KA, Stevens AJ, Kennedy MA and Frampton CM: Can we predict treatment response in children with ADHD to a vitamin-mineral supplement? An investigation into pre-treatment nutrient serum levels, MTHFR status, clinical correlates and demographic variables. Prog Neuropsychopharmacol Biol Psychiatry. 89:181–192. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Kunutsor SK, Dey RS and Laukkanen JA: Circulating serum copper is associated with atherosclerotic cardiovascular disease, but not venous thromboembolism: A prospective cohort study. Pulse (Basel). 9:109–115. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Zhu C, Wang B, Xiao L, Guo Y, Zhou Y, Cao L, Yang S and Chen W: Mean platelet volume mediated the relationships between heavy metals exposure and atherosclerotic cardiovascular disease risk: A community-based study. Eur J Prev Cardiol. 27:830–839. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Alexanian I, Parissis J, Farmakis D, Athanaselis S, Pappas L, Gavrielatos G, Mihas C, Paraskevaidis I, Sideris A, Kremastinos D, et al: Clinical and echocardiographic correlates of serum copper and zinc in acute and chronic heart failure. Clin Res Cardiol. 103:938–949. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Malek F, Jiresova E, Dohnalova A, Koprivova H and Spacek R: Serum copper as a marker of inflammation in prediction of short term outcome in high risk patients with chronic heart failure. Int J Cardiol. 113:e51–e53. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Nyström-Rosander C, Frisk P, Edvinsson M, Hjelm E, Thelin S, Friman G and Ilbäck NG: Thoracic aortic aneurysm patients with Chlamydophila pneumoniae infection showed a shift in trace element levels in serum and diseased aortic tissue. J Trace Elem Med Biol. 23:100–106. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Koksal C, Ercan M, Bozkurt AK, Cortelekoglu T and Konukoglu D: Abdominal aortic aneurysm or aortic occlusive disease: Role of trace element imbalance. Angiology. 58:191–195. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Qin Z, Konaniah ES, Neltner B, Nemenoff RA, Hui DY and Weintraub NL: Participation of ATP7A in macrophage mediated oxidation of LDL. J Lipid Res. 51:1471–1477. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Ploplis VA, Cornelissen I, Sandoval-Cooper MJ, Weeks L, Noria FA and Castellino FJ: Remodeling of the vessel wall after copper-induced injury is highly attenuated in mice with a total deficiency of plasminogen activator inhibitor-1. Am J Pathol. 158:107–117. 2001. View Article : Google Scholar : PubMed/NCBI | |
|
Bini G, Santini G and Chelazzi G: Pre-exposure to cadmium or zinc alters the heart rate response of the crayfish Procambarus clarkii towards copper. Bull Environ Contam Toxicol. 95:12–17. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Li Q, Liao J, Lei C, Shi J, Zhang H, Han Q, Guo J, Hu L, Li Y, Pan J and Tang Z: Metabolomics analysis reveals the effect of copper on autophagy in myocardia of pigs. Ecotoxicol Environ Saf. 213:1120402021. View Article : Google Scholar : PubMed/NCBI | |
|
Li S, Zhao H, Wang Y, Shao Y, Wang B, Wang Y and Xing M: Regulation of autophagy factors by oxidative stress and cardiac enzymes imbalance during arsenic or/and copper induced cardiotoxicity in Gallus gallus. Ecotoxicol Environ Saf. 148:125–134. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Zheng L, Han P, Liu J, Li R, Yin W, Wang T, Zhang W and Kang YJ: Role of copper in regression of cardiac hypertrophy. Pharmacol Ther. 148:66–84. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Charkiewicz AE: Is copper still safe for us? What do we know and what are the latest literature statements? Curr Issues Mol Biol. 46:8441–8463. 2024.PubMed/NCBI | |
|
Milanković V, Tasić T, Leskovac A, Petrović S, Mitić M, Lazarević-Pašti T, Novković M and Potkonjak N: Metals on the Menu-analyzing the presence, importance, and consequences. Foods. 13:18902024. View Article : Google Scholar : PubMed/NCBI | |
|
Klevay LM: Is the Western diet adequate in copper? J Trace Elem Med Biol. 25:204–212. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Klevay LM: Lack of a recommended dietary allowance for copper may be hazardous to your health. J Am Coll Nutr. 17:322–326. 1998. View Article : Google Scholar : PubMed/NCBI | |
|
Saari JT: Copper deficiency and cardiovascular disease: Role of peroxidation, glycation, and nitration. Can J Physiol Pharmacol. 78:848–855. 2000. View Article : Google Scholar : PubMed/NCBI | |
|
Yamane R, Tanaka M, Kikugawa N, Yasui H, Takei K, Harada M and Kaneda S: Mesh-like vascular changes in copper deficiency-induced rat cardiomyopathy. J Toxicol Pathol. 34:127–133. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Liu ZY, Liu ZY, Lin LC, Song K, Tu B, Zhang Y, Yang JJ, Zhao JY and Tao H: Redox homeostasis in cardiac fibrosis: Focus on metal ion metabolism. Redox Biol. 71:1031092024. View Article : Google Scholar : PubMed/NCBI | |
|
Ramani PK and Parayil Sankaran B: Menkes disease. 2023 Nov 14. StatPearls [Internet] Treasure Island (FL): StatPearls Publishing; Jan. 2024 | |
|
Parsanathan R: Copper's dual role: Unravelling the link between copper homeostasis, cuproptosis, and cardiovascular diseases. Hypertens Res. 47:1440–1442. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Yang S, Li Y, Zhou L, Wang X, Liu L and Wu M: Copper homeostasis and cuproptosis in atherosclerosis: Metabolism, mechanisms and potential therapeutic strategies. Cell Death Discov. 10:252024. View Article : Google Scholar : PubMed/NCBI | |
|
Al-Bayati MA, Jamil DA and Al-Aubaidy HA: Cardiovascular effects of copper deficiency on activity of superoxide dismutase in diabetic nephropathy. N Am J Med Sci. 7:41–46. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Wang Z, Jin D, Zhou S, Dong N, Ji Y, An P, Wang J, Luo Y and Luo J: Regulatory roles of copper metabolism and cuproptosis in human cancers. Front Oncol. 13:11234202023. View Article : Google Scholar : PubMed/NCBI | |
|
Habas K and Shang L: Alterations in intercellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion molecule 1 (VCAM-1) in human endothelial cells. Tissue Cell. 54:139–143. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Chen L, Min J and Wang F: Copper homeostasis and cuproptosis in health and disease. Signal Transduct Target Ther. 7:3782022. View Article : Google Scholar : PubMed/NCBI | |
|
Jeney V, Itoh S, Wendt M, Gradek Q, Ushio-Fukai M, Harrison DG and Fukai T: Role of antioxidant-1 in extracellular superoxide dismutase function and expression. Circ Res. 96:723–729. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Tural K, Ozden O, Bilgi Z, Kubat E, Ermutlu CS, Merhan O, Findik Guvendi K and Kucuker SA: The protective effect of betanin and copper on heart and lung in end-organ ischemia reperfusion injury. Bratisl Lek Listy. 121:211–217. 2020.PubMed/NCBI | |
|
Srinivasan S and Avadhani NG: Cytochrome c oxidase dysfunction in oxidative stress. Free Radic Biol Med. 53:1252–1263. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Johnson WT and Newman SM Jr: Hearts in adult offspring of copper-deficient dams exhibit decreased cytochrome c oxidase activity, increased mitochondrial hydrogen peroxide generation and enhanced formation of intracellular residual bodies. J Nutr Biochem. 18:97–104. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Medeiros DM and Wildman RE: Newer findings on a unified perspective of copper restriction and cardiomyopathy. Proc Soc Exp Biol Med. 215:299–313. 1997. View Article : Google Scholar : PubMed/NCBI | |
|
Zhou Z, Johnson WT and Kang YJ: Regression of copper-deficient heart hypertrophy: Reduction in the size of hypertrophic cardiomyocytes. J Nutr Biochem. 20:621–628. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Gu J, Huang W, Duanmu Z, Zhuang R and Yang X: Cuproptosis and copper deficiency in ischemic vascular injury and repair. Apoptosis. 29:1007–1018. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Klevay LM: IHD from copper deficiency: A unified theory. Nutr Res Rev. 29:172–179. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Klevay LM and Viestenz KE: Abnormal electrocardiograms in rats deficient in copper. Am J Physiol. 240:H185–H189. 1981.PubMed/NCBI | |
|
Viestenz KE and Klevay LM: A randomized trial of copper therapy in rats with electrocardiographic abnormalities due to copper deficiency. Am J Clin Nutr. 35:258–266. 1982. View Article : Google Scholar : PubMed/NCBI | |
|
Bevan R and Levy L: Biomonitoring for workplace exposure to copper and its compounds is currently not interpretable. Int J Hyg Environ Health. 258:1143582024. View Article : Google Scholar : PubMed/NCBI | |
|
WHO. World Health Organization, . Copper in Drinking-Water. Background document for development of WHO Guidelines for Drinking-water Quality. 2004. | |
|
Taylor AA, Tsuji JS, McArdle ME, Adams WJ and Goodfellow WL Jr: Recommended reference values for risk assessment of oral exposure to copper. Risk Anal. 43:211–218. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Toscano CM, Filetti FM, Almenara CCP, Fioresi M and Vassallo DV: Copper exposure for 30 days at a daily dose twice the recommended increases blood pressure and cardiac contractility. Life Sci. 300:1205792022. View Article : Google Scholar : PubMed/NCBI | |
|
Filetti FM, Schereider IRG, Wiggers GA, Miguel M, Vassallo DV and Simões MR: Cardiovascular harmful effects of recommended daily doses (13 µg/kg/day), tolerable upper intake doses (0.14 mg/kg/day) and twice the tolerable doses (0.28 mg/kg/day) of copper. Cardiovasc Toxicol. 23:218–229. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Abbasi H, Khoshdooz S, Abbasi MM, Pasand M and Eslamian G: Shining a light on trace elements: A systematic review and Meta-analysis of serum concentrations in febrile seizure. Biol Trace Elem Res. May 8–2024.doi: 10.1007/s12011-024-04221-5 (Epub ahead of print). View Article : Google Scholar | |
|
Gucký A and Hamuľaková S: Targeting biometals in Alzheimer's disease with metal chelating agents including coumarin derivatives. CNS Drugs. 38:507–532. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Kannan S, Gillespie SW, Picking WL, Picking WD, Lorson CL and Singh K: Inhibitors against DNA polymerase I family of enzymes: Novel targets and opportunities. Biology (Basel). 13:2042024.PubMed/NCBI | |
|
Yang D, Wang T, Liu J, Wang H and Kang YJ: Reverse regulation of hepatic ceruloplasmin production in rat model of myocardial ischemia. J Trace Elem Med Biol. 64:1266862021. View Article : Google Scholar : PubMed/NCBI | |
|
Zou Y, Wu S, Xu X, Tan X, Yang S, Chen T, Zhang J, Li S, Li W and Wang F: Cope with copper: From molecular mechanisms of cuproptosis to copper-related kidney diseases. Int Immunopharmacol. 133:1120752024. View Article : Google Scholar : PubMed/NCBI | |
|
Gromadzka G, Grycan M and Przybyłkowski AM: Monitoring of copper in wilson disease. Diagnostics (Basel). 13:18302023. View Article : Google Scholar : PubMed/NCBI | |
|
Wei H, Zhang WJ, McMillen TS, Leboeuf RC and Frei B: Copper chelation by tetrathiomolybdate inhibits vascular inflammation and atherosclerotic lesion development in apolipoprotein E-deficient mice. Atherosclerosis. 223:306–313. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Ferrero ME: Neuron protection by EDTA may explain the successful outcomes of toxic metal chelation therapy in neurodegenerative diseases. Biomedicines. 10:24762022. View Article : Google Scholar : PubMed/NCBI | |
|
Fulgenzi A and Ferrero ME: EDTA chelation therapy for the treatment of neurotoxicity. Int J Mol Sci. 20:10192019. View Article : Google Scholar : PubMed/NCBI | |
|
Litwin T, Antos A, Bembenek J and Cz Onkowska A: Neurological deterioration in Wilson's disease-types, etiology, course, and management. Discov Med. 36:646–654. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Ramli FF, Hashim SAS, Raman B, Mahmod M and Kamisah Y: Role of Trientine in hypertrophic cardiomyopathy: A review of mechanistic angles. Pharmaceuticals (Basel). 15:11452022. View Article : Google Scholar : PubMed/NCBI | |
|
Amadi CN, Offor SJ, Frazzoli C and Orisakwe OE: Natural antidotes and management of metal toxicity. Environ Sci Pollut Res Int. 26:18032–18052. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Karginova O, Weekley CM, Raoul A, Alsayed A, Wu T, Lee SS, He C and Olopade OI: Inhibition of copper transport induces apoptosis in Triple-negative breast cancer cells and suppresses tumor angiogenesis. Mol Cancer Ther. 18:873–885. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Leitch JM, Jensen LT, Bouldin SD, Outten CE, Hart PJ and Culotta VC: Activation of Cu, Zn-superoxide dismutase in the absence of oxygen and the copper chaperone CCS. J Biol Chem. 284:21863–21871. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Yang Y, Feng Q, Luan Y, Liu H, Jiao Y, Hao H, Yu B, Luan Y and Ren K: Exploring cuproptosis as a mechanism and potential intervention target in cardiovascular diseases. Front Pharmacol. 14:12292972023. View Article : Google Scholar : PubMed/NCBI | |
|
Hinshaw DC and Shevde LA: The Tumor microenvironment innately modulates cancer progression. Cancer Res. 79:4557–4566. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Tardito S, Bassanetti I, Bignardi C, Elviri L, Tegoni M, Mucchino C, Bussolati O, Franchi-Gazzola R and Marchiò L: Copper binding agents acting as copper ionophores lead to caspase inhibition and paraptotic cell death in human cancer cells. J Am Chem Soc. 133:6235–6242. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Krasnovskaya O, Naumov A, Guk D, Gorelkin P, Erofeev A, Beloglazkina E and Majouga A: Copper coordination compounds as biologically active agents. Int J Mol Sci. 21:39652020. View Article : Google Scholar : PubMed/NCBI | |
|
Zheng P, Zhou C, Lu L, Liu B and Ding Y: Elesclomol: A copper ionophore targeting mitochondrial metabolism for cancer therapy. J Exp Clin Cancer Res. 41:2712022. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang HA and Kitts DD: Turmeric and its bioactive constituents trigger cell signaling mechanisms that protect against diabetes and cardiovascular diseases. Mol Cell Biochem. 476:3785–3814. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Banfi G, Salvagno GL and Lippi G: The role of ethylenediamine tetraacetic acid (EDTA) as in vitro anticoagulant for diagnostic purposes. Clin Chem Lab Med. 45:565–576. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Alvarez HM, Xue Y, Robinson CD, Canalizo-Hernández MA, Marvin RG, Kelly RA, Mondragón A, Penner-Hahn JE and O'Halloran TV: Tetrathiomolybdate inhibits copper trafficking proteins through metal cluster formation. Science. 327:331–334. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang S, Liu H, Amarsingh GV, Cheung CC, Hogl S, Narayanan U, Zhang L, McHarg S, Xu J, Gong D, et al: Diabetic cardiomyopathy is associated with defective myocellular copper regulation and both defects are rectified by divalent copper chelation. Cardiovasc Diabetol. 13:1002014. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang L, Ward ML, Phillips AR, Zhang S, Kennedy J, Barry B, Cannell MB and Cooper GJ: Protection of the heart by treatment with a divalent-copper-selective chelator reveals a novel mechanism underlying cardiomyopathy in diabetic rats. Cardiovasc Diabetol. 12:1232013. View Article : Google Scholar : PubMed/NCBI | |
|
Lu J, Gong D, Choong SY, Xu H, Chan YK, Chen X, Fitzpatrick S, Glyn-Jones S, Zhang S, Nakamura T, et al: Copper(II)-selective chelation improves function and antioxidant defences in cardiovascular tissues of rats as a model of diabetes: Comparisons between triethylenetetramine and three less copper-selective transition-metal-targeted treatments. Diabetologia. 53:1217–1226. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Gong D, Lu J, Chen X, Choong SY, Zhang S, Chan YK, Glyn-Jones S, Gamble GD, Phillips AR and Cooper GJ: Molecular changes evoked by triethylenetetramine treatment in the extracellular matrix of the heart and aorta in diabetic rats. Mol Pharmacol. 70:2045–2051. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Pan Q, Bao LW and Merajver SD: Tetrathiomolybdate inhibits angiogenesis and metastasis through suppression of the NFkappaB signaling cascade. Mol Cancer Res. 1:701–706. 2003.PubMed/NCBI | |
|
Ouyang P, Gottlieb SH, Culotta VL and Navas-Acien A: EDTA chelation therapy to reduce cardiovascular events in persons with diabetes. Curr Cardiol Rep. 17:962015. View Article : Google Scholar : PubMed/NCBI | |
|
Lamas GA, Goertz C, Boineau R, Mark DB, Rozema T, Nahin RL, Lindblad L, Lewis EF, Drisko J and Lee KL; TACT Investigators, : Effect of disodium EDTA chelation regimen on cardiovascular events in patients with previous myocardial infarction: The TACT randomized trial. JAMA. 309:1241–1250. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Ujueta F, Arenas IA, Escolar E, Diaz D, Boineau R, Mark DB, Golden P, Lindblad L, Kim H, Lee KL and Lamas GA: The effect of EDTA-based chelation on patients with diabetes and peripheral artery disease in the Trial to Assess Chelation Therapy (TACT). J Diabetes Complications. 33:490–494. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Jomova K, Makova M, Alomar SY, Alwasel SH, Nepovimova E, Kuca K, Rhodes CJ and Valko M: Essential metals in health and disease. Chem Biol Interact. 367:1101732022. View Article : Google Scholar : PubMed/NCBI | |
|
Stiles LI, Ferrao K and Mehta KJ: Role of zinc in health and disease. Clin Exp Med. 24:382024. View Article : Google Scholar : PubMed/NCBI | |
|
Pajarillo EAB, Lee E and Kang DK: Trace metals and animal health: Interplay of the gut microbiota with iron, manganese, zinc, and copper. Anim Nutr. 7:750–761. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Qiu Y, Li C, Huang Y, Wu C, Li F, Zhang X and Xia D: Exploring the causal associations of micronutrients on Urate levels and the risk of gout: A Mendelian randomization study. Clin Nutr. 43:1001–1012. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Salehifar E, Shokrzadeh M, Ghaemian A, Aliakbari S and Saeedi Saravi SS: The study of Cu and Zn serum levels in idiopathic dilated cardiomyopathy (IDCMP) patients and its comparison with healthy volunteers. Biol Trace Elem Res. 125:97–108. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Wacewicz M, Socha K, Soroczyńska J, Niczyporuk M, Aleksiejczuk P, Ostrowska J and Borawska MH: Concentration of selenium, zinc, copper, Cu/Zn ratio, total antioxidant status and c-reactive protein in the serum of patients with psoriasis treated by narrow-band ultraviolet B phototherapy: A case-control study. J Trace Elem Med Biol. 44:109–114. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Ghaemian A, Salehifar E, Jalalian R, Ghasemi F, Azizi S, Masoumi S, Shiraj H, Mohammadpour RA and Bagheri GA: Zinc and copper levels in severe heart failure and the effects of atrial fibrillation on the zinc and copper status. Biol Trace Elem Res. 143:1239–1246. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Luo Z, Yin F, Wang X and Kong L: Progress in approved drugs from natural product resources. Chin J Nat Med. 22:195–211. 2024.PubMed/NCBI | |
|
Han Y, Zhu J, Yang L, Nilsson-Payant BE, Hurtado R, Lacko LA, Sun X, Gade AR, Higgins CA, Sisso WJ, et al: SARS-CoV-2 infection induces ferroptosis of sinoatrial node pacemaker cells. Circ Res. 130:963–977. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Del Re DP, Amgalan D, Linkermann A, Liu Q and Kitsis RN: Fundamental mechanisms of regulated cell death and implications for heart disease. Physiol Rev. 99:1765–1817. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Jiang X, Stockwell BR and Conrad M: Ferroptosis: Mechanisms, biology and role in disease. Nat Rev Mol Cell Biol. 22:266–282. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Corradini E, Buzzetti E and Pietrangelo A: Genetic iron overload disorders. Mol Angles Med. 75:1008962020.PubMed/NCBI | |
|
Müller T, Dewitz C, Schmitz J, Schröder AS, Bräsen JH, Stockwell BR, Murphy JM, Kunzendorf U and Krautwald S: Necroptosis and ferroptosis are alternative cell death pathways that operate in acute kidney failure. Cell Mol Life Sci. 74:3631–3645. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Zhao Y, Li Y, Zhang R, Wang F, Wang T and Jiao Y: The role of Erastin in Ferroptosis and its prospects in cancer therapy. Onco Targets Ther. 13:5429–5441. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Kunutsor SK, Voutilainen A, Kurl S and Laukkanen JA: Serum copper-to-zinc ratio is associated with heart failure and improves risk prediction in middle-aged and older Caucasian men: A prospective study. Nutr Metab Cardiovasc Dis. 32:1924–1935. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Wang D, Tian Z, Zhang P, Zhen L, Meng Q, Sun B, Xu X, Jia T and Li S: The molecular mechanisms of cuproptosis and its relevance to cardiovascular disease. Biomed Pharmacother. 163:1148302023. View Article : Google Scholar : PubMed/NCBI | |
|
Majewski M, Ognik K and Juśkiewicz J: Copper nanoparticles enhance vascular contraction induced by prostaglandin F2-alpha and decrease the blood plasma cu-zn ratio in wistar rats. J Elem. 24:911–922. 2019. | |
|
Tousson E and El-Gharbawy DM: Impact of Saussurea lappa root extract against copper oxide nanoparticles induced oxidative stress and toxicity in rat cardiac tissues. Environ Toxicol. 38:415–421. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Huo S, Wang Q, Shi W, Peng L, Jiang Y, Zhu M, Guo J, Peng D, Wang M, Men L, et al: ATF3/SPI1/SLC31A1 signaling promotes cuproptosis induced by advanced glycosylation end products in diabetic myocardial injury. Int J Mol Sci. 24:16672023. View Article : Google Scholar : PubMed/NCBI | |
|
Piavchenko G, Alekseev A, Stelmashchuk O, Seryogina E, Zherebtsov E, Kuznetsova E, Dunaev A, Volkov Y and Kuznetsov S: A complex morphofunctional approach for zinc toxicity evaluation in rats. Heliyon. 6:e037682020. View Article : Google Scholar : PubMed/NCBI | |
|
Karagulova G, Yue Y, Moreyra A, Boutjdir M and Korichneva I: Protective role of intracellular zinc in myocardial ischemia/reperfusion is associated with preservation of protein kinase C isoforms. J Pharmacol Exp Ther. 321:517–525. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Yang HJ, Kong B, Shuai W, Zhang JJ and Huang H: Shensong Yangxin attenuates metabolic syndrome-induced atrial fibrillation via inhibition of ferroportin-mediated intracellular iron overload. Phytomedicine. 101:1540862022. View Article : Google Scholar : PubMed/NCBI | |
|
Fang J, Kong B, Shuai W, Xiao Z, Dai C, Qin T, Gong Y, Zhu J, Liu Q and Huang H: Ferroportin-mediated ferroptosis involved in new-onset atrial fibrillation with LPS-induced endotoxemia. Eur J Pharmacol. 913:1746222021. View Article : Google Scholar : PubMed/NCBI | |
|
Kitala K, Tanski D, Godlewski J, Krajewska-Włodarczyk M, Gromadziński L and Majewski M: Copper and zinc particles as regulators of cardiovascular system function-a review. Nutrients. 15:30402023. View Article : Google Scholar : PubMed/NCBI | |
|
Jomova K, Vondrakova D, Lawson M and Valko M: Metals, oxidative stress and neurodegenerative disorders. Mol Cell Biochem. 345:91–104. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Li JW, Mao YM, Chen SL, Ye R, Fei YR, Li Y, Tong SY, Yang HW and He YB: The interplay between metal ions and immune cells in glioma: Pathways to immune escape. Discov Oncol. 15:3482024. View Article : Google Scholar : PubMed/NCBI | |
|
Yuan S, Chen S, Xi Z and Liu Y: Copper-finger protein of Sp1: The molecular basis of copper sensing. Metallomics. 9:1169–1175. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Su TA, Bruemmer KJ and Chang CJ: Caged luciferins for bioluminescent activity-based sensing. Curr Opin Biotechnol. 60:198–204. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Guo B, Yang F, Zhang L, Zhao Q, Wang W, Yin L, Chen D, Wang M, Han S, Xiao H and Xing N: Cuproptosis induced by ROS responsive nanoparticles with elesclomol and copper combined with αPD-L1 for enhanced cancer immunotherapy. Adv Mater. 35:e22122672023. View Article : Google Scholar : PubMed/NCBI | |
|
Liu S, Zhao Y, Shen M, Hao Y, Wu X, Yao Y, Li Y and Yang Q: Hyaluronic acid targeted and pH-responsive multifunctional nanoparticles for chemo-photothermal synergistic therapy of atherosclerosis. J Mater Chem B. 10:562–570. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Li Y, Yang J, Zhang Q, Xu S, Sun W, Ge S, Xu X, Jager MJ, Jia R, Zhang J and Fan X: Copper ionophore elesclomol selectively targets GNAQ/11-mutant uveal melanoma. Oncogene. 41:3539–3553. 2022. View Article : Google Scholar : PubMed/NCBI |