|
1
|
Oronsky B, Reid TR, Oronsky A, Sandhu N
and Knox SJ: A review of newly diagnosed glioblastoma. Front Oncol.
10:5740122021. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Wang LB, Karpova A, Gritsenko MA, Kyle JE,
Cao S, Li Y, Rykunov D, Colaprico A, Rothstein JH, Hong R, et al:
Proteogenomic and metabolomic characterization of human
glioblastoma. Cancer Cell. 39:509–528.e20. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Osborn AG, Louis DN, Poussaint TY,
Linscott LL and Salzman KL: The 2021 World health organization
classification of tumors of the central nervous System: What
neuroradiologists need to know. AJNR Am J Neuroradiol. 43:928–937.
2022. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Louis DN, Perry A, Wesseling P, Brat DJ,
Cree IA, Figarella-Branger D, Hawkins C, Ng HK, Pfister SM,
Reifenberger G, et al: The 2021 WHO Classification of Tumors of the
Central Nervous System: A summary. Neuro Oncol. 23:1231–1251. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Miller KD, Ostrom QT, Kruchko C, Patil N,
Tihan T, Cioffi G, Fuchs HE, Waite KA, Jemal A, Siegel RL, et al:
Brain and other central nervous system tumor statistics, 2021. CA
Cancer J Clin. 71:381–406. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Miller KE, Cassady KA, Roth JC, Clements
J, Schieffer KM, Leraas K, Miller AR, Prasad N, Leavenworth JW,
Aban IB, et al: Immune activity and response differences of
oncolytic viral therapy in recurrent glioblastoma: Gene expression
analyses of a phase IB study. Clin Cancer Res. 28:498–506. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Hanif F, Muzaffar K, Perveen K, Malhi SM
and Simjee ShU: Glioblastoma Multiforme: A review of its
epidemiology and pathogenesis through clinical presentation and
treatment. Asian Pac J Cancer Prev. 18:3–9. 2017.PubMed/NCBI
|
|
8
|
Tadipatri R, Lyon K, Azadi A and Fonkem E:
A view of the epidemiologic landscape: How population-based studies
can lend novel insights regarding the pathophysiology of
glioblastoma. Chin Clin Oncol. 10:352021. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Ostrom QT, Adel Fahmideh M, Cote DJ,
Muskens IS, Schraw JM, Scheurer ME and Bondy ML: Risk factors for
childhood and adult primary brain tumors. Neuro Oncol.
21:1357–1375. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Vogelbaum MA, Brown PD, Messersmith H,
Brastianos PK, Burri S, Cahill D, Dunn IF, Gaspar LE, Gatson NTN,
Gondi V, et al: Treatment for brain metastases: ASCO-SNO-ASTRO
guideline. J Clin Oncol. 40:492–516. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Cai X and Sughrue ME: Glioblastoma: New
therapeutic strategies to address cellular and genomic complexity.
Oncotarget. 9:9540–9554. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Ayati A, Moghimi S, Salarinejad S, Safavi
M, Pouramiri B and Foroumadi A: A review on progression of
epidermal growth factor receptor (EGFR) inhibitors as an efficient
approach in cancer targeted therapy. Bioorg Chem. 99:1038112020.
View Article : Google Scholar : PubMed/NCBI
|
|
13
|
An Z, Aksoy O, Zheng T, Fan QW and Weiss
WA: Epidermal growth factor receptor and EGFRvIII in glioblastoma:
Signaling pathways and targeted therapies. Oncogene. 37:1561–1575.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Nozawa T, Okada M, Natsumeda M, Eda T, Abe
H, Tsukamoto Y, Okamoto K, Oishi M, Takahashi H, Fujii Y and Kakita
A: EGFRvIII is expressed in cellular areas of tumor in a subset of
glioblastoma. Neurol Med Chir (Tokyo). 59:89–97. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
So JS, Kim H and Han KS: Mechanisms of
invasion in glioblastoma:. Extracellular Matrix; Ca2+ signaling,
and glutamate: Front Cell Neurosci. 15. pp. 6630922015, View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Kang SS, Han KS, Ku BM, Lee YK, Hong J,
Shin HY, Almonte AG, Woo DH, Brat DJ, Hwang EM, et al:
Caffeine-mediated inhibition of calcium release channel inositol
1,4,5-trisphosphate receptor subtype 3 blocks glioblastoma invasion
and extends survival. Cancer Res. 70:1173–1183. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Wu J, Li L, Jiang G, Zhan H and Wang N:
B-cell CLL/lymphoma 3 promotes glioma cell proliferation and
inhibits apoptosis through the oncogenic STAT3 pathway. Int J
Oncol. 49:2471–2479. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Wu J, Li L, Jiang G, Zhan H, Zhu X and
Yang W: NCAPG2 facilitates glioblastoma cells' malignancy and
xenograft tumor growth via HBO1 activation by phosphorylation. Cell
Tissue Res. 383:693–706. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Wu J, Li R, Li L, Gu Y, Zhan H, Zhou C and
Zhong C: MYC-activated lncRNA HNF1A-AS1 overexpression facilitates
glioma progression via cooperating with miR-32-5p/SOX4 axis. Cancer
Med. 9:6387–6398. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Wu J, Wang N, Yang Y, Jiang G, Zhan H and
Li F: LINC01152 upregulates MAML2 expression to modulate the
progression of glioblastoma multiforme via Notch signaling pathway.
Cell Death Dis. 12:1152021. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Aslan K, Turco V, Blobner J, Sonner JK,
Liuzzi AR, Núñez NG, De Feo D, Kickingereder P, Fischer M, Green E,
et al: Heterogeneity of response to immune checkpoint blockade in
hypermutated experimental gliomas. Nat Commun. 11:9312020.
View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Chang SM, Lamborn KR, Malec M, Larson D,
Wara W, Sneed P, Rabbitt J, Page M, Nicholas MK and Prados MD:
Phase II study of temozolomide and thalidomide with radiation
therapy for newly diagnosed glioblastoma multiforme. Int J Radiat
Oncol Biol Phys. 60:353–357. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Fisher JP and Adamson DC: Current
FDA-Approved therapies for high-grade malignant gliomas.
Biomedicines. 9:3242021. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Hanna C, Kurian KM, Williams K, Watts C,
Jackson A, Carruthers R, Strathdee K, Cruickshank G, Dunn L,
Erridge S, et al: Pharmacokinetics, safety, and tolerability of
olaparib and temozolomide for recurrent glioblastoma: Results of
the phase I OPARATIC trial. Neuro Oncol. 22:1840–1850. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Löber-Handwerker R, Döring K, Bock C,
Rohde V and Malinova V: Defining the impact of adjuvant treatment
on the prognosis of patients with inoperable glioblastoma
undergoing biopsy only: Does the survival benefit outweigh the
treatment effort? Neurosurg Rev. 45:2339–2347. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Dumas AA, Pomella N, Rosser G, Guglielmi
L, Vinel C, Millner TO, Rees J, Aley N, Sheer D, Wei J, et al:
Microglia promote glioblastoma via mTOR-mediated immunosuppression
of the tumour microenvironment. EMBO J. 39:e1037902020. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Lara-Velazquez M, Al-Kharboosh R,
Jeanneret S, Vazquez-Ramos C, Mahato D, Tavanaiepour D, Rahmathulla
G and Quinones-Hinojosa A: Advances in brain tumor surgery for
glioblastoma in adults. Brain Sci. 7:1662017. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Zhao J, Chen AX, Gartrell RD, Silverman
AM, Aparicio L, Chu T, Bordbar D, Shan D, Samanamud J, Mahajan A,
et al: Immune and genomic correlates of response to anti-PD-1
immunotherapy in glioblastoma. Nat Med. 25:462–469. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Tan AC, Ashley DM, López GY, Malinzak M,
Friedman HS and Khasraw M: Management of glioblastoma: State of the
art and future directions. CA Cancer J Clin. 70:299–312. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Waldman AD, Fritz JM and Lenardo MJ: A
guide to cancer immunotherapy: From T cell basic science to
clinical practice. Nat Rev Immunol. 20:651–668. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Rizvi NA, Hellmann MD, Snyder A, Kvistborg
P, Makarov V, Havel JJ, Lee W, Yuan J, Wong P, Ho TS, et al: Cancer
immunology. Mutational landscape determines sensitivity to PD-1
blockade in non-small cell lung cancer. Science. 348:124–128. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Vansteenkiste JF, Cho BC, Vanakesa T, De
Pas T, Zielinski M, Kim MS, Jassem J, Yoshimura M, Dahabreh J,
Nakayama H, et al: Efficacy of the MAGE-A3 cancer immunotherapeutic
as adjuvant therapy in patients with resected MAGE-A3-positive
non-small-cell lung cancer (MAGRIT): A randomised, double-blind,
placebo-controlled, phase 3 trial. Lancet Oncol. 17:822–835. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Hirabayashi K, Du H, Xu Y, Shou P, Zhou X,
Fucá G, Landoni E, Sun C, Chen Y, Savoldo B and Dotti G:
Dual-targeting CAR-T cells with optimal co-stimulation and
metabolic fitness enhance antitumor activity and prevent escape in
solid tumors. Nat Cancer. 2:904–918. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Wang G, Zhou X, Fucà G, Dukhovlinova E,
Shou P, Li H, Johnston C, Mcguinness B, Dotti G and Du H: Fully
human antibody VH domains to generate mono and
bispecific CAR to target solid tumors. J Immunother Cancer.
9:e0021732021. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Adams GP and Weiner LM: Monoclonal
antibody therapy of cancer. Nat Biotechnol. 23:1147–1157. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Andtbacka RH, Kaufman HL, Collichio F,
Amatruda T, Senzer N, Chesney J, Delman KA, Spitler LE, Puzanov I,
Agarwala SS, et al: Talimogene laherparepvec improves durable
response rate in patients with advanced melanoma. J Clin Oncol.
33:2780–2788. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Iwai Y, Ishida M, Tanaka Y, Okazaki T,
Honjo T and Minato N: Involvement of PD-L1 on tumor cells in the
escape from host immune system and tumor immunotherapy by PD-L1
blockade. Proc Natl Acad Sci USA. 99:12293–12297. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Hirano F, Kaneko K, Tamura H, Dong H, Wang
S, Ichikawa M, Rietz C, Flies DB, Lau JS, Zhu G, et al: Blockade of
B7-H1 and PD-1 by monoclonal antibodies potentiates cancer
therapeutic immunity. Cancer Res. 65:1089–1096. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Kirkwood JM, Tarhini AA, Panelli MC,
Moschos SJ, Zarour HM, Butterfield LH and Gogas HJ: Next Generation
of Immunotherapy for Melanoma. Clin Oncol. 26:3445–3455.
2008.PubMed/NCBI
|
|
40
|
Vitale I, Shema E, Loi S and Galluzzi L:
Intratumoral heterogeneity in cancer progression and response to
immunotherapy. Nat Med. 27:212–224. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Ansell SM, Lesokhin AM, Borrello I,
Halwani A, Scott EC, Gutierrez M, Schuster SJ, Millenson MM, Cattry
D, Freeman GJ, et al: PD-1 blockade with nivolumab in relapsed or
refractory Hodgkin's lymphoma. N Engl J Med. 372:311–319. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Azad NS, Gray RJ, Overman MJ, Schoenfeld
JD, Mitchell EP, Zwiebel JA, Sharon E, Streicher H, Li S, McShane
LM, et al: Nivolumab is effective in mismatch repair-deficient
noncolorectal cancers: Results From Arm Z1D-A Subprotocol of the
NCI-MATCH (EAY131) Study. J Clin Oncol. 38:214–222. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Le DT, Uram JN, Wang H, Bartlett BR,
Kemberling H, Eyring AD, Skora AD, Luber BS, Azad NS, Laheru D, et
al: PD-1 blockade in tumors with mismatch-repair deficiency. N Engl
J Med. 372:2509–2520. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Tumeh PC, Harview CL, Yearley JH, Shintaku
IP, Taylor EJ, Robert L, Chmielowski B, Spasic M, Henry G, Ciobanu
V, et al: PD-1 blockade induces responses by inhibiting adaptive
immune resistance. Nature. 515:568–571. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Litak J, Mazurek M, Grochowski C,
Kamieniak P and Roliński J: PD-L1/PD-1 axis in glioblastoma
multiforme. Int J Mol Sci. 20:53472019. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Scheffel TB, Grave N, Vargas P, Diz FM,
Rockenbach L and Morrone FB: Immunosuppression in gliomas via
PD-1/PD-L1 axis and adenosine pathway. Front Oncol. 10:6173852021.
View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Caccese M, Indraccolo S, Zagonel V and
Lombardi G: PD-1/PD-L1 immune-checkpoint inhibitors in
glioblastoma: A concise review. Crit Rev Oncol Hematol.
135:128–134. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Cloughesy TF, Mochizuki AY, Orpilla JR,
Hugo W, Lee AH, Davidson TB, Wang AC, Ellingson BM, Rytlewski JA,
Sanders CM, et al: Neoadjuvant anti-PD-1 immunotherapy promotes a
survival benefit with intratumoral and systemic immune responses in
recurrent glioblastoma. Nat Med. 25:477–486. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Schalper KA, Rodriguez-Ruiz ME, Diez-Valle
R, López-Janeiro A, Porciuncula A, Idoate MA, Inogés S, de Andrea
C, López-Diaz de Cerio A, Tejada S, et al: Neoadjuvant nivolumab
modifies the tumor immune microenvironment in resectable
glioblastoma. Nat Med. 25:470–476. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Yang T, Kong Z and Ma W: PD-1/PD-L1 immune
checkpoint inhibitors in glioblastoma: Clinical studies, challenges
and potential. Hum Vaccin Immunother. 17:546–553. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Lukas RV, Rodon J, Becker K, Wong ET, Shih
K, Touat M, Fassò M, Osborne S, Molinero L, O'Hear C, et al:
Clinical activity and safety of atezolizumab in patients with
recurrent glioblastoma. J Neurooncol. 140:317–328. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Kurz SC, Cabrera LP, Hastie D, Huang R,
Unadkat P, Rinne M, Nayak L, Lee EQ, Reardon DA and Wen PY: PD-1
inhibition has only limited clinical benefit in patients with
recurrent high-grade glioma. Neurology. 91:e1355–e1359. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Reardon DA, Omuro A, Brandes AA, Rieger J,
Wick A, Sepulveda J, Phuphanich S, de Souza P, Ahluwalia MS, Lim M,
et al: OS10.3 Randomized phase 3 study evaluating the efficacy and
safety of nivolumab vs bevacizumab in patients with recurrent
glioblastoma: CheckMate 143. Neuro Oncol. 19 (Suppl_3):iii212017.
View Article : Google Scholar
|
|
54
|
Horn L, Mansfield AS, Szczęsna A, Havel L,
Krzakowski M, Hochmair MJ, Huemer F, Losonczy G, Johnson ML, Nishio
M, et al: First-Line atezolizumab plus chemotherapy in
extensive-stage small-cell lung cancer. N Engl J Med.
379:2220–2229. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Antonia SJ, Villegas A, Daniel D, Vicente
D, Murakami S, Hui R, Yokoi T, Chiappori A, Lee KH, de Wit M, et
al: Durvalumab after chemoradiotherapy in stage III non-small-cell
lung cancer. N Engl J Med. 377:1919–1929. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Reardon DA, Kaley TJ, Dietrich J, Clarke
JL, Dunn GP, Lim M, Cloughesy TM, Gan HK, Park AJ, Schwarzenberger
P, et al: Phase 2 study to evaluate safety and efficacy of MEDI4736
(durvalumab [DUR]) in glioblastoma (GBM) patients: An update. J
Clin Oncol. 35:2042017. View Article : Google Scholar
|
|
57
|
Bouffet E, Larouche V, Campbell BB, Merico
D, de Borja R, Aronson M, Durno C, Krueger J, Cabric V, Ramaswamy
V, et al: Immune checkpoint inhibition for hypermutant glioblastoma
multiforme resulting from germline biallelic mismatch repair
deficiency. J Clin Oncol. 34:2206–2211. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Logan CV, Murray JE, Parry DA, Robertson
A, Bellelli R, Tarnauskaitė Ž, Challis R, Cleal L, Borel V, Fluteau
A, et al: DNA polymerase epsilon deficiency causes IMAGe syndrome
with variable immunodeficiency. Am J Hum Genet. 103:1038–1044.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Yarchoan M, Hopkins A and Jaffee EM: Tumor
mutational burden and response Rate to PD-1 Inhibition. N Engl J
Med. 377:2500–2501. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Guo X, Zhang Y, Jiao H and Miao X: The
prognostic significance of PD-L1 expression in patients with
glioblastoma: A meta-analysis. Front Oncol. 12:9255602022.
View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Galon J and Bruni D: Approaches to treat
immune hot, altered and cold tumours with combination
immunotherapies. Nat Rev Drug Discov. 18:197–218. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Raphael I, Kumar R, McCarl LH, Shoger K,
Wang L, Sandlesh P, Sneiderman CT, Allen J, Zhai S, Campagna ML, et
al: TIGIT and PD-1 immune checkpoint pathways are associated with
patient outcome and anti-tumor immunity in glioblastoma. Front
Immunol. 12:6371462021. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Jan CI, Tsai WC, Harn HJ, Shyu WC, Liu MC,
Lu HM, Chiu SC and Cho DY: Predictors of response to autologous
dendritic cell therapy in glioblastoma multiforme. Front Immunol.
9:7272018. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Fanelli GN, Grassini D, Ortenzi V,
Pasqualetti F, Montemurro N, Perrini P, Naccarato AG and Scatena C:
Decipher the glioblastoma microenvironment: The first milestone for
new groundbreaking therapeutic strategies. Genes (Basel).
12:4452021. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Ohgaki H and Kleihues P: Genetic pathways
to primary and secondary glioblastoma. Am J Pathol. 170:1445–1453.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Qi X, Jha SK, Jha NK, Dewanjee S, Dey A,
Deka R, Pritam P, Ramgopal K, Liu W and Hou K: Antioxidants in
brain tumors: Current therapeutic significance and future
prospects. Mol Cancer. 21:2042022. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Peng W, Chen JQ, Liu C, Malu S, Creasy C,
Tetzlaff MT, Xu C, McKenzie JA, Zhang C, Liang X, et al: Loss of
PTEN Promotes Resistance to T Cell-Mediated Immunotherapy. Cancer
Discov. 6:202–216. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
George S, Miao D, Demetri GD, Adeegbe D,
Rodig SJ, Shukla S, Lipschitz M, Amin-Mansour A, Raut CP, Carter
SL, et al: Loss of PTEN Is Associated with Resistance to Anti-PD-1
checkpoint blockade therapy in metastatic uterine leiomyosarcoma.
Immunity. 46:197–204. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
de Bono JS, De Giorgi U, Rodrigues DN,
Massard C, Bracarda S, Font A, Arranz Arija JA, Shih KC, Radavoi
GD, Xu N, et al: Randomized phase II study evaluating akt blockade
with ipatasertib, in combination with abiraterone, in patients with
metastatic prostate cancer with and without PTEN Loss. Clin Cancer
Res. 25:928–936. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Ascierto PA, Capone M, Grimaldi AM,
Mallardo D, Simeone E, Madonna G, Roder H, Meyer K, Asmellash S,
Oliveira C, et al: Proteomic test for anti-PD-1 checkpoint blockade
treatment of metastatic melanoma with and without BRAF mutations. J
Immunother Cancer. 7:912019. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Sumimoto H, Imabayashi F, Iwata T and
Kawakami Y: The BRAF-MAPK signaling pathway is essential for
cancer-immune evasion in human melanoma cells. J Exp Med.
203:1651–1656. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Caputo F, Santini C, Bardasi C, Cerma K,
Casadei-Gardini A, Spallanzani A, Andrikou K, Cascinu S and
Gelsomino F: BRAF-Mutated colorectal cancer: Clinical and molecular
insights. Int J Mol Sci. 20:53692019. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Dong C, Davis RJ and Flavell RA: MAP
kinases in the immune response. Annu Rev Immunol. 20:55–72. 2002.
View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Wang Y, Liu S, Yang Z, Algazi AP, Lomeli
SH, Wang Y, Othus M, Hong A, Wang X, Randolph CE, et al:
Anti-PD-1/L1 lead-in before MAPK inhibitor combination maximizes
antitumor immunity and efficacy. Cancer Cell. 39:1375–1387.e6.
2021. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Wang J, Cazzato E, Ladewig E, Frattini V,
Rosenbloom DI, Zairis S, Abate F, Liu Z, Elliott O, Shin YJ, et al:
Clonal evolution of glioblastoma under therapy. Nat Genet.
48:768–776. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Collins PE, Kiely PA and Carmody RJ:
Inhibition of Transcription by B Cell Leukemia 3 (Bcl-3) Protein
Requires Interaction with Nuclear Factor κB (NF-κB) p50. J Biol
Chem. 289:7059–7067. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Cahill KE, Morshed RA and Yamini B:
Nuclear factor-κB in glioblastoma: Insights into regulators and
targeted therapy. Neuro Oncol. 18:329–339. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Hu YH, Jiao BH, Wang CY and Wu JL:
Regulation of temozolomide resistance in glioma cells via the
RIP2/NF-κB/MGMT pathway. CNS Neurosci Ther. 27:552–563. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Fan S, Wu N, Chang S, Chen L and Sun X:
The immune regulation of BCL3 in glioblastoma with mutated IDH1.
Aging (Albany NY). 14:3856–3873. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Zou Y, Uddin M, Padmanabhan S, Zhu Y, Bu
P, Vancura A and Vancurova I: The proto-oncogene Bcl3 induces
immune checkpoint PD-L1 expression, mediating proliferation of
ovarian cancer cells. J Biol Chem. 293:18483–15496. 2018.
View Article : Google Scholar
|
|
81
|
Tomaszewski W, Sanchez-Perez L, Gajewski
TF and Sampson JH: Brain tumor microenvironment and host state:
Implications for immunotherapy. Clin Cancer Res. 25:4202–4210.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Pombo Antunes AR, Scheyltjens I, Duerinck
J, Neyns B, Movahedi K and Van Ginderachter JA: Understanding the
glioblastoma immune microenvironment as basis for the development
of new immunotherapeutic strategies. ELife. 9:e521762020.
View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Hansen LJ, Yang R, Roso K, Wang W, Chen L,
Yang Q, Pirozzi CJ and He Y: MTAP loss correlates with an
immunosuppressive profile in GBM and its substrate MTA stimulates
alternative macrophage polarization. Sci Rep. 12:41832022.
View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Zhang H and Chen Y: Identification of
glioblastoma immune subtypes and immune landscape based on a large
cohort. Hereditas. 158:302021. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Bird L: MDSC metabolite stuns T cells. Nat
Rev Immunol. 20:352–353. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Ito H, Nakashima H and Chiocca EA:
Molecular responses to immune checkpoint blockade in glioblastoma.
Nat Med. 25:359–361. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Hung AL, Maxwell R, Theodros D, Belcaid Z,
Mathios D, Luksik AS, Kim E, Wu A, Xia Y, Garzon-Muvdi T, et al:
TIGIT and PD-1 dual checkpoint blockade enhances antitumor immunity
and survival in GBM. Oncoimmunology. 7:e14667692018. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Czapiewski P, Cornelius M, Hartig R,
Kalinski T, Haybaeck J, Dittmer A, Dittmer J, Ignatov A and Nass N:
BCL3 expression is strongly associated with the occurrence of
breast cancer relapse under tamoxifen treatment in a retrospective
cohort study. Virchows Arch. 480:529–541. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Brocke-Heidrich K, Ge B, Cvijic H, Pfeifer
G, Löffler D, Henze C, McKeithan TW and Horn F: BCL3 is induced by
IL-6 via Stat3 binding to intronic enhancer HS4 and represses its
own transcription. Oncogene. 25:7297–7304. 2006. View Article : Google Scholar : PubMed/NCBI
|