1
|
Tsao CW, Aday AW, Almarzooq ZI, Alonso A,
Beaton AZ, Bittencourt MS, Boehme AK, Buxton AE, Carson AP,
Commodore-Mensah Y, et al: Heart disease and stroke statistics-2022
update: A report from the American heart association. Circulation.
145:e153–e639. 2022. View Article : Google Scholar : PubMed/NCBI
|
2
|
Bossone E and Eagle KA: Epidemiology and
management of aortic disease: Aortic aneurysms and acute aortic
syndromes. Nat Rev Cardiol. 18:331–348. 2021. View Article : Google Scholar : PubMed/NCBI
|
3
|
Daiber A, Steven S, Weber A, Shuvaev VV,
Muzykantov VR, Laher I, Li H, Lamas S and Münzel T: Targeting
vascular (endothelial) dysfunction. Br J Pharmacol. 174:1591–1619.
2017. View Article : Google Scholar : PubMed/NCBI
|
4
|
Castellon X and Bogdanova V: Chronic
Inflammatory diseases and endothelial dysfunction. Aging Dis.
7:81–89. 2016. View Article : Google Scholar : PubMed/NCBI
|
5
|
Gkaliagkousi E, Gavriilaki E,
Triantafyllou A and Douma S: Clinical significance of endothelial
dysfunction in essential hypertension. Curr Hypertens Rep.
17:852015. View Article : Google Scholar : PubMed/NCBI
|
6
|
Gimbrone MA Jr and Garcia-Cardena G:
Endothelial cell dysfunction and the pathobiology of
atherosclerosis. Circ Res. 118:620–636. 2016. View Article : Google Scholar : PubMed/NCBI
|
7
|
Yang J, Yu J, Li D, Yu S, Ke J, Wang L,
Wang Y, Qiu Y, Gao X, Zhang J and Huang L: Store-operated calcium
entry-activated autophagy protects EPC proliferation via the
CAMKK2-MTOR pathway in ox-LDL exposure. Autophagy. 13:82–98. 2017.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Hung SC, Kuo KL, Huang HL, Lin CC, Tsai
TH, Wang CH, Chen JW, Lin SJ, Huang PH and Tarng DC: Indoxyl
sulfate suppresses endothelial progenitor cell-mediated
neovascularization. Kidney Int. 89:574–585. 2016. View Article : Google Scholar : PubMed/NCBI
|
9
|
Zhang J, Li Y, Li H, Zhu B, Wang L, Guo B,
Xiang L, Dong J, Liu M and Xiang G: GDF11 improves angiogenic
function of EPCs in diabetic limb ischemia. Diabetes. 67:2084–2095.
2018. View Article : Google Scholar : PubMed/NCBI
|
10
|
Mathiyalagan P, Liang Y, Kim D, Misener S,
Thorne T, Kamide CE, Klyachko E, Losordo DW, Hajjar RJ and Sahoo S:
Angiogenic mechanisms of human CD34+ stem cell exosomes
in the repair of ischemic hindlimb. Circ Res. 120:1466–1476. 2017.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Zhao H, Yun W, Zhang Q, Cai X, Li X, Hui
G, Zhou X and Ni J: Mobilization of circulating endothelial
progenitor cells by dl-3-n-Butylphthalide in acute ischemic stroke
patients. J Stroke Cerebrovasc Dis. 25:752–760. 2016. View Article : Google Scholar : PubMed/NCBI
|
12
|
Wang Z, Moran E, Ding L, Cheng R, Xu X and
Ma JX: PPARα regulates mobilization and homing of endothelial
progenitor cells through the HIF-1α/SDF-1 pathway. Invest
Ophthalmol Vis Sci. 55:3820–3832. 2014. View Article : Google Scholar : PubMed/NCBI
|
13
|
Wang C, Cai Y, Zhang Y, Xiong Z, Li G and
Cui L: Local injection of deferoxamine improves neovascularization
in ischemic diabetic random flap by increasing HIF-1α and VEGF
expression. PLoS One. 9:e1008182014. View Article : Google Scholar : PubMed/NCBI
|
14
|
Altabas V and Biloš LSK: The role of
endothelial progenitor cells in atherosclerosis and impact of
anti-lipemic treatments on endothelial repair. Int J Mol Sci.
23:26632022. View Article : Google Scholar : PubMed/NCBI
|
15
|
Kraft HG, Köchl S, Menzel HJ, Sandholzer C
and Utermann G: The apolipoprotein (a) gene: A transcribed
hypervariable locus controlling plasma lipoprotein (a)
concentration. Hum Genet. 90:220–230. 1992. View Article : Google Scholar : PubMed/NCBI
|
16
|
Le Bras A: Lipoprotein(a) is an
independent predictor of CVD. Nat Rev Cardiol. 15:7272018.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Schmidt K, Noureen A, Kronenberg F and
Utermann G: Structure, function, and genetics of lipoprotein (a). J
Lipid Res. 57:1339–1359. 2016. View Article : Google Scholar : PubMed/NCBI
|
18
|
Lin Y, Yang Q, Liu Z, Su B, Xu F, Li Y,
Kang J and Zhou Z: Relationship between Apolipoprotein E genotype
and lipoprotein profile in patients with coronary heart disease.
Molecules. 27:13772022. View Article : Google Scholar : PubMed/NCBI
|
19
|
Afanasieva OI, Tyurina AV, Klesareva EA,
Arefieva TI, Ezhov MV and Pokrovsky SN: Lipoprotein(a), immune
cells and cardiovascular outcomes in patients with premature
coronary heart disease. J Pers Med. 12:2692022. View Article : Google Scholar : PubMed/NCBI
|
20
|
Yoshida H, Ito K, Manita D, Sato R,
Hiraishi C, Matsui S and Hirowatari Y: Clinical significance of
intermediate-density lipoprotein cholesterol determination as a
predictor for coronary heart disease risk in middle-aged men. Front
Cardiovasc Med. 8:7560572021. View Article : Google Scholar : PubMed/NCBI
|
21
|
Ghanavati M and Nasrollahzadeh J: A
calorie-restricted diet enriched with tree nuts and peanuts reduces
the expression of CX3CR1 in peripheral blood mononuclear cells in
patients with coronary artery disease. Int J Vitam Nutr Res.
93:329–338. 2021. View Article : Google Scholar : PubMed/NCBI
|
22
|
Dai W, Long J, Cheng Y, Chen Y and Zhao S:
Elevated plasma lipoprotein(a) levels were associated with
increased risk of cardiovascular events in Chinese patients with
stable coronary artery disease. Sci Rep. 8:77262018. View Article : Google Scholar : PubMed/NCBI
|
23
|
O'Brien J, Hayder H, Zayed Y and Peng C:
Overview of MicroRNA biogenesis, mechanisms of actions, and
circulation. Front Endocrinol (Lausanne). 9:4022018. View Article : Google Scholar : PubMed/NCBI
|
24
|
Ritchie W and Rasko JE: Refining microRNA
target predictions: Sorting the wheat from the chaff. Biochem
Biophys Res Commun. 445:780–784. 2014. View Article : Google Scholar : PubMed/NCBI
|
25
|
Stakos DA, Gatsiou A, Stamatelopoulos K,
Tselepis AD and Stellos K: Platelet microRNAs: From platelet
biology to possible disease biomarkers and therapeutic targets.
Platelets. 24:579–589. 2013. View Article : Google Scholar : PubMed/NCBI
|
26
|
Eisenreich A and Leppert U: The impact of
microRNAs on the regulation of tissue factor biology. Trends
Cardiovasc Med. 24:128–132. 2014. View Article : Google Scholar : PubMed/NCBI
|
27
|
Joladarashi D and Krishnamurthy P:
Assessment of MiRNA regulation of endothelial progenitor cell
mediated angiogenesis. Methods Mol Biol. 1553:305–314. 2017.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Ge X, Huang S, Gao H, Han Z, Chen F, Zhang
S, Wang Z, Kang C, Jiang R, Yue S, et al: miR-21-5p alleviates
leakage of injured brain microvascular endothelial barrier in vitro
through suppressing inflammation and apoptosis. Brain Res.
1650:31–40. 2016. View Article : Google Scholar : PubMed/NCBI
|
29
|
Meng Q, Wang W, Yu X, Li W, Kong L, Qian
A, Li C and Li X: Upregulation of MicroRNA-126 contributes to
endothelial progenitor cell function in deep vein thrombosis via
its target PIK3R2. J Cell Biochem. 116:1613–1623. 2015. View Article : Google Scholar : PubMed/NCBI
|
30
|
Wang W, Zhu X, Du X, Xu A, Yuan X, Zhan Y,
Liu M and Wang S: MiR-150 promotes angiogensis and proliferation of
endothelial progenitor cells in deep venous thrombosis by targeting
SRCIN1. Microvasc Res. 123:35–41. 2019. View Article : Google Scholar : PubMed/NCBI
|
31
|
Li Y, Yan C, Fan J, Hou Z and Han Y:
MiR-221-3p targets Hif-1α to inhibit angiogenesis in heart failure.
Lab Invest. 101:104–115. 2021. View Article : Google Scholar : PubMed/NCBI
|
32
|
Wang C, Lin Y, Fu Y, Zhang D and Xin Y:
MiR-221-3p regulates the microvascular dysfunction in diabetic
retinopathy by targeting TIMP3. Pflugers Arch. 472:1607–1618. 2020.
View Article : Google Scholar : PubMed/NCBI
|
33
|
Meng Q, Liu Y, Huo X, Sun H, Wang Y and Bu
F: MicroRNA-221-3p contributes to cardiomyocyte injury in
H2O2-treated H9c2 cells and a rat model of myocardial
ischemia-reperfusion by targeting p57. Int J Mol Med. 42:589–596.
2018.PubMed/NCBI
|
34
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(−Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
35
|
Huang Y, Chen L, Feng Z, Chen W, Yan S,
Yang R, Xiao J, Gao J, Zhang D and Ke X: EPC-derived exosomal
miR-1246 and miR-1290 regulate phenotypic changes of fibroblasts to
endothelial cells to exert protective effects on myocardial
infarction by targeting ELF5 and SP1. Front Cell Dev Biol.
9:6477632021. View Article : Google Scholar : PubMed/NCBI
|
36
|
Xia X, Yu Y, Zhang L, Ma Y and Wang H:
Inhibitor of DNA binding 1 regulates cell cycle progression of
endothelial progenitor cells through induction of Wnt2 expression.
Mol Med Rep. 14:2016–2024. 2016. View Article : Google Scholar : PubMed/NCBI
|
37
|
Xie M, Liu M and He CS: SIRT1 regulates
endothelial notch signaling in lung cancer. PLoS One. 7:e453312012.
View Article : Google Scholar : PubMed/NCBI
|
38
|
Umemura S, Sowa Y, Iizumi Y, Kitawaki J
and Sakai T: Synergistic effect of the inhibitors of RAF/MEK and
AXL on KRAS-mutated ovarian cancer cells with high AXL expression.
Cancer Sci. 111:2052–2061. 2020. View Article : Google Scholar : PubMed/NCBI
|
39
|
Li Y, Cui W, Song B, Ye X, Li Z and Lu C:
Autophagy-Sirtuin1(SIRT1) alleviated the coronary atherosclerosis
(AS)in mice through regulating the proliferation and migration of
endothelial progenitor cells (EPCs) via wnt/β-catenin/GSK3β
signaling pathway. J Nutr Health Aging. 26:297–306. 2022.
View Article : Google Scholar : PubMed/NCBI
|
40
|
Alexandru N, Andrei E, Safciuc F, Dragan
E, Balahura AM, Badila E and Georgescu A: Intravenous
administration of allogenic cell-derived microvesicles of healthy
origins defend against atherosclerotic cardiovascular disease
development by a direct action on endothelial progenitor cells.
Cells. 9:4232020. View Article : Google Scholar : PubMed/NCBI
|
41
|
Morishita T, Uzui H, Ikeda H, Amaya N,
Kaseno K, Ishida K, Fukuoka Y, Lee JD and Tada H: Association of
CD34/CD133/VEGFR2-positive cell numbers with eicosapentaenoic acid
and postprandial hyperglycemia in patients with coronary artery
disease. Int J Cardiol. 221:1039–1042. 2016. View Article : Google Scholar : PubMed/NCBI
|
42
|
Zhao YH, Yuan B, Chen J, Feng DH, Zhao B,
Qin C and Chen YF: Endothelial progenitor cells: Therapeutic
perspective for ischemic stroke. CNS Neurosci Ther. 19:67–75. 2013.
View Article : Google Scholar : PubMed/NCBI
|
43
|
Fortini F, Sega FV, Marracino L, Severi P,
Rapezzi C, Rizzo P and Ferrari R: Well-known and novel players in
endothelial dysfunction: Updates on a Notch(ed) landscape.
Biomedicines. 9:9972021. View Article : Google Scholar : PubMed/NCBI
|
44
|
Lange KS, Nave AH, Liman TG, Grittner U,
Endres M and Ebinger M: Lipoprotein(a) levels and recurrent
vascular events after first ischemic stroke. Stroke. 48:36–42.
2017. View Article : Google Scholar : PubMed/NCBI
|
45
|
Orso F, Quirico L, Dettori D, Coppo R,
Virga F, Ferreira LC, Paoletti C, Baruffaldi D, Penna E and Taverna
D: Role of miRNAs in tumor and endothelial cell interactions during
tumor progression. Semin Cancer Biol. 60:214–224. 2020. View Article : Google Scholar : PubMed/NCBI
|
46
|
Quan H, Liang M, Li N, Dou C, Liu C, Bai
Y, Luo W, Li J, Kang F, Cao Z, et al: LncRNA-AK131850 Sponges
MiR-93-5p in newborn and mature osteoclasts to enhance the
secretion of vascular endothelial growth factor a promoting
vasculogenesis of endothelial progenitor cells. Cell Physiol
Biochem. 46:401–417. 2018. View Article : Google Scholar : PubMed/NCBI
|
47
|
Meng S, Cao J, Wang L, Zhou Q, Li Y, Shen
C, Zhang X and Wang C: MicroRNA 107 partly inhibits endothelial
progenitor cells differentiation via HIF-1β. PLoS One.
7:e403232012. View Article : Google Scholar : PubMed/NCBI
|
48
|
Sun J, Zhang Z, Ma T, Yang Z, Zhang J, Liu
X, Lu D, Shen Z, Yang J and Meng Q: Endothelial progenitor
cell-derived exosomes, loaded with miR-126, promoted deep vein
thrombosis resolution and recanalization. Stem Cell Res Ther.
9:2232018. View Article : Google Scholar : PubMed/NCBI
|
49
|
Meng S, Cao JT, Zhang B, Zhou Q, Shen CX
and Wang CQ: Downregulation of microRNA-126 in endothelial
progenitor cells from diabetes patients, impairs their functional
properties, via target gene spred-1. J Mol Cell Cardiol. 53:64–72.
2012. View Article : Google Scholar : PubMed/NCBI
|
50
|
Katto J, Engel N, Abbas W, Herbein G and
Mahlknecht U: Transcription factor NFκB regulates the expression of
the histone deacetylase SIRT1. Clin Epigenetics. 5:112013.
View Article : Google Scholar : PubMed/NCBI
|
51
|
Gao P, Xu TT, Lu J, Li L, Xu J, Hao DL,
Chen HZ and Liu DP: Overexpression of SIRT1 in vascular smooth
muscle cells attenuates angiotensin II-induced vascular remodeling
and hypertension in mice. J Mol Med (Berl). 92:347–357. 2014.
View Article : Google Scholar : PubMed/NCBI
|
52
|
Arunachalam G, Samuel SM, Marei I, Ding H
and Triggle CR: Metformin modulates hyperglycaemia-induced
endothelial senescence and apoptosis through SIRT1. Br J Pharmacol.
171:523–535. 2014. View Article : Google Scholar : PubMed/NCBI
|
53
|
Balestrieri ML, Rienzo M, Felice F,
Rossiello R, Grimaldi V, Milone L, Casamassimi A, Servillo L,
Farzati B, Giovane A and Napoli C: High glucose downregulates
endothelial progenitor cell number via SIRT1. Biochim Biophys Acta.
1784:936–945. 2008. View Article : Google Scholar : PubMed/NCBI
|
54
|
Li W, Du D, Wang H, Liu Y, Lai X, Jiang F,
Chen D, Zhang Y, Zong J and Li Y: Silent information regulator 1
(SIRT1) promotes the migration and proliferation of endothelial
progenitor cells through the PI3K/Akt/eNOS signaling pathway. Int J
Clin Exp Pathol. 8:2274–2287. 2015.PubMed/NCBI
|
55
|
Li T and Sun Y, Wang J, Zhang C and Sun Y:
Promoted skin wound healing by tail-amputated eisenia foetida
proteins via the Ras/Raf/MEK/ERK signaling pathway. ACS Omega.
8:13935–13943. 2023. View Article : Google Scholar : PubMed/NCBI
|
56
|
Wang CQ, Lin CY, Huang YL, Wang SW, Wang
Y, Huang BF, Lai YW, Weng SL, Fong YC, Tang CH and Lv Z:
Sphingosine-1-phosphate promotes PDGF-dependent endothelial
progenitor cell angiogenesis in human chondrosarcoma cells. Aging
(Albany NY). 11:11040–11053. 2019. View Article : Google Scholar : PubMed/NCBI
|
57
|
Zhang X, Mao H, Chen JY, Wen S, Li D, Ye M
and Lv Z: Increased expression of microRNA-221 inhibits PAK1 in
endothelial progenitor cells and impairs its function via
c-Raf/MEK/ERK pathway. Biochem Biophys Res Commun. 431:404–408.
2013. View Article : Google Scholar : PubMed/NCBI
|
58
|
Singh V and Ubaid S: Role of silent
information regulator 1 (SIRT1) in regulating oxidative stress and
inflammation. Inflammation. 43:1589–1598. 2020. View Article : Google Scholar : PubMed/NCBI
|
59
|
Alcendor RR, Gao S, Zhai P, Zablocki D,
Holle E, Yu X, Tian B, Wagner T, Vatner SF and Sadoshima J: Sirt1
regulates aging and resistance to oxidative stress in the heart.
Circ Res. 100:1512–1521. 2007. View Article : Google Scholar : PubMed/NCBI
|
60
|
Ngo C, Chereau C, Nicco C, Weill B,
Chapron C and Batteux F: Reactive oxygen species controls
endometriosis progression. Am J Pathol. 175:225–234. 2009.
View Article : Google Scholar : PubMed/NCBI
|